A Uniform Approach for the Definition of
Security Properties*

Riccardo Focardi! and Fabio Martinelli2

! Dipartimento di Informatica, Universitd Ca’ Foscari di Venezia, Italy.
focardi@dsi.unive.it
2 Dipartimento di Informatica, Universita di Pisa, Italy.
martinel@di.unipi.it

Abstract. We present a uniform approach for the definition and the
analysis of various security properties. It is based on the general idea
that a security property should be satisfied even in the presence of an
hostile environment. This principle determines a family of strong proper-
ties which are resistant to every external attack, but are quite impractical
to check. For this reason, we find some general conditions that permit to
check a property only against a “most powerful” intruder. We show that
the results of our theory can be easily applied to a number of existing
security properties that can be rephrased in our setting. This shows the
generality of the approach and permits to find some interesting relations
among properties which have been proposed for different security issues.

1 Introduction

In the last years, there has been an increasing diffusion of distributed systems
where resources and data are shared among users located everywhere in the
world. It is clear that the use of wide area networks highly increases the possi-
bility of intrusions in a system. Moreover, it is likely that a user downloads some
malicious programs from an untrusted source on the net and executes them in-
side its own system with unpredictable results. Moreover, it is possible that a
system is completely secure inside but adopts weak mechanisms for remote con-
nections. The situation above becomes crucial if, for example, we want to use the
network for some critical activity such as electronic commerce or home banking.

All of these arguments and many others have recently focused the attention
of many researches on the study of security issues. One of the most interesting
challenges is to find a way of guaranteeing that a certain security policy, protocol
or mechanism reaches the aim for which it was designed. For this reason, the
interest on formal methods for the specification and analysis of security prop-
erties has recently enormously increased (see, e.g., [1}, [2, 4l [8 [9] [TO] [TT), 13, [T5]
17] [18] 21} 22,23, [26]). Typically, we would like to be guaranteed that a certain
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security property holds in every possible hostile environment. As an example, if
we want to check that a certain protocol guarantees “mutual authentication”,
we have to check that every possible intruder is not able to impersonate one of
the two parties in the communication.

In this work, we propose a general schema for the definition of security prop-
erties which is actually based on this idea of checking a system against all the
possible hostile processes. Such an idea was already studied in [8, [, [I8] for a
particular property called Non Deducibility on Compositions (NDC, for short).
Our general schema is a generalization of NDC which has the following form:

E satisfies P4 if VXeFEnw:E|X<dalE) (1)

Basically, the general property PJ requires that the system E satisfies a specifi-
cation a(E) when composed (in parallel) with any (possibly hostile) environment
X. The property is parametric with respect to «(E) and < that can be instan-
tiated in order to obtain different security properties. In particular a(F) is a
function between processes that, given E, specifies which should be the “correct”
(intended) behaviour of E; < is a relation between processes that represents our
notion of “observation”. Thus, with F || X < a(E) we actually check if process
FE shows a correct behaviour even in the presence of X.

This universal quantification over all the possible intruders could be prob-
lematic when trying to check a property, since we have to verify it over infinitely
many processes (one for each intruder). Usually, this problem is overcome by
analyzing the case where only the “most powerful” intruder is considered (e.g.,
see [6] [14] [24]). As a matter of fact, if the property holds in the presence of
the most powerful intruder then it will certainly hold even if we consider less
powerful ones. However, it could be not always the case that such most general
process exists, and if so, it could be non trivial to define it.

We formally study this, by giving some conditions on < that permit to stat-
ically characterize a property Pg, i.e., that permit to “reduce” it to the case
where only the most general intruder is considered. For some interesting prop-
erties (e.g., BNDC [9]) it seems very difficult to find such a reduction. On the
other hand, when such a reduction can be applied we obtain a formal proof that,
for these properties, the “most powerful” intruder approach is indeed correct.

We show the generality of the approach by rephrasing a number of existing
properties as particular instances of (1). For example, we can define NDC, BNDC
[9] T0], Agreement [15], authentication as proposed in [26] and non-repudiation
[25] by choosing particular instances of < and «(F). For many of them, the <
relation corresponds to trace preorder which can be shown to satisfy the condi-
tions for the static characterization, thus permitting to “safely” apply the most
general intruder approach for the analysis of such properties.

Our general schema permits also to study relationships among different se-
curity properties. Indeed, if we rephrase these properties in our model, their
comparison can be carried out by simply studying the relations among the rel-
ative o’s and <I’s. Some of the properties we consider have been proposed for
completely different aims. For example, NDC has been introduced for studying
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Non-Interference [I1] in non-deterministic systems while Agreement has been
proposed for the analysis of entity authentication in protocols. This provides
some interesting results, e.g., we show how Non-Interference properties can be
used to guarantee authentication, and suggests the possibility of finding a general
taxonomy of security properties.

The paper is organized as follows. In Section 2] we define a variant of value-
passing CCS [20] which has been provided with auxiliary operators for the data
handling and the modelling of cryptography. Then, in Section Bl we define our
general schema and we give some general results on it. Section [ is about the
rephrasing of some existing definitions in our model that also permits to give
a formal comparison of them. Finally, in Section [l we give some concluding
remarks and discuss future work.

2 The Model

In this section we present the language we will use for the specification of security
properties and protocols. It is basically a variant of value-passing CCS [20],
where we explicitly give to processes the possibility of manipulating messages. In
particular, processes may perform message encryption and decryption, moreover
they can also construct “complex” messages by composing together simple ones.
Since we are generalizing the idea of NDC [9], we have actually decided to use (an
extension of) the language adopted for the definition of such property. However,
the ideas we propose in the following could be naturally defined also in other
languages, e.g., CSP [12] 23] and spi-calculus [1J, 2].

2.1 The Language Syntax

In this section we give the syntax of the language. As mentioned above, it is an
extension of CCS and in particular of the Security Process Algebra proposed in
[10] for the description and the analysis of multi-level systems. This extension
borrows some concepts from the language proposed in [I7] for the analysis of
authentication protocols. We call the calculus Cryptographic Security Process
Algebra (CryptoSPA for short). Its syntax is based on the following elements:

— A set I ={a,b,...} of input channels, a set O = {a,b, ...} of output ones;

— A set M of basic messages and a set K of encryption keys with a function
12 K — K such that (k7!)~! = k. The set M of all messages is defined
as the least set such that M UK € M and Vm € M, Vk € K we have that
(m,m’) and {m}, also belong to M. Basically, M is obtained by applying
inductively the pair message constructor (m,m’) and the encryption one
{m}, starting from the set M U K of basic messages and keys;

— A family U of sets of messages and a function Msg(c) : I UO — U which
maps every channel ¢ into the set of possible messages that can be sent and
received on such channel. Msg is such that Msg(c) = Msg(¢).

— A set C of public channels; these channels represent the insecure network
where the enemy can intercept and fake messages;
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— A set Act = {c(m) | m € Msg(c)yU{em | m € Msg(c)} U{r} of actions (7
is the internal, invisible action), ranged over by a; we also have a function
chan(a) which returns c if a is either ¢(m) or ¢m, and the special channel
void when a = 7; we assume that void is never used within a restriction
operator (see below).

— A set Const of constants, ranged over by A.

The syntax of CryptoSPA agents is defined as follows:

E:=0|cx).E |ceE | 7E | E+E | E|E | E\L | E[f] |
| A(ma,...,my) | [e=¢E;E | [(e1...er) Frue ]E E

where z is a variable, mq,...,m, are messages and e,eq,...,e, are variables
or messages and L is a set of input channels. Both the operators c(x).E and
[{e1...er) Frue 2]E; E" bind variable x in E. It is also necessary to define

constants as follows: A(xy,...,2,) " B where E is a CryptoSPA agent which
may contain no free variables except x1, ..., x,, which must be distinct.
Intuitively, 0 is the empty process that can do nothing; c¢(x).E represents
the process that can get an input m on channel ¢ behaving like E where all the
occurrences of x are substituted with m (written E[m/z]); ¢m.E is the process
that can send m on channel ¢ then behaving like £ does; process 7.F can execute
the internal (invisible) action 7 and, after that, it behaves like E; the E; + Eo
process represent the non-deterministic choice which can behave either like F;
or Eo;ld Ey || Es is the parallel composition of Fy and Fs, where the executions
of E1 and FE5 are interleaved and the two processes can communicate by syn-
chronizing on complementary input/output actions, producing a 7 action; as an
example of communication, consider system c(x).E; || ¢m.FE2 which can execute
an internal 7 action moving to Fi[m/x] || E2; process E \ L cannot send and re-
ceive messages on channels in L, for all the other channels it behaves exactly like
E; in E[f] every channel ¢ of E is relabelled into f(c); A(my,...,m,) behaves
like the respective definition where all the variables x4, ..., z, are substituted
with messages my, ..., my; the [m = m'|E}; F5 process behaves as By ifm=m'
and as Fy otherwise. ﬁ
The operators described so far are the standard value-passing CCS ones.
We have an additional operator that has been introduced in order to model
message handling and cryptography. Informally, the [(m; ... m,) Frue ] E1; Eo
process tries to deduce an information z from the tuple of messages (mq ...m,.)
through one application of rule b..; if it succeeds then it behaves like F;[z/x],
otherwise it behaves like Fs; for example, given a rule F4.. for decryption, process
[({m}k, k7Y Faee ¥ E1; Eo decrypts message {m};, through key k~! and behaves
like Eq[m/z] while [{({m}k, k') Faece ) E1; Eo (with &/ # k1) tries to decrypt the

! We sometimes write > (indexed on a set) to represent a n-ary/infinitary sum.

2 Here we consider syntactic equality among messages, however other definitions may
be given depending on the algebraic features of the cryptographic system which is
assumed (e.g., see [24]).
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Fig.1. Inference System for message manipulation, where m,m’ € M and
k. kleK.

same message with the wrong inverse key k' and (since it is not permitted by
Faec) it behaves like Es.

We call € the set of all the CryptoSPA terms, and we define sort(E) to be
the set of all the channels syntactically occurring in the term E. In the next
section, we give the formal semantics of CryptoSPA together with the deduction
rules ;e for message manipulation.

2.2 The Operational Semantics of CryptoSPA

The semantics of CryptoSPA terms is given through labelled transition systems.
A labelled transition system is essentially an automaton although it may have
infinitely many states. Labelled transition systems constitute the preferred se-
mantic domain for the operational description of many concurrent languages.

Definition 1. A labelled transition system (LTS) is a triple (S, T, —) such that:
S is a set of states, T is a set of labels (actions) and — C S x T x S is a set of
labelled transitions. ]

(S1,,8) € — (or equivalently S; —— S,) means that the system can move
from the state S7 to the state Sy through the action a.

In order to model message handling and cryptography, we define an inference
system which formalizes the way messages may be manipulated by processes. We
say that m is deducible from a set of messages ¢ (and write ¢ - m) if there exists
a proof of m whose leaves have premises contained in ¢. Each inference system
induces a deduction function D(¢) = {m | ¢ = m}. In Figure [l we present a
formalization (as inference system) of a simple deduction system which is indeed
quite similar to those used by many authors (see, e.g., [14] [16]). It encodes all
the operations a process can do over messages besides communicating them.
In particular it can combine two messages obtaining a pair (rule Fpe); it can
extract one message from a pair (rules s and Fgpq); it can encrypt a message
m with a key k obtaining {m} and finally decrypt a message of the form {m}
only if it has the corresponding (inverse) key k=! (rules Fepne and Fge.). Note
that we are assuming that encryption is completely reliable. Indeed we do not
allow any kind of cryptographic attack, e.g., the guessing of secret keys. This is
the typical approach followed in the analysis of cryptographic protocols, which
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Fig. 2. Operational semantics.

permits to observe the attacks that can be carried out even if cryptography is
completely reliable.

The formal behaviour of a CryptoSPA term is described by means of the LTS
< &, Act,{5}aeca >, where —%,c 4 is the least relation between CryptoSPA
terms induced by axioms and inference rules of Figure 2] (where symmetric rules
for +1, ||; and ||, are omitted for the sake of readability). The operational se-
mantics for a term F is the subpart of the CryptoSPA LTS reachable from the
initial state E.

Example 1. We present a very simple example of a protocol where A sends a
message ma to B encrypted with a key kap shared between A and B.

A(m, k) < [(m, k) Fene 2]

B(k) < e(y).[{y, k) Faec zJout 2

P A(ma,kap) | Bkap)
where k1, = kap, that models a symmetric encryption, and Msg(c) = {{m} |
m € M,k € K} that declares the “type” of messages sent over c. We want to
analyze the execution of P with no intrusions, we thus consider P \ {c}, since
the restriction guarantees that c¢ is a completely secure channel. We obtain a
system which can only execute action out my4 that represents the correct trans-
c{ma }kAB
) —"0

mission of my4 from A to B. In particular, we have that A(ma, kap

specifications, e.g., we write a in place of a.0. We also write [m = m/]E in place of
[m = m/]E;0 and analogously for [(m1 ...m;) Frue 2] E; 0.

3 For the sake of readability, we omit the termination 0 at the end of every agent
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and B(kap) can synchronize on that action by executing a B(kap) matiar)

[<{mA}k7AB’kAB> l_dec Z]%Z So

P\ {e} = (0 || [{matean: kas) Faee 2Jout2) \ {c} "2 (0]]0) \ {c}

In the next section we will analyze the execution of this simple protocol in an
hostile environment. ]

3 A General Schema for Security Properties

In this section we propose a general schema for the definition of security proper-
ties. We call it Generalized NDC (GNDC, for short), since it is a generalization
of Non Deducibility on Compositions (NDC, for short) [9]. Indeed, in Section Hj
we will show in details that NDC can be actually seen as a particular instance
of GNDC. The main idea is the following: a system E is GNDCY iff for every
environment X the composition of the system with X satisfies a specification
a(FE). Essentially, GNDC? guarantees that the property identified by « is sat-
isfied (with respect to < relation) even when the system is composed with any
possibly hostile environment. It determines a family of strong properties which
are resistant to external attacks.

3.1 The GNDC Schema

In this section we formally define the GNDCY family of properties. First of
all, we have to precisely specify what an “hostile environment” (or intruder) is.
Basically, it is an agent which tries to attack a protocol by stealing and faking
the information which is transmitted on the CryptoSPA public channels C. In
principle, such an agent could be modeled as a generic process X which can

communicate only through the channels belonging to C, ie., X € £ where

o ¢ {E € & | sort(E) C C}. However, in this way we obtain that X is a

completely powerful attacker which is able to “guess” every secret information
(e.g., cryptographic keys, nonces, private messages). Such an attacker can do
whatever it wants over the protocol. Since it may know every secret, it can basi-
cally simulate every message exchanged in the protocol. Indeed, when we model
cryptographic protocols, it is essential to specify that something is initially not
known by the enemy. We clarify this (crucial) point through a simple example.

Example 2. Consider again the protocol P of Example [l Since only A and B
knows k4p, this protocol should guarantee the authenticity of my4 even in the
presence of an hostile environment. We assume that ¢ € C is a public channel
and we consider the following process:

X (m, k) © [(m, k) Fene yley

It belongs to E¢ since Sort(X (m, k)) = {c}. Consider now X (mx,kap) which
is a process that knows k4p and thus can send a faked message {mx }i,, to B.
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In order to observe this we consider the following process “under attack” (note
that we put X inside the scope of restriction):

(P | X (mx, kar)) \ {c}

After one 7 step, it can give as output ouf my which represent the fact that
B as received myx instead of my4. This happens since X (mx,kap) is in some
sense “guessing” k4p, but we would like to forbid it since, as mentioned above,
we are interested in attacks that can be carried out even when cryptography is
completely reliable. [ |

We solve this problem by imposing some constraints on the initial data that are
known by the intruders. Given a process E, we call ID(E) the set of messages
that syntactically appear in E. Intuitively, this set contains all the messages
that are initially known by E. Now, let ¢x € M be the initial knowledge that
we would like to give to the intruder, i.e., the public information such as the
names of the entities and the public keys, plus some possible private data of the
intruder (e.g., its private key or nonces). For a certain enemy X, we want that
ID(X) is consistent with ¢x. This can be obtained by simply requiring that all
the messages in ID(X) are deducible from ¢x.

The set ng of processes which can communicate on a subset of C' and have
an initial knowledge bound by ¢x can be thus defined as follows:

ELX ={X | X € & and ID(X) C D(¢x)}

We consider as hostile processes only the ones belonging to this particular set. In
the example above, if we require that k4 p is not deducible from ¢x (i.e., it is not
public) we can easily see that the behavior of X (mx,kap) cannot be simulated
by any process in ng. As a matter of fact it can not execute ¢ {mx },, since
we do not put kap in its initial knowledge. We will use A ||, B as a shortcut for
(A B)\C'. The proposed family of security property is the following;: A

Definition 2. E is GNDCY ift

VX € EXX L E| X Qa(E)
C

where < € € x £ is a relation between processes and o : € — £ is a function
between processes. ]

We propose a sufficient criterion for a static characterization (i.e. not involving
the universal predicate V) of GNDCS properties. We will say that < is a pre-
congruence w.r.t. the operator || if it is a preorder and for every E, F,F’ € £
if F<QF' then E |, F <QE|F'. Thus it is easy to prove the following:

Proposition 1. If < is a pre-congruence w.r.t. ||~ and if there exists a process
Top € ng such that for every process X € é'gx we have X < Top, then:

4 Indeed GNDC' depends on the set ¢x but we will not write it for the sake of
readability.
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E e GNDCY iff E||Top<alE) [ |
C

In particular, if the hypotheses of the proposition above hold then it is sufficient
to check that «(F) is satisfied when F is composed to the most general (i.e., most
powerful) environment T'op. This is useful, since permits to make only one single
check, in order to prove that a property holds whatever attacker we choose. We
also have the following corollary for the congruence induced by <:

Corollary 1. Let < be a pre-congruence w.r.t. ||~ and let == < N1, If there

exist two processes Nil, Top € ng such that for every process X € ng we have
Nil < X < Top then

Ec€GNDCS iff E|Nil=E|Top=a(E) m
c c

3.2 Trace Equivalence

Most of the security properties that have been proposed for the analysis of
security protocols are based on the simple notion of traces: two processes are
equivalent if they exactly show the same execution sequences (called traces).
In order to formally define traces, we need a transition relation which does not
consider internal 7 moves. This can be defined as follows:

Definition 3. The expression E == E' is a shorthand for B(——)*FE; -
Ey(—=)*E’, where (—)* denotes a (possibly empty) sequence of T labelled tran-
sitions. Let v = ay ... € (Act\ {7})* be a sequence of actions; then E == E’

if and only if there exist Fr, Es,...,E,_1 € € such that E =L B = ... T
En_1 =% F'. [ ]

We define trace preorder (<irace) and trace equivalence (Rtrqce) as follows:

Definition 4. For any E € & the set T(E) of traces associated with E is
T(E) = {y € (Act \ {t})* | IE' : E =% E'}. F can execute all the traces
of E (notation E <ipaee F) iff T(E) C T(F). E and F are trace equivalent
(notation E ~irace F) iff E <trace F and F <troee E, t.e., iff T(E) =T(F). &

It is possible to prove that trace preorder <., is a pre-congruence with respect
to value-passing CCS operators.

Now we can provide the description of the most powerful intruder in the
trace setting. It can be defined by using a family of processes (T'op,.,..)s each
representing the instance of the enemy with knowledge ¢.

(TopGace)o = D e@)-(Topac)svtay + Y Em(Topface)o
ceC ceC
m € D(¢) N Msg(c)

The following holds:
Proposition 2. If X € ng then X <irace (TODS, qee)dx - [ ]



A Uniform Approach for the Definition of Security Properties 803

So, we have proved that there exists a top of the set ng with respect to <irqce
and it is indeed (T'0p§, ,..)sx - These result, together with the fact that <.qce is
a pre-congruence with respect to || allow us to apply Proposition [l obtaining
the following result for the family of <;,.qce-based GN DC%”ME properties:

Corollary 2. For every function o : & — &

EeGNDCE, | . if E| (TOptc;ace)qﬁx Strace a(E) u
- c

Note that this corollary holds for every possible a. So, every property which is
based on trace pre-congruence can be checked statically. We show how we can
directly apply this result on our simple running example.

Example 3. Consider again protocol P of Example [l We would like to check
that no intruder is able to fake message m 4 if it does not know the shared key
kap. We do this by checking that P € GNDC’Z%Z:‘. Indeed, if this holds then
even in the presence of any enemy X, the process B only receives message m 4
and no fake is possible. We assume that ¢ € C, ¢x = () and, as before, M sg(c) =
{{m}r | m € M,k € K}. By corollary Pl we have that P € GNDCZ:‘:;A if and

only if P’ df p ||C(T0pgace)@ <trace OUt M 4. Since every action a, executed by
the enemy and such that chan(a) # ¢ will never synchronize with P, then it

is easy to see that P’ ~irgce P \\C(Topffice)@. Now, if A and B communicate

together we have P’ oulma llo ||(T0p{c} )o) \ {¢} which can do nothing else.

trace
Otherwise, A and B could communicate with the enemy. Note that (Topifice)@
can only read from channel ¢ since it has no knowledge. So, the only possible

move is the one where it intercepts the message from A:
P! (| Bkan) I(Topftee) matiy,) \ e}

It is easy to see that (Top;{ﬁice)({mA}kAB
send {ma}k,, on c. Indeed, it cannot decrypt the message since it does not
know the key and it cannot send other “kind” of messages on ¢ such as pairs
composed by two instances of {m}x,, because of how is defined M sg(c). Since
none is sending messages on ¢ we have only one possible execution:

c outm c
O Blkan) (Tople) pmaye,, ) \ et “E=24 QU0 IN(Toplee) pmaye,, ) \ {c}

We conclude that the only trace executable by P’ is outma, thus P’ <trace
outmy and P € GNDC’Z?Z’C:“. It is analogously possible to prove that P €

y can only either read again from c or

GN DCE:;A even when ¢x is not empty (the enemy could know some private
messages or keys) and we simply require that kap € D(dx). ]

4 Some Examples of Security Properties

In this section we want to show the generality of GN DCY properties. In partic-
ular we show that a number of existing formal definitions of security properties
can be redefined as GNDCY, ones, with particular instantiations of a and <.
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4.1 Non Deducibility on Compositions

Non Deducibility on Compositions (NDC, for short) [91[10] has been proposed as
a generalization of the classical idea of Non-Interference [11] to non-deterministic
systems. Non-Interference tries to capture whether a certain group of processes
G is able to “interfere” in some way with another group G’, i.e., if what is done
by processes in G has some effect on the execution of processes in G’. Sometimes
Non-Interference properties are also called Information Flow properties, since
an interference of G with G’ can be seen as a information flow from the first
group to the second one. A classical application of these properties is multilevel
security [3] where H represent a set of “classified” (high level) processes that
should be forbidden to send any data to L (low level), i.e., to interfere with L.
In [8] NDC has also been applied to the verification of security protocols.

Since GNDCY is a generalization of NDC it can be instantiated in order
to obtain NDC and also the bisimulation based NDC, called BNDC. We first
redefine in our extended language the original definitions: we consider C' as the
set of channels that classified processes H use when trying to interfere with the
processes L. Thus, H corresponds to S‘gx and NDC can be defined as follows:

Definition 5. E is NDC if and only if VII € E5X, E\ C Rirace Ello 1. ™

where the only difference with respect to the definition given in the original
model is that the knowledge of processes II € H is bounded by ¢x. In the
extended model, this is required to guarantee reliable encryption. NDC requires
that high level processes ng are not able to change the low level behaviour of
the system represented by E \ C. As a matter of fact E \ C is the system where
no high level activity is allowed. If it is equivalent to E ||, IT this clearly means
that I is not able to modify in any way the execution of F.

We can obtain a bisimulation based NDC by simply substituting ~¢qce with
Rpisim- We do not define bisimulation here, since we will not use it directly, but
we only mention that it is a strong observational equivalence which requires that
two bisimilar processes are able to simulate each other step by step (see, e.g.,
[20] for more details).

Definition 6. E is BNDC if and only if VIT € E5X, E\ C Rpisim E||o II. W

Note that NDC and BNDC correspond to GNDCf)SCG and GNDCfb\gm, re-

spectively. For NDC it is also possible to apply Corollary [l obtaining an inter-
esting static characterization.

Proposition 8. E is NDC iff E|o(Top§, gee)éx ~trace B\ C. [ |

This result is the analogous of the one in [9]. Note that here we have found it as
a particular case of the more general result of Corollary [

For BNDC we cannot give an analogous static characterization. Indeed, to the
best of our knowledge, the only preorder whose kernel is the weak bisimulation, is
the weak bisimulation itself. Thus, in this case, we cannot find suitable processes
Nil and Top. As a matter of fact, such processes would result to be bisimilar.
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It is worthwhile noticing that there are several similarities with a related
problem in temporal logic, namely module checking. Given a finite system, which
is able to interact with its environment, the module checking problem is the task
of verifying that for every environment the induced behaviour of the system
satisfies a certain temporal logic formula. Interestingly, if the formula expresses
only safety properties (i.e. trace based properties) then the problem is reduced
to check the system in composition with the environment which enables every
system transition (the most general one!). But if the formula expresses also live-
ness properties then problem becomes very difficult and it is no more sufficient
to consider the most general environment (see [19] for a deeper discussion).

4.2 The Agreement Property

In this section we show that also the approach proposed in [15] for the analysis
of authentication properties, inside the framework of CSP [12] process algebra,
can be rephrased in terms of our specification schema. The basic idea of the
Agreement property is the following:

“A protocol guarantees to an initiator A Agreement with a responder
B on a set of data items ds if, whenever A (acting as initiator) com-
pletes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A, and B was
acting as responder in his run, and the two agents agreed on the data
values corresponding to all the variables in ds, and each such run of A
corresponds to a unique run of B”.

What is technically done in the Agreement property is to have for each party an
action representing the running of the protocol and another one representing the
completion of it. For example, consider an action commit_res(B, A, d) represent-
ing a correct termination of B as a responder that is convinced to communicate
with A and agrees on data in d. Moreover we have an action running_ini(A, B, d)
that represents the fact that A is running the protocol as initiator, apparently
with B and with data d. If we have these two actions specified in the proto-
col, the Agreement property requires that when B executes commit_res(B, A, d)
then A has previously executed running_ini(A, B,d). This means that every
time B completes the protocol with A convinced that the relevant data are the
ones represented by d, then A must have been running the protocol with B using
exactly the data in d.

As done in [TH], we assume that the actions representing the running and
the commit are correctly specified in the protocol. We can see them as output
actions over two particular channels running_ini and commit_res. For simplicity,
we only analyze the case where A is the initiator and B is the responder, and
the set ds of variables is composed only by d which can assume values in a set
D. However, the specification can be easily extended in order to cover all the
cases studied in [I5]. Function «(FE) can be defined as follows:
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; Sort(E)\{running_ini,commit_res}
B = Toptrace 7

E"(xz,y) = Y 4ep runningini (z,y,d) . commit_res(y,z,d)
aAgree<E) = E/ || EH<A’ B)

Given E, a(E) represents the most general system which satisfies the agreement
property and has the same sort as E. As a matter of fact in a(F) the action
running_ini (A, B, d) always precedes commit_res (B, A, d) for every datum d,
and every combination of the other actions of E can be executed. In order to
analyze more than one session, it is sufficient to consider an extended « which
has several processes E”(A, B) in parallel. For example, for n sessions we can
consider the following;:

aagree(E) = E'| E"(A,B)|...| E"(A, B)

n

We want that even in the presence of an hostile process, £ does not execute
traces that are not in a(E) ,i.e., we require that E'|| X <¢rqce @(E). So we can
give the following definition:

Definition 7. E satisfies Agreement iff E is GN DO Asree (B, ]

<trace

Note that in [I5] it is only required that Agreement holds when the system is
composed with a particular intruder, which turns out to be equivalent to the most
general one. In the following we exploit Proposition [[in order to formally prove
that such a (static) requirement is indeed sufficient (and necessary) to guarantee
our GN DC-based version of Agreement. As a matter of fact, by Corollary 2] we
immediately have the following result:

Proposition 4. E satisfies Agreement iff E || o(Top§, qoe)éx Strace ®agree(E).
|

In [I5], other versions of Agreement are defined. We can rephrase all of them in
our model by simply changing the a function.

4.3 Message-Oriented Authentication

Now, we consider the message-based approach to authentication defined in [24]
26] using the CSP language. The idea is to observe when a set of messages T
authenticates another set of messages R. Informally, T" authenticates R if the
occurrence of some element of T implies the occurrence of some element of R (it
is required that T and R are disjoint). When a system P satisfies this property
we say that P satisfies T authenticates R.

In [24] the net is represented by a process Medium which acts like a router
by receiving and forwarding to the correct process the messages. In CSP, it is

5 Indeed, recentness cannot be immediately rephrased in our CCS-based model, be-
cause of the difference in handling communication with respect to CSP. This could
be overcome by extending our language with time as done in [19]. This is only related
to the differences in the model, and is not caused by a weakness of our schema.
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possible to observe the communication between the processes and the medium
since they are not “internalized” as in CCS. However, we can simulate this
by assuming that the Medium echoes every routing of messages through par-
ticular output actions on two reserved channels trans and rec. For example
trans (A, B,m) corresponds to the sending of message m from A to B and,
symmetrically, 7ec (B, A, m) represents the reception of it. In this way we can
observe communication as done in CSP. Sets T" and R range over these reserved
actions. We can now define the a7 (E) function as follows:

aauth}; (E) =F
B = (Z a € Act a'E/) + Za € Act a.B"’
aZRUT a€R

E" = Topyye”
Process QguthT, (E) can execute actions in T only after it has executed some
actions in R. Indeed we note that it moves to E”, where it can execute also
actions in T, only after it performs at least one action in R. This is exactly what
we require by our system E and «(F) is indeed the most general system (with
the same sort as E) satisfying 7" authenticates R. So we can give the following
definition:

auth}g (E)

Definition 8. E satisfies T' authenticates R iff E is GNDC_ ]

trace

As in the section above, we can prove that the approach followed in [24], where
it is considered only the most powerful intruder, guarantees that the property
holds in the presence of whatever hostile process. By Corollary[2] we obtain that:

Proposition 5. E satisfies T authenticates R iff E||o(Top§, qee)sx <trace
aauth;:(E)‘ u

4.4 Non-repudiation

In this section, we show that also non-repudiation properties can be formulated
within the GN DC schema. Non repudiation protocols have the aim of producing
evidence about the execution of services, among parties that do not trust each
other (see [27] 28]).

In [25] Schneider shows how to apply verification methods based on C'SP
process algebra to the analysis of a (fair) non repudiation protocol proposed in
[27]. Among the non repudiation properties studied in [25], [28], we briefly recall:

— Non Repudiation of Origin (NRO) is intended to protect the receiver from
the false denial of another party to have sent a message.

— Non Repudiation of Receipt (NRR) is intended to protect the sender form
the false denial of another party to have received a message.
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Roughly speaking, the analysis performed by Schneider is similar to his message
based authentication (see section above). As an example, consider N RO verifi-
cation: if the receiver is able to produce an evidence of the sending of a certain
message m, then, actually, m should have been sent. In other words, such an ev-
idence should “authenticate” m (in the sense of message-based authentication).

Non-repudiation protocols are not concerned with communication among two
or more parties in an hostile environment. So, at a first glance, the GNDC
schema seems to be not applicable. However, the parties do not trust each other,
and in particular, one of them could try to act maliciously in order to obtain
some advantage. We will show that this malicious party may be considered as
the hostile environment in a GN DC schema.

In the verification of NRO (NRR) we assume that a Judge should be able
to establish that a certain message has been sent (received) if he obtains some
evidence of it from the receiver (sender). This verification should be carried
out by simply assuming that both the sender and the receiver have not sent
on the net some information which could invalidate the evidence. In particular,
the Judge cannot assume that they have followed the protocol. For this reason,
Schneider models both the sender and the receiver similarly to the most general
intruder. In order to apply the GNDC' schema, we consider a weaker (but still
reasonable) notion of N RO; in particular, we require that if the receiver B, after
following the protocol, is able to give evidence of origin, then the sender A has
actually sent that message. We call this N RO with honest receiver N ROp,.. It
can be simply encoded as GNDC schema by considering a process Ep where
we only have the receiver B plus the possible communication medium (but we
do not specify A):

VX4 € (‘:gA Xa !EB <trace awnTO<EB) (2)

Now, if R is the set of all the actions where m is sent as message and ev_of _or

is the action which signals that B has evidence of origin of m, then o*™"°(ER)

can be defined as o, (ev-os—or} (EB). 1 Analogously, we define non-repudiation
R

of origin with honest sender, i.e., NROps. This property can be encoded in
the GNDC schema (2)) by simply considering process E4 instead of Ep and by
quantifying over processes which have the initial knowledge ¢ 5. Symmetrically to
Ep,in E4 only A and the possible medium are given, while B is left unspecified.

We can now define weak-NRO as the intersection of N ROy, and N ROy, i.e.,
Es Ep € GNDC’%Z;TCZ. An analogous definition may be given for weak-NRR,
even though the situation is slightly more complicated since, in this case, also
liveness properties should be considered. We do not address this issue in details,
since we prefer to focus our attention to another property which is also based

on liveness. The property is fairness [28]:

5 Indeed, there is a slight limitation due to the necessity of preventing the communica-
tion of information that could invalidate the proof of evidence. This can be treated
in our model as done in [25].
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— Fairness: At no point in the protocol run does either of participants have an
advantage. In other words no one of the party can get his own evidence and
avoid the other to get his corresponding evidence.

As observed in [25], this property cannot be defined as a safety property (i.e.
nothing bad happens). Indeed we have to prove that whenever one of the two
participants obtains his own evidence, then the other must be in the position to
get his own evidence too. This can be seen as a liveness property (i.e. something
good happens). For this reason, in the analysis of this property it is used the
failure model instead of the trace one. As a matter of fact, failure equivalence is
actually able to observe potential deadlocks in the executions, and so it permits
to see if something can be executed or not (i.e., if an evidence can be obtained
or not). The verification technique for the fairness property proposed in [25]
directly fits in the GNDC schema. Indeed, it is reasonable to assume that an
agent can require fairness from the other only in the case he behaves correctly,
i.e., if it follows the protocol. For example, the fairness for the sender A of
receiving evidence of message receipt can be defined as in () with a suitable
relation <yqiure Which takes into account failures, and a function af %" which
models the fact that after the receiver gets evidence of the origin (ev_of_or) then
the sender have the possibility to obtain his own evidence of receipt (ev_of_re).
This is modeled in af*" by making the action ev_of_re always executable after
that ev_of_or has been engaged.

4.5 Authentication in the Spi-Calculus

In [2, 1] an interesting notion of authentication is proposed. The basic idea is the
following: consider a protocol P(M), which tries to transmit message M from
one party (say A) to another one (say B). The authentication of the message
M is checked by verifying if P(M) is equivalent to a specification Pspe.(M)
where M is always delivered correctly. In Pype.(M) the receiver B always knows
M and whatever happens on the communication channel, B will continue its
execution exactly as it had received the correct message M. In other words,
Pspec(M) represents the situation where M is always received and no enemy is
able to substitute it with a different message. If P(M) is equivalent to Pspe.(M)
then also P(M) is clearly able to avoid any possible attack. The language used in
[21 1] is the spi-calculus. Moreover the may-testing equivalence (see [5]) is used in
order to check that P(M) is equivalent to Pspe.(M) with respect to any possible
interaction with the (hostile) environment. The definition of authentication in
the spi-caluclus is given as follows:

Definition 9. P(M) guarantees authentication if and only if for all M we have
that P(M) is may-testing equivalent to Pspec(M) |
It seems reasonable to rephrase this property in our model as follows:

Definition 10. Let P(M) be a protocol where the parties communicates over

the set C of channels. P(M) guarantees authentication iff for all M we have
that P(M) € NDC. ]
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NDC is the one defined in Section @Il In particular, P(M) € NDC requires
that P(M) composed with whatever enemy X is (trace) equivalent to P(M)\ C.
Since C represents the set of channels over which the parties communicate, then
P(M) \ C corresponds to our secure specification Pspe.(M) where no enemy
is able to modify the execution of the protocol. In the spi-calculus the system
is checked against all the possible interactions with the (hostile) environment
through the use of the may-testing equivalence. Here we do it explicitly through
the quantification over X which is the base of the GN DC' schema.

Indeed, Definitions [ and [I0] are based on two quite different models. As
a matter of fact, in the spi-calculus it is possible to send a channel as a mes-
sage, thus giving the possibility of creating dynamically a new secure channel.
However, we are quite confident that NDC, as defined in our model, is strong
enough to detect the attacks shown in [2]. Note also that NDC can be stati-
cally characterized, thus permitting a simplification of the verification task. We
are presently working on a formal comparison of these two definitions in the
spi-calculus setting. It is worthwhile noticing that the knowledge of the enemy
is handled differently in our model and in the spi-calculus. In CryptoSPA, we
assume that the initial knowledge of the enemy is represented by ¢x. In the spi-
calculus we find a complementary modeling of this since there is no specification
of the initial knowledge on the enemy, and the restriction operator is exploited in
order to guarantee that some information is kept secret from anyone other than
the parties of the protocol. Indeed, the restriction operator of the spi-calculus
can be seen as a generator of fresh names that cannot be guessed by any (what-
ever powerful!) enemy. Note that, given a protocol P in the spi-calculus, we can
obtain ¢x by simply requiring that the restricted names in P are not in ¢x (in
this sense we have a complementary modeling of knowledge).

4.6 Comparison

In this section we show one of the advantages in having a uniform treatment of
security properties, namely the possibility of studying the relationships among
them in a fairly simple way. First, we show that NDC may be seen as a suffi-
cient condition for every property which is based on trace-preorder. This result is
interesting since it relates NDC (first proposed for modeling information flow se-
curity) to properties which has been proposed for completely different purposes,
e.g., authentication. The result holds for what we will call good candidates for a
function «;, i.e., processes E such that E\ C' <trqce a(FE). This condition is quite
reasonable since we certainly want that at least the protocol under no attacks
(i.e., E\ C) “satisfies” a(E).

Proposition 6. Let o(F) be a function between processes and let E be a good
candidate for «, i.e., E\ C <grqce @(E). Then, E is GNDCE® implies that

~trace

E is GNDCE) m

<trace
Note that if a function « does not have good candidates then it represents an
empty property (no process satisfies it). Note also that every process E is a good

candidate for GNDC’E\C

~ .
~trace
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The result above shows that GN DC’E\C

~
~trace

is stronger that GNDCO‘Asree(E)

<trace

and GN DCg‘::::e(E) for their respective good candidates. This is quite intuitive

since GNDCENC basically requires that the protocol behaviour is completely

~trace

preserved even under attacks. So if E satisfies a certain property under no attacks
(i.e., it is a food candidate), then GNDCS}SCE will preserve such a property also
under every possible attack.

In general, we observe that if < C <’ then GNDCS C GNDCS,, furthermore
if for all £ € £ we have a(F) < o/(E) then GNDC% C GNDCY' .

Indeed, both Agreement and message-authentication are based on traces and
so the relations between them can be easily derived by comparing their relative
«. Here, we give an example of comparison of such properties in the simple case
of a single run between a sender A and a receiver B. Moreover we also assume
that we have no variables to agree on. We consider T' = {commit(B, A)} and
R = {running(A, B)}. It is easy to prove that, for all E € &:

Qagree (E) Strace aa“thifiﬂzggifg} (E)
We also give a simple example of how it is possible to exploit property compar-
isons in the verification of protocols. We consider a slight variant of example [
where messages running(A, B) and commit(B, A) are suitably inserted.
A(m, k) def [(m, k) Fene x]running(A, B).cx

B(k) ¥ c().[(y, k) Faee zJcommit(B, A)

P Y A(ma, kap) || B(kap)

It is easy to see that the composed system P is a good candidate for aggree,
and so also for agytn, when we consider C' = {c}. Moreover by using arguments

similar to the ones of Example [3, we can prove that P € GN DCE}SCG. Thus

by proposition [6] we get that P € GNDC;‘::Z: and P € GNDC%‘::;;, where

AQguth — & {commit(B,A)} E .
GUth{running(A,B)} ( )

5 Conclusions

In this paper we have proposed a uniform method for defining computer secu-
rity properties. In doing so, we have tried to exploit some underlying ideas of
existing proposals rather than giving a completely new approach. Actually, we
did not try to obtain a universal definition for all possible security properties;
our aim was indeed to find a quite flexible and useful schema that could help
in reasoning about different properties. Indeed, we have shown the flexibility
of our proposal by rephrasing on it a number of existing definitions, some of
which have completely different aims (e.g., Non-Interference, authentication and
non-repudiation).
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We think that a uniform schema for the definition of security properties could
have several advantages. First, it allows to study the relationships among dif-
ferent security properties. For example, we have shown that NDC may be seen
as the strongest property definable for a certain protocol since it requires that
the action of any intruder does not modify in any way the observable behaviour
of the protocol. Other formal relationships between security properties can be
easily established by simply reasoning on o and <. As a future work we will
try to give a general taxonomy of security properties, which could extend and
possibly integrate the one for information flow given in [9] and the one for au-
thentication protocol properties studied in [15]. We are presently studying if also
other security properties can be conveniently defined in our general framework.

By using a unique model and a unique schema it is possible to develop more
general theories which could then be applied to a number of definitions by simply
instantiating them. For example, we have shown that the static characterization
result, which permits to check a property only against the most general intruder,
can be easily applied to all the trace-semantics based properties. It would be
interesting to extend some proof techniques for the analysis of authentication
protocols (e.g., the ones developed in [14, [26] [7]), in order to deal with the
GNDC schema. In this way they could also be applied for the analysis of other
GNDC security properties.

Another interesting point is that the GNDC schema itself suggests new
analysis techniques. Indeed, the analysis of GIN DC-like properties may be seen as
example of module checking, i.e. model checking of systems which have to interact
with arbitrary environments. Thus compositional analysis concepts exploited in
[19] for the analysis of such problems may be recasted also for the analysis
of security problems. This approach has been successfully followed in [I7, [L§]
where an automated methodology for the analysis of GNDC like properties over
protocols with a finite behaviour has been developed. This methodology does
not require the specification of a particular intruder and may be thus adopted
also when the hypothesis of proposition [Il does not hold.
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