
Verification of Infinite State Systems by

Compositional Model Checking

K.L. McMillan

Cadence Berkeley Labs

Abstract. A method of compositional verification is presented that uses
the combination of temporal case splitting and data type reductions to
reduce types of infinite or unbounded range to small finite types, and ar-
rays of infinite or unbounded size to small fixed-size arrays. This supports
the verification by model checking of systems with unbounded resources
and uninterpreted functions. The method is illustrated by application
to an implementation of Tomasulo’s algorithm, for arbitrary or infinite
word size, register file size, number of reservation stations and number
of execution units.

1 Introduction

Compositional model checking reduces the verification of a large system to a
number of smaller verification problems that can be handled by model check-
ing. This is necessary because model checkers are limited with respect to state
space size. Compositional methods are implemented in, for example, the SMV
system [13] and the Mocha system [1]. The typical proof strategy using these
systems is to specify refinement relations between an abstract model and cer-
tain variables or signals in an implementation. This allows components of the
implementation to be verified in context of the abstract model. This basic ap-
proach is limited in two respects. First, it does not reduce data types with large
ranges, such as addresses or data words. For example, it is ineffective for sys-
tems with 32-bit or 64-bit memory address spaces. Second, the approach can
verify only a fixed configuration of a design, with fixed resources. It cannot, for
example, verify a parameterized design for all values of the parameter (such as
the number of elements in an array).

Here, we present a method based on temporal case splitting and a form of
data type reduction, that makes it possible to handle types of arbitrary or infinite
range, and arrays of arbitrary or infinite size. Temporal case splitting breaks the
correctness specification for a given data item into cases, based on the path the
data item has taken through the system. For each case, we need only consider a
small, fixed subset of the elements of the large data structures. The number of
cases, while potentially very large, can be reduced to a small number by existing
techniques based on symmetry [13]. Finally, for any given case, a data type
reduction can reduce the large or infinite types to small finite types. The reduced
types contain only a few values relevant to the given case, and an abstract value

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 219–237, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

220 K.L. McMillan

representing the remaining values in the original type. Thus, we reduce the
large or infinite types and structures to small finite types and structures for the
purpose of model checking.

Together, these methods also allow specification and verification using unin-
terpreted functions. For example, we can use model checking to verify the cor-
rectness of an instruction set processor independent of its arithmetic functions.
This separates the verification of data and control flow from the verification the
the arithmetic units.

The techniques described in this paper have been implemented in a proof
assistant which generates model checking subgoals to be discharged by the SMV
model checker.

Related Work Data type reduction, as applied here, can be viewed as a special
case of abstract interpretation [5]. It is also related to reductions based on data
independence [18] in that a large data type is reduced to a small finite one,
using a few representative values and an extra value to represent everything else.
The technique used here is more general, however, in that it does not require
control to be independent of data. For example, it allows control to depend on
comparisons of data values. The technique may therefore be applied to reduce
addresses, tags and pointers, which are commonly compared to determine control
behavior (an example of this appears later in the paper). Also, the technique
reduces not only the data types in question, but also any arrays indexed by
these types. This makes it possible to handle systems with unbounded memories,
FIFO buffers, etc..

Lazic and Roscoe [11] also describe a technique for reducing unbounded ar-
rays to finite ones for verification, under certain restrictions. Their technique is
a complete procedure for verifying a particular property (determinism). It works
by identifying a finite configuration of a system, whose determinism implies de-
terminism of of any larger configurations. The technique presented here, on the
other hand, is not restricted to a particular property. More importantly, the
method of [11] does not allow equality comparison of values stored in arrays,
nor the storage of array indices in arrays. Thus, for example, it cannot han-
dle unbounded cache memories, content-addressable memories, or the example
presented in this paper, an out-of-order processor that stores tags (i.e., array
indices) in arrays, and compares them for equality. Note that comparing values
stored in an unbounded array, or even including one bit of status information in
the elements of an unbounded array, is sufficient to make reachability analysis
undecidable. Unfortunately, these conditions are ubiquitous in hardware design.
Thus, while the technique presented here is incomplete, being based on a con-
servative abstraction, this incompleteness should be viewed as inevitable if we
wish to verify hardware designs for unbounded resources.

Data type reduction has also been used by Long [12] in his work on generating
abstractions using BDD’s. However, that work applied only to concrete finite
types. Here, types of arbitrary or infinite size are reduced to finite types. Also,
Long’s work did not treat the reduction of arrays. What makes it possible to do

Verification of Infinite State Systems by Compositional Model Checking 221

this here is the combination of data type reductions with temporal case splitting
and symmetry reductions, a combination which appears to be novel.

The use of uninterpreted functions here is also substantially different from
previous applications, both algorithmically and methodologically. The reason for
using uninterpreted functions is the same – to abstract away from the actual func-
tions computed on data. However, existing techniques using uninterpreted func-
tions, such as [4,10,7,14,17,2] are based essentially on symbolic simulation. The
present method allows the combination of uninterpreted functions with model
checking. This distinction has significant practical consequences for the user.
That is, the existing methods are all based on proving commutative diagrams.
In the simplest case, one shows that, from any state, applying an abstraction
function and then a step of the specification model is equivalent to applying a
step of the implementation model and then the abstraction function. However,
since not all states are reachable, the user must in general provide an inductive
invariant. The commutative diagram is proved only for those states satisfying
the invariant. By contrast, in the present technique, there is no need to provide
an inductive invariant, since the model checker determines the strongest invari-
ant by reachability analysis. This not only saves the user a considerable effort,
but also improves the re-usability of proofs, as we will observe later.

In general, when uninterpreted functions with equality are added to temporal
logic, the resulting logic is undecidable. The present method is not a decision
procedure for such a logic, but rather a user-guided reduction to the propositional
case that is necessarily incomplete. Note, an earlier semi-decision procedure for
such a logic [8], is sound only in a very restricted case; for most problems of
practical interest, the procedure is not sound, and can only be used to find
counterexamples. Of the various non-temporal techniques using uninterpreted
functions, the present method is most similar to [17], since it is also based on
finite instantiation. However, the methods are not similar algorithmically.

Thus, the methods presented here are novel in three aspects: first the partic-
ular techniques of data type reduction and of handling uninterpreted functions
are novel. Second, the combination of these techniques with existing compo-
sitional methods and techniques of exploiting symmetry is novel. Finally, the
implementation of all these techniques into a mechanical proof assistant based
on symbolic model checking is novel.

Outline of the Article Section 2 is a brief overview of earlier work on composi-
tional methods and symmetry, on which the current work is based. Section 3 then
describes temporal case splitting and its implementation in the SMV system.
Section 4 covers data type reduction and its implementation in SMV. Finally, in
section 5, these techniques are illustrated by applying them to an implementation
of Tomasulo’s algorithm. This is the same example used in [13], however in this
case the new techniques substantially simply the proof, decrease the run-time of
the prover, and allow verification for unbounded or infinite resources.

222 K.L. McMillan

Abstract Model

U1

U2

A B

P Q Refinement relations

Implementation

Fig. 1. Compositional refinement verification

2 Compositional Verification and Symmetry

The SMV system uses compositional model checking to support refinement ver-
ification – proving that an abstract model, acting as the system specification,
is implemented by some more detailed system model. Correctness is usually de-
fined by refinement relations that specify signaling behavior at suitable points
in the implementation in terms of events occurring in the abstract model (see
fig. 1). Typically, the abstract model, the implementation and the refinement
relations are all expressed in the same HDL-like language, as sets of equations
that may involve time delay. Formally, however, we can view them as simply
linear temporal logic properties.

The refinement relations decompose the system structurally into smaller
parts for separate verification. This relies on a method of circular compositional
proof whereby we may assume that one temporal property P holds true while
verifying property Q, and vice versa. In the figure, for example, we can assume
that signal A is correct w.r.t. the abstract model when verifying signal B, and
assume that signal B is correct w.r.t. the abstract model when verifying sig-
nal A. This makes it possible to compositionally very systems that have cyclic
data flow, such as instruction set processors.

In addition, the SMV system can exploit symmetry in a design to reduce a
large number of symmetric proof obligations to a small number of representative
cases. This is based on the use of symmetric data types called scalarsets, bor-
rowed from the Murphi language [9]. To exploit the symmetry of a given type,
we must guarantee that values of that type are only used in certain symmetric
ways. For example, they may be compared for equality, or used as indices of ar-
rays. SMV enforces these conditions by static type checking. For further details
of these methods, the reader is referred to [13].

3 Temporal Case Splitting

Hardware designs typically contain large arrays, such as memories, FIFO buffers,
content-addressable memories (CAM’s) and so forth. Their state space is often

Verification of Infinite State Systems by Compositional Model Checking 223

intractably large, and thus we usually cannot apply model checking to them
directly. However, we can often confine the verification problem to one or two
elements of the array by means of temporal case splitting. Using this approach,
we verify the correctness of only those data items that have passed through a
given fixed element of an array. Thus, we consider individually each path that
a data item might take through a given system, and reduce the number of state
variables accordingly.

Temporal case splitting breaks the proof of temporal property Gφ (φ at all
times) into cases based on the value of a given variable v. For each possible
value i of v, we show that φ is true at just those times when v = i. Then, since
at all times v must have some value, we can infer that φ must be true at all
times. This inference is based on the following fairly trivial fact about temporal
logic:

Theorem 1. If, for all i in the range of variable v, |= G(v = i ⇒ φ), then
|= Gφ.

Typically, v is an auxiliary variable recording the location in some array that
was used to store the data item currently appearing at a unit output (see [13]
for the use of auxiliary variables in compositional proofs). To prove a give case
v = i, it is commonly only necessary to refer to element i of the array. The other
elements of the array can be abstracted from the model by replacing them with
an “unknown” value ⊥, much as in ternary symbolic simulation [3]. Thus, in
effect, we decompose a large array into its elements for the purposes of model
checking. Several examples of this can be found in section 5.

In the SMV system, a specification s of the form Gp is split into cases using
a declaration of the following form:

forall (i in TYPE) subcase c[i] of s for v = i;

Here, s is the name of the original specification, and TYPE is the type of variable v.
This generates an array of specifications c where each specification c[i] is the
formula G((v = i) ⇒ p). If every element of c can be separately proved, then
SMV infers the original specification s.

4 Data Type Reductions

Although temporal case splitting may reduce a large array to a small number
of elements, the model will still have types with large ranges, such as addresses
or data words. In this case, data type reduction can reduce a large (perhaps
unbounded or infinite) type to a small finite one, containing only one or two
values relevant to the case being verified. The remaining values are represented
by a single abstract value. Corresponding to this reduction, we have an abstract
interpretation of constructs in the logic. This abstraction is conservative, in that
any property that is true in the reduced model is also true in the original.

For example, let t be an arbitrary type. Regardless of the actual range of t, we
can reduce the range to a set containing a distinguished value i and an abstract

224 K.L. McMillan

value (which we will denote t\ i) representing the remaining values. Thus, in the
reduced model, all variables of type t range over the set {i, t \ i}. Now, consider,
for example, the equality operator. In order to obtain a conservative abstraction,
we use the following truth table for equality:

= i t \ i
i 1 0

t \ i 0 ⊥

That is, the specific value i is equal to itself, and not equal to t \ i. However,
two values not equal to i may themselves be equal or unequal. Thus, the result
of comparing t \ i and t \ i for equality is an “unknown” value ⊥.

Similarly, an array reference a[x], where a has index type t, yields the value
of signal a[i] if x = i and otherwise ⊥. As a result, in the reduced verification
problem, only one element, a[i], of array a is referenced.

Using such an abstract interpretation, any formula that is true in the re-
duced model will be true in the original. On the other hand, in some cases the
truth value of a formula in the abstraction will be ⊥. In this case we cannot
infer anything about the truth of the formula in the original model. In practice,
an appropriate data type reduction for a given type can often be inferred auto-
matically, given the particular case being verified. For example, if the case has
two parameters, i and j, both of type t, then by default SMV would reduce the
type t to the two values i and j, and the abstract value t\ {i, j}. Some examples
of this will appear in section 5.

Formalizing Data Type Reductions Data type reductions, as used here,
are a particular instance of abstract interpretation [5]. This, of course, is an old
subject, however the particular abstract interpretation used here is believed by
the author to be novel. Formalizing the notion of data type reduction for the
complete logic used by SMV would require at the very least introducing the
entire logic, which is well beyond the scope of this paper. However, we can easily
formalize data type reductions in a general framework, for an arbitrary logic,
and show in some special cases how this relates to SMV’s logic.

To begin with, suppose that we are given a set U of values, a set V of
variables, a set T of types and a function T : V → T , assigning types to
variables. Suppose also that we are given a language L of formulas. Formulas
are built from a set of constructors C, where each constructor c ∈ C has a
arity nc ≥ 0. Examples of constructors in SMV’s logic are function symbols,
constants, variables and quantifiers. An atomic formula is c(), where c ∈ C
is of arity nc = 0. A formula is defined to be either an atomic formula, or
c(ψ1, . . . , ψn), where c ∈ C is a constructor of arity nc = n ≥ 1, and ψ1, . . . , ψn

are formulas. Now, let a structure be a triple M = (R,N ,F), where R is a
function T → P(U), assigning a range of values to every type, N is a set of
denotations, and F is an interpretation, assigning to each constructor c ∈ C, a
function F(c) : Nn → N . The denotation of a formula f in structure M will be

Verification of Infinite State Systems by Compositional Model Checking 225

written fM . This is defined inductively. That is, for formula φ = c(ψ1, . . . , ψn),
where c ∈ C is a constructor, φM = (F(c))(ψM

1 , . . . , ψ
M
n).

We will assume that the set of denotations N admits a pre-order, ≤, and
that every function F(c) where c ∈ C, is monotonic with respect to this pre-
order. That is, for all c ∈ C, if x1 ≤ y1, . . . , xn ≤ yn, where xi, yi ∈ N , then
(F(c))(x1, . . . , xn) ≤ (F(c))(y1, . . . , yn). Given two structures M = (R,N ,F)
and M ′ = (R′,N ′,F ′), we will say that a function h : N → N ′ is a homomor-
phism from M to M ′ when, for every c ∈ C,

h(F(c)(x1, . . . , xn)) ≥ (F ′(c)(h(x1), . . . , h(xn))

If h is a homomorphism from M to M ′, we will write M h→M ′.

Theorem 2. If M h→M ′ then for all formulas φ ∈ L, h(φM) ≥ φM ′

Proof. By induction over the structure of φ, using monotonicity.

Now, let us fix a structure M = (R,N ,F). Let a data type reduction be any
function r : T → P(U), assigning to each type t ∈ T a set of values r(t) ⊆ R(t).
That is, a data type reduction maps every type to a subset of its range in M .
We wish to define, for every data type reduction r, a reduced structure Mr, and
a map hr, such that M hr→Mr.

As an example, let us say that N is the set of functions M → Q, where M
is a set of models and Q is a set of base denotations. For now, let Q be simply
the set U of values. A model is a function σ : V → Q, assigning to every variable
v ∈ V a value σ(v) in R(T (v)), the range of its type in M . For any data type
reduction r : T → P(U), let Mr be a structure (Rr,Nr,Fr). For every type
t ∈ T , let Rr(t) be the set {{x} | x ∈ r(t)}∪{U \r(t)}. That is, the range of type t
in the reduced model is the set consisting of the singletons {x}, for x in r(t),
and the set containing all the remaining values. Let Nr, the set of denotations of
the reduced structure, be as above, except that Qr, the set of base denotations
in the reduced model, is P(U). For any x, y ∈ Qr, we will say that x ≤ y when
x ⊇ y, and we will equate ⊥r with the set U of all values. The pre-order ≤ on Nr

is the point-wise extension of this order to denotations. That is, for all x, y ∈ N ,
x ≤ y iff, for all models σ ∈ Mr, x(σ) ≤ y(σ). Finally, the map hr is defined as
follows:

hr(x)(σ′) = {x(σ) | σ ∈ σ′}

where for any σ ∈ M and σ′ ∈ Mr, we say σ ∈ σ′ iff for all variables v ∈ V ,
σ(v) ∈ σ′(v). Now, for every constructor c, we must define an abstract inter-
pretation Fr(c), corresponding to the original interpretation F(c), such that
M

hr→Mr.

Definition 1. A constructor c ∈ C is safe for r iff, for all σ ∈ M and σ′ ∈
Mr for all x ∈ Nn, y ∈ Nn

r if σ ∈ σ′ and xiσ ∈ yiσ
′ for i = 1 . . . n, then

(F(c))(x1, . . . , xn)σ ∈ (Fr(c))(y1, . . . , yn)σ′.

226 K.L. McMillan

Theorem 3. If every c ∈ C is safe for r, then M hr→Mr.

Proof. Suppose that for all σ ∈ σ′, (F(c))(x1, . . . , xn)σ ∈ (Fr(c))(y1, . . . , yn)σ′.
Then,

hr(F(c)(x1, . . . , xn))(σ′) = {F(c)(x1, . . . , xn)(σ) | σ ∈ σ′}
⊆ Fr(c)(y1, . . . , yn)σ′

Hence by definition hr(F(c)(x1, . . . , xn)) ≥ (Fr(c))(y1, . . . , yn).

We will consider here a few atomic formulas and constructors in the SMV logic
of particular interest. For example, every variable v ∈ V is a atomic formula in
the logic. In the original interpretation we have, somewhat tautologically,

F(v)()(σ) = σ(v)

In the abstract interpretation, we have the same definition:

Fr(v)()(σ′) = σ′(v)

We can immediately see that v is safe for any data type reduction r. That is, if
σ ∈ σ′, then by definition, for every variable v, σ(v) ∈ σ′(v). Thus, F(v)()(σ) ∈
Fr(v)()(σ′).

Now let us consider the equality operator. The concrete interpretation of this
operator is:

F(=)(x1, x2)(σ) =
{

1 ; x1σ = x2σ
0 ; else

The abstract interpretation is:

Fr(=)(y1, y2)(σ′) =

{1} ; y1σ′ = y2σ
′, |y1σ′| = 1

{0} ; y1σ′ ∩ y2σ′ = ∅
⊥r ; else

That is, if the arguments are equal singletons, they are considered to be equal,
if they are disjoint sets, they are considered to be unequal, and otherwise the
result is ⊥r. This constructor is clearly safe for any r. That is, a simple case
analysis will show that if x1σ ∈ y1σ′ and x2σ ∈ y2σ′, then F(=)(x1, x2)(σ) ∈
Fr(=)(y1, y2)(σ′).

Finally, we consider array references. An array a is an n-ary constructor. To
each argument position 0 ≤ i < n, we association an index type Ti(a) ∈ T . We
also associate with a a collection of variables {a[x1] · · · [xn] | xi ∈ R(Ti(a))} ⊆ V .
The interpretation of the array constructor a is:

F(a)(x1, . . . , xn)(σ) =
{
σ(a[x1σ] · · · [xnσ]) ; xiσ ∈ R(Ti(a))
⊥ ; else

That is, if all of the indices are in the range of their respective index types,
then the result is the value of the indexed array element in σ, else it is ⊥ (the
“unknown” value in the concrete model). The abstract interpretation is

Fr(a)(y1, . . . , yn)(σ′) =
{
σ′(a[m1] · · · [mn]) ; yiσ

′ = {mi}, mi ∈ r(Ti(a))
⊥r ; else

Verification of Infinite State Systems by Compositional Model Checking 227

That is, if all of the indices are singletons in the reduced range of their respective
index types, then the result is the value of the indexed array element in σ′,
else it is ⊥r. Thus, if a given array index has index type t, then the abstract
interpretation depends only on array elements whose indices are in r(t). This is
what allows us to reduce unbounded arrays to a finite number of elements for
model checking purposes. It is a simple exercise in case analysis to show that
array references are safe for r.

Most of the remaining constructors in the SMV logic are trivially safe in that
they return ⊥r when any argument is not a singleton. Since all the constructors
are safe, we have M hr→Mr. Now, suppose that we associate with each structure
M = (R,N ,F) a distinguished denotation True ∈ N , the denotation of valid
formulas. We will say that a homomorphism h from M to M ′ is truth preserv-
ing when h(x) ≥ True′ implies x = True. This gives us the following trivial
corollary of theorem 2:

Corollary 1. If M h→M ′ and h is truth preserving, then φM ′
= True′ implies

φM = True.

In the case of a data type reduction r, we will say that True in structureM is the
denotation that maps every model to 1, while Truer in the reduced model Mr

maps every model to the singleton {1}. In this case, hr is easily shown to be
truth preserving, hence every formula that is valid in Mr is valid in M . Note
that, if r maps every type to a finite range, then the range of all variables is
finite in Mr. Further, because of the abstract interpretation of array references,
the number of variables that φMr depends on is finite for any formula φ. Thus,
we can apply model checking techniques to evaluate φMr even if the ranges of
types in M are unknown, which also allows the possibility that they are infinite.

The above treatment is simplified somewhat relative the the actual SMV
logic. For example, the SMV logic is a linear temporal logic. To handle temporal
operators, we must extend the type of base denotations Q from values in U
to infinite sequences in Uω. Further extensions of Q are required to handle
nondeterministic choice and quantifiers. However, the basic theory presented
above is not substantially changed by these extensions.

5 Verifying a Version of Tomasulo’s Algorithm

Combining the above methods – compositional reasoning, symmetry reduction,
temporal case splitting and data type reduction – we can reduce the verification
of a complex hardware system with unbounded resources to a collection of finite
state verification problems, each with a small number of state bits. When the
number of state bits in each subproblem is sufficiently small, verification can
proceed automatically by model checking. As an example, we apply the above
techniques to the verification of an implementation of Tomasulo’s algorithm for
out-of-order instruction execution.

228 K.L. McMillan

Tomasulo’s Algorithm Tomasulo’s algorithm [15] allows an instruction set
processor to execute instructions in data-flow order, rather than sequential order.
This can increase the throughput of the unit, by allowing instructions to be
processed in parallel. Each pending instruction is held in a “reservation station”
until the values of its operands become available. It is then issued to an execution
unit. The flow of instructions in our implementation is pictured in figure 2. Each
instruction, as it arrives, fetches its two operands from a special register file.

REGISTER FILE

 VAL/TAG
 OPERANDS

VAL/TAG
VAL/TAG
VAL/TAG
VAL/TAG

OP, DST

opr a opr b

RESERVATION
STATIONS

OP, DST

opr a opr b

OP, DST

opr a opr b

EU

EU

EU

TAGGED RESULTS

OPSINSTRUCTIONS

EXECUTION
PIPELINES

Fig. 2. Flow of instructions in Tomasulo’s algorithm

Each register in this file holds either an actual value, or a “tag” indicating the
reservation station that will produce the register value when it completes. The
instruction and its operands (either values or tags) are stored in a reservation
station (RS). The RS watches the tagged results returning from the execution
unit. When a tag matches one of its operands, it records the value in place
of the tag. When the RS has the values of both of its operands, it may issue
its instruction to an execution unit. When the result returns from the execution
unit, the RS is cleared, and the result value, if needed, is stored in the destination
register.

In addition to ALU instructions, our implementation includes instructions
that read register values to an external output and write values from an exter-
nal input. There is also a “stall” output, indicating that an instruction cannot
currently be received. A stall can happen either because there is no available
RS to store the instruction, or because the value of the register to be read to an
output is not yet available.

Structural Decomposition The implementation is modeled in the SMV lan-
guage at the RTL level. This machine is in turn specified with respect to an
abstract model. This is a simple implementation of the instruction set that ex-
ecutes instructions sequentially. The input and output signals of the abstract

Verification of Infinite State Systems by Compositional Model Checking 229

model and the implementation are the same, so there is no need to write refine-
ment relations between them.1

We begin the proof by using refinement relations to break the verification
problem into tractable parts. In [13], the circular compositional rule was used
decompose the arrays (e.g., the register file, and reservation station array). Here,
a substantially simpler proof is obtained using temporal case splitting and data
type reductions. Essentially, we break the verification problem into two lemmas.
The first lemma specifies the operand values stored in the reservation stations,
while the second specifies the values returning on the result bus from the execu-
tion units, both in terms of the abstract model. We apply circular compositional
reasoning, using operand correctness to prove result correctness, and result cor-
rectness to prove operand correctness.

To specify the operand and result values, we need to know what the correct
values for these data items actually are. We obtain this information by adding
auxiliary state to the model (exactly as in [13]). In this case, our auxiliary state
variables record the correct values of the operands and the result of each in-
struction, as computed by the abstract model. These values are recorded at the
time an instruction enters the machine to be stored in a reservation station. The
SMV code for this is the following:

if(~stallout & opin = ALU){

next(aux[st_choice].opra) := opra;

next(aux[st_choice].oprb) := oprb;

next(aux[st_choice].res) := res;

}

That is, if the machine does not stall, and we have an ALU operation, then we
store in array aux the correct values of the two operands (opra and oprb) and
the result res from the abstract model. The variable st choice indicates the
reservation station to be used. Storing these values will allow us to verify that
the actual operands and results we eventually obtain are correct.

The refinement relations themselves are also written as assignments, though
they are treated as temporal properties to be proved. For example, here is the
operand correctness specification (for operand opra):

layer lemma1 :

forall(k in TAG)

if(st[k].valid & st[k].opra.valid)

st[k].opra.val := aux[k].opra;

For present purposes, the declaration “layer lemma1:” simply attaches the
name lemma1 to the property. TAG is the type of RS indices. Thus, the prop-
erty must hold for all reservation stations k. If station st[k] is is valid (con-
tains an instruction) and its opra operand is a value (not a tag), then the value
must be equal to the correct operand value stored in the auxiliary array aux.
Note that semantically, the assignment operator here simply stands for equal-
ity. Pragmatically, however, it also tells the system that this is a specification of
1 Here, we prove only safety. For the liveness proof, see “Circular compositional
reasoning about liveness”, in this volume.

230 K.L. McMillan

signal st[k].opra.val, and that this specification depends on signal
aux[k].opra. The SMV proof system uses this information when constructing
a circular compositional proof.

The result correctness lemma is just as simply stated:

forall (i in TAG)

layer lemma2[i] :

if(pout.tag = i & pout.valid)

pout.val := aux[i].res;

That is, for all reservation stations i, if the tag of the returning result on the
bus pout is i, and if the result is valid, then its value must be the correct result
value for reservation station i.

Using Temporal Case Splitting The refinement relations divide the imple-
mentation into two parts for the purpose of verification (operand forwarding
logic and instruction execution logic). However, there remain large arrays in the
model that prevent us from applying model checking at this point. These are the
register file, the reservation station array and the execution unit array. There-
fore, we break the verification problem into cases, as a function of the path a
data item takes when moving from one refinement relation to another.

Consider, for example, a value returning on the result bus. It is the result
produced by a reservation station i (the producer). It then (possibly) gets stored
in a register j. Finally it is fetched as an operand for reservation station k (the
consumer). This suggests a case split which reduces the verification problem
to just two reservation stations and one register. For each operand arriving at
consumer RS k, we split the specification into cases based on the producer i (this
is indicated by the “tag” of the operand) and the register j (this is the source
operand index of the instruction). To prove just one case, we need to use only
reservation stations i and k, and register j. The other elements of these arrays
are automatically abstracted away, replacing them with the “unknown” value ⊥.
The effect of this reduction is depicted in figure 3.

To apply temporal case splitting in SMV, we use the following declaration
(for operand opra):

forall (i,k in TAG; j in REG)

subcase lemma1[i][j]

of st[k].opra.val//lemma1

for st[k].opra.tag = i & aux[k].srca = j;

That is, for all consumer reservation stations k, we break lemma1 into an array
of cases (i, j), where i is the producer reservation station and j is the source
register. Note, we added an auxiliary variable auk[k].srca to record the source
operand register srca, since the implementation does not store this information.
Verifying each case requires only one register and two reservation stations in
the model. Thus, we have effectively broken the large arrays down into their
elements for verification purposes. For the result lemma a similar case splitting

Verification of Infinite State Systems by Compositional Model Checking 231

REGISTER FILE

 VAL/TAG
 OPERANDS

VAL/TAG
VAL/TAG
VAL/TAG
VAL/TAG

OP, DST

opr a opr b

RESERVATION
STATIONS

OP, DST

opr a opr b

OP, DST

opr a opr b

EU

EU

EU

TAGGED RESULTS

OPSINSTRUCTIONS

EXECUTION
PIPELINES

i

j

k

Fig. 3. Path splitting in Tomasulo’s algorithm.

declaration can be specified; we split cases on the producing reservation station
of the result on the bus, and the execution unit that computed it.

To verify operand correctness, we now have one case to prove for each triple
(i, j, k) where i, k are reservation stations and j is an element of the register file.
However, if all the registers are symmetric to one another, and all the reservation
stations are similarly symmetric, then two representative cases will suffice: one
where i = k and one where i �= k. To exploit the symmetry of the design in
this way in SMV, we simply declare the types of register indices and reserva-
tion station indices to be scalarsets. SMV verifies the symmetry and automat-
ically chooses a set of representative cases. In fact, it chooses the cases (i = 0,
j = 0, k = 0) and (i = 0, j = 0, k = 1). All other cases reduce to one of these by
permuting the scalarset types. Thus, we have reduced O(n3) cases to just two.

Infinite State Verification Up to this point we have defined refinement rela-
tions, used path splitting to decompose the large structures, and applied symme-
try to reduce the number of cases to a tractable level. There remain, however,
the large types, i.e. the data values and possibly the index types. To handle
these, we use data type reduction to reduce these types to small sets consisting
of a few relevant values and an abstract value representing the rest. In fact, us-
ing data type reduction, we can verify our implementation for an arbitrary (or
infinite!) number of registers, reservation stations, and execution units. To do
this, we simply declare the index types to be scalarsets with undefined range, as
follows:

scalarset REG undefined;

scalarset TAG undefined;

This declares both REG (the type of register indices) and TAG (the type of reser-
vation station indices) to be symmetric, but does not declare ranges for these
types. This is possible because the verification process, using symmetry and data

232 K.L. McMillan

type reductions, is independent of the range of these types. For example, when
verifying operand correctness, for a given case (i, j, k), SMV by default reduces
the type TAG to just three values: i, k and an abstract value. Similarly, the type
REG is reduced to just two values: j and an abstract value. This has the side
effect of eliminating all the reservation stations other than i and k, and all the
registers other that j, by substituting the value ⊥.

Further, due to symmetry, we only need to verify a fixed set of cases for i, j
and k, regardless of the actual range of the types. Thus, we can verify the system
generically, for any range, finite or infinite, of these types.

Uninterpreted Functions Finally, we come to the question of data values.
Suppose, for example, that the data path is 64 bits wide. Although model check-
ers can handle some arithmetic operations (such as addition and subtraction)
for binary values of this width, they cannot handle some other operations, such
as multiplication. Moreover, it would be better to verify our implementation
generically, regardless of the arithmetic operations in the instruction set. This
way, we can isolate the problem of binary arithmetic verification. This is done
by introducing an uninterpreted function symbol f for the ALU. Assuming only
that the abstract model and the implementation execution units compute the
same function f , we can prove that our implementation is correct for all ALU
functions. The uninterpreted function appraoch also has the advantage that the
symmetry of data values is not broken. Thus, we can apply symmetry reductions
to data values. As a result, we use only a few representative data values rather
than all 264 possible values.

Interestingly, the techniques described above are sufficient to handle unin-
terpreted functions, without introducing any new logical constructs or decision
procedures. To introduce an uninterpreted function in SMV, we simply observe
that an array in SMV is precisely an uninterpreted function (or, if you prefer, the
“lookup table” for an arbitrary function). Thus, to introduce an uninterpreted
function symbol in SMV, we simply declare an array of the appropriate type.
For example:

forall (a,b in WORD) f[a][b] : WORD;

This declares a binary function f that takes two words a and b and returns a
word f[a][b]. Since we want our arithmetic function to be invariant over time,
we declare:

next(f) := f;

We replace ALU operations in both the abstract model and implementation
with lookups in the the array f. We can exploit the symmetry of data words by
declaring the type of data words to be a scalarset. That is:

scalarset WORD undefined;

In fact, since the actual range of the type is undeclared, in principle we are ver-
ifying the implementation for any size data word. We then use case splitting on
data values to make the problem finite state. That is, we verify result correctness

Verification of Infinite State Systems by Compositional Model Checking 233

for the case when the operands have some particular values a and b, and where
the result f[a][b] is some particular value c. Since we have three parameters a, b
and c of the same type, the number of cases needed to have a representative set
is just 3! = 6. Here is SMV declaration used to split the problem into cases:

forall(i in TAG; a,b,c in WORD)

subcase lemma2[i][a][b][c]

of pout.val//lemma2[i]

for aux[i].opra = a & aux[i].oprb = b & f[a][b] = c;

SMV automatically applies symmetry reduction to reduce an infinite number of
cases to 6 representatives. By default, it uses data type reduction to reduce the
(possibly infinite) type of data words to the specific values a, b and c, and an
abstract value. Thus, in the worst case, when a, b and c are all different, only
two bits are needed to encode data words. We have thus reduced an infinite state
verification problem to a finite number of finite state problems.

Applying Model Checking Applying the above proof decomposition, the
SMV system produces a set of finite state proof subgoals for the model checker.
When all are checked, we have verified our implementation of Tomasulo’s al-
gorithm for an arbitrary (finite or infinite) number of registers and reservation
stations, for an arbitrary (finite or infinite) size data word, and for an arbi-
trary ALU function. Note that we have not yet applied data type reduction to
execution unit indices. Thus, our proof still applies only to a fixed number of
execution units. For one execution unit, there are 11 model checking subgoals,
with a maximum of 25 state variables. The overall processing time (including
generation of proof goals and model checking) is just under 4 CPU seconds on
a SPARC Ultra II server. Increasing the number of execution units to 8, the
processing time increases to roughly one minute. We will discuss shortly how to
generalize the proof to an arbitrary number of execution units.

Perhaps a more important metric for a technique such as this is the user
effort required. The time required for an experienced user of SMV (its author!)
to write, debug and verify the proof was approximately an hour and ten minutes.
Note that the design itself was already debugged and was previously formally
verified using an earlier methodology [13]. The time required to write and debug
the design was far greater than that required to effect the proof.2

Proving Noninterference We can also verify the design for an arbitrary num-
ber of execution units. To do this, as one might expect, we split the result lemma
into cases based on the execution unit used to produce the result, eliminating all
2 Details of this example can be found in a tutorial on SMV, included with the SMV
software. At the time of this writing, the software and tutorial can be downloaded
from the following URL:

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv.

234 K.L. McMillan

the other units. This, however, requires introducing a “noninterference lemma”.
This states that no other execution unit spuriously produces the result in ques-
tion. Such interference would confuse the control logic in the RS and lead to
incorrect behavior. The noninterference lemma is stated in temporal logic as
follows:

lemma3 : assert G (pout.valid -> (complete_eu = aux[pout.tag].eu));

In effect, if the result bus pout is returning a value from an execution unit
complete eu, and if that value is tagged for reservation station i, then
complete eu must be the execution unit from which reservation station i is
expecting a result. Note, an auxiliary variable aux[i].eu is used to store the
index of this execution unit. We can prove this lemma by splitting cases on
pout.tag and complete eu:

forall(i in TAG) forall(j in EU)

subcase lemma3[i][j] of lemma3 for pout.tag = i & complete_eu = j;

In this case, the data types TAG and EU (the type of execution unit indices) are
reduced to just the values i and j respectively, plus an abstract value. Thus, we
can prove the lemma for an arbitrary number of execution units. However, here
an interesting phenomenon occurs: the lemma for a given execution unit j holds
at time t only if it is true for all the other units up to time t − 1. In effect, we
must prove that unit j is not the first unit to violate the lemma. This is done
using the circular compositional method, with the following declaration:

forall(i in TAG) forall(j in EU)

using (lemma3) prove lemma3[i][j];

The parentheses around lemma3 tell SMV to assume the general lemma up to
time t − 1 when proving case i, j at time t. This is typical of noninterference
lemmas, where the first unit to violate the lemma may cause others to fail in the
future. We can now use lemma3 to prove result correctness for any reservation
station i and execution unit j, for any number of execution units. The resulting
model checking subgoals require only a few seconds to discharge.

Adding a Reorder Buffer Now, suppose that we modify the design to use a
“reorder buffer”. That is, instead of writing results to the register file when they
are produced, we store them in a buffer and write them to the register file in
program order. This might be done so that the processor can be returned to a
consistent state after an “exceptional” condition occurs, such as an arithmetic
overflow. The simplest way to do this in the present implementation is to store
the result in an extra field res of the reservation station, and then modify the
allocation algorithm so that reservation stations are allocated and freed in round-
robin order. The result of an instruction is written to the register file when its
reservation station is freed.

Interestingly, after this change, the processor can be verified without mod-
ifying one line of the proof! This is because our three lemmas (for operands,
results and noninterference) are not affected by the design change. This high-
lights an important difference between the present methodology and techniques

Verification of Infinite State Systems by Compositional Model Checking 235

such as [4,10,7,14,17,2], which are based on symbolic simulation. Because we are
using model checking, it is not necessary to write inductive invariants. Instead,
we rely on model checking to compute the strongest invariant of an abstracted
model. Thus, our proof only specifies the values of three key signals: the source
operands in the reservation stations, the value on the result bus and the tag on
the result bus. Since the function of these signals was not changed in adding
the reorder buffer, our proof is still valid. On the other hand, if we had to an
inductive invariant, this would involve in some way all of the state holding vari-
ables. Thus, after changing the control logic and adding data fields, we would
have to modify the invariants. Of course, in some cases, such as very simple
pipelines, almost all states will be reachable, so the required invariant will be
quite simple. However in the case of a system with more complex control (such
as an out-of-order processor), the invariants are nontrivial, and must be modified
to reflect design changes. While this is not an obstacle in theory, in practice a
methodology that requires less proof maintenance is a significant advantage.

6 Conclusions and Future Work

Within a compositional framework, a combination of case splitting, symmetry,
and data type reductions can reduce verification problems involving arrays of
unbounded or infinite size to a tractable number of finite state subgoals, with
few enough state variables to be verified by model checking. This is enabled by
a new method of data type reduction and a method of treating uninterpreted
functions in model checking. These techniques are part of an overall strategy
for hardware verification, that can be applied to such diverse hardware applica-
tions as out-of-order instruction set processors, cache coherence systems [6] and
packet buffers for communication systems [16]. Note that the model checking,
symmetry reduction, temporal case splitting, and data type reduction are tightly
interwoven in this methodology. All are used, for example to support uninter-
preted functions. Their integration into a mechanical proof assistant means that
the proof does not rely in any way on reasoning “on paper”.

One possible form of data type reduction is described here. There are, how-
ever, many other possibilities. For example, an inductive data type has been
added, which allows incrementation (i.e., a successor function). This can be
used, for example, to show by induction that a FIFO buffer delivers an infinite
sequence of packets in the correct order.

The methodology used here is an attempt to combine in a practical way the
strengths of model checking and theorem proving. The refinement relation ap-
proach, combined with various reductions and model checking, makes it possible
to avoid writing assertions about all state holding component of the design, and
also to avoid interactively generated proof scripts. In this way, the manual ef-
fort of proofs is reduced. Such proofs, since they specify fewer signals than do
proofs involving inductive invariants, can be less sensitive to design changes, as
we saw in the case of adding a reorder buffer. On the other hand, the basic abil-
ity of theorem proving to break large proofs down into smaller ones is exploited

236 K.L. McMillan

to avoid model checking’s strict limits on model size. Thus, by combining the
strengths of these two methods, we may arrive at a scalable methodology for
formal hardware verification.

References

1. R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
Mocha: Modularity in model checking. In A. J. Hu and M. Y. Vardi, editors, CAV
’98, number 1427 in LNCS, pages 521–25. Springer-Verlag. 219

2. S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. In FMCAD
’98, number 1522 in LNCS, pages 351–68. Springer, 1998. 221, 235

3. R. E. Bryant and C.-J. Seger. Formal verification of digital circuits using symbolic
ternary system models. In R. Kurshan and E. M. Clarke, editors, Workshop on
Computer-Aided Verification, New Brunswick, New Jersey, June 1990. 223

4. J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In Computer-Aided Verification (CAV ’94). Springer-Verlag, 1994. 221,
235

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238–252. ACM Press, 1977. 220, 224

6. A. Eiriksson. Formal design of 1M-gate ASICs. In FMCAD ’98, number 1522 in
LNCS, pages 49–63. Springer, 1998. 235

7. R. Hojati and R. K. Brayton. Automatic datapath abstraction of hardware sys-
tems. In CAV ’95, number 939 in LNCS, pages 98–113. Springer-Verlag, 1995.
221, 235

8. R. Hojati, A. Isles, D. Kirkpatrick, and R. K. Brayton. Verification using uninter-
preted functions and finite instantiations. In FMCAD ’96, volume 1166 of LNCS,
pages 218–32. Springer, 1996. 221

9. C. Ip and D. Dill. Better verification through symmetry. Formal Methods in System
Design, 9(1-2):41–75, Aug. 1996. 222

10. R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for processor
verification. In ICCAD ’95, 1995. 221, 235

11. R. S. Lazić and A. W. Roscoe. Verifying determinism of concurrent systems which
use unbounded arrays. Technical Report PRG-TR-2-98, Oxford Univ. Computing
Lab., 1998. 220

12. D. E. Long. Model checking, abstraction, and compositional verification. Tecnical
report CMU-CS-93-178, CMU School of Comp. Sci., July 1993. Ph.D. Thesis. 220

13. K. L. McMillan. Verification of an implementation of tomasulo’s algorithm by
compositional model checking. In CAV ’98, number 1427 in LNCS, pages 100–21.
Springer-Verlag, 1998. 219, 221, 222, 223, 229, 233

14. J. U. Skakkabaek, R. B. Jones, and D. L. Dill. Formal verification of out-of-order
execution using incremental flushing. In CAV ’98, number 1427 in LNCS, pages
98–109. Springer-Verlag, 1998. 221, 235

15. R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM J. of Research and Development, 11(1):25–33, Jan. 1967. 228

16. T. E. Truman. A Methodology for the Design and Implementation of Commu-
nication Protocols for Embedded Wireless Systems. PhD thesis, Dept. of EECS,
University of CA, Berkeley, May 1998. 235

Verification of Infinite State Systems by Compositional Model Checking 237

17. M. Velev and R. E. Bryant. Bit-level abstraction in the verification of pipelined
microprocessors by correspondence checking. In FMCAD ’98, number 1522 in
LNCS, pages 18–35. Springer, 1998. 221, 235

18. P. Wolper. Epressing interesting properties of programs in propositional temporal
logic. In 13th ACM POPL, pages 184–193, 1986. 220

	Introduction
	Compositional Verification and Symmetry
	Temporal Case Splitting
	Data Type Reductions
	Verifying a Version of Tomasulo's Algorithm
	Conclusions and Future Work

