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Abstract. When verifying concurrent systems described by transition
systems, state explosion is one of the most serious problems. If quantita-
tive temporal information (expressed by clock ticks) are considered, state
explosion is even more serious. In this paper we present a non-standard
(abstract) semantics for the ASTP language able to produce reduced
transition systems. The important point is that the abstract semantics
produces transition systems equivalent to the standard ones for what
concerns the satisfiability of a given set of formulae of a temporal logic
with quantitative modal operators. The equivalence of transition systems
with respect to formulae is expressed by means of (p, n)-equivalence: two
(p, n)-equivalent transition systems give the same truth value to all for-
mulae such that the actions occurring in the modal operators are con-
tained in p, and with time constraints whose values are less than or equal
to n.

1 Introduction

In this paper we address the problem of verifying systems in which time plays
a fundamental role for a correct behaviour. We refer to the Algebra of Timed
Processes (ATP) [22] as a formalism able both to model time dependent systems
and to prove their properties. ATP is an extension of traditional process algebras
in order to capture discrete quantitative timing aspects with respect to a global
clock.

The semantics of such a language is given in terms of labeled transition systems
where some transitions are labeled by the special action x, called time action.
Such an action represents the progress of time and can be viewed as a clock tick.

One widely used method for verification of properties is model checking [8 [T,
18] 23]. Model checking is a technique that proves the correctness of a system
specification with respect to a desired behavior by checking whether a structure,
representing the specification, satisfies a temporal logic formula describing the
expected behavior. Most existing verification techniques, and in particular those
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defined for concurrent calculi, like CCS [21], are based on a representation of
the system by means of a labeled transition system. In this case, model checking
consists in checking whether a labeled transition system is a model for a formula.

When representing systems specifications by transition systems, state explosion
is one of the most serious problems: often we have to deal with transition systems
with a prohibitive number of states. In such cases model checking is inapplica-
ble. Moreover, when in system specifications quantitative temporal information
(expressed by clock ticks) is considered, state explosion is even more serious,
the reason for this being that a new state is generated for every clock tick.
Fortunately, in several cases, to check the validity of a property, it is not neces-
sary to consider the whole transition system, but only an abstraction of it that
maintains the information which “influences” the property. This consideration
has been used in the definition of abstraction criteria for reducing transition
systems in order to prove properties efficiently. Abstraction criteria of such kind
are often based on equivalence relations defined on transition systems: minimiza-
tions with respect to different notions of equivalence are in fact used in many
existing verification environments (see, for instance, [10} [13] [16]).

In this paper we present a notion of abstraction of transition systems, where the
abstraction is driven by the formulae of a quantitative temporal logic. This logic,
which we call qu-mu-calculus, is similar to the mu-calculus [19] (in particular to
a variant of it [4]), in which the modal operators are redefined to include the
definition of time constraints. Many logics have been defined to deal with time
aspects, see, for example [2], [T4]. Although all of them handle quantitative time
aspects, they can be used either in conjunction with a dense time domain [T} 3] 20]
or with a discrete time domain [T5, 14]. A fundamental feature of qu-mu-calculus
is that its formulae can be used to drive the abstraction: in particular, given the
actions and the time constraints occurring in the modal operators of a formula ¢
of the qu-mu-calculus, we use them in defining an abstract (reduced) transition
system on which the truth value of ¢ is equivalent to its value on the standard
one.

Equivalence of transition systems with respect to formulae is expressed by means
of (p,n)-equivalence: two transition systems are (p,n)-equivalent if and only if
they give the same truth value to all formulae such that the actions occurring in
the modal operators are contained in p, and with time constraints whose values
are less than or equal to n. Some interesting properties of such an equivalence
are presented.

In the paper we present also a non-standard (abstract) semantics for the ASTP
[22] language able to produce abstract transition systems. ASTP is the sequential
subset of ATP; actually, this is not a limitation: our abstract semantics is easily
applicable to the concurrent operators and its ability in reducing the transition
system can be suitably investigated also on the sequential part. Though the paper
addresses the problem of defining, for an ASTP program and a formula, ¢, a
reduced transition system preserving ¢ at a very abstract level, such an abstract
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definition can be usefully exploited as a guide in implementing an algorithm to
build the reduced system.

After the preliminaries of Section 2] we introduce our logic in Section[3] and the
abstract semantics in Section [l Section [§ concludes.

2 Preliminaries

2.1 The Algebra of Timed Processes

Let us now quickly recall the main concepts about the Algebra of Timed Pro-
cesses [22], which is used in the specification of real-time concurrent and dis-
tributed systems.

For simplicity, we consider here only the subset of ATP, called ASTP (Algebra
of Sequential Timed Processes), not containing parallel operators.

The syntax of sequential process terms (processes or terms for short) is the fol-
lowing:

pu=0]z|ap|pop]| [pl(q)
where « ranges over a finite set of asynchronous actions A* = {a,b,...}. We

denote by A the set A* U {x}, ranged over by u,v.... The action x (time

action) is not user-definable and represents the progress of time. = ranges over a

. " d
set of constant names: each constant x is defined by a constant definition x </ D.

We denote the set of process terms by P.

The standard operational semantics [22] is given by a relation — C P x Ax P,
where P is the set of all processes: — is the least relation defined by the rules
in Figure [

Rule Act manages the prefixing operator: ap evolves to p by a transition labeled
by a. The operator & behaves as a standard nondeterministic choice for processes
with asynchronous initial actions (rule Sum; and the symmetric one not shown).
Moreover, if p and ¢ can perform a x action reaching respectively p’ and ¢, then
p @ q can perform a x action, reaching p’ @ ¢’ (rule Sumsy). The process |p](q)
can perform the same asynchronous initial actions as p (rule Delay;). Moreover
|p|(¢) can perform a x action, reaching the process ¢ (rule Delays). Finally,

. d .. ey
rule Con says that a constant x behaves as p if = éfp is its definition. Note that

there is no rule for the process 0, which thus cannot perform any move.

A labeled transition system (or transition system for short) is a quadruple T' =
(S, A, —1,p), where S is a set of states, A is a set of transition labels (actions),
p € S is the initial state, and —7 C S x A x S is the transition relation. If
(p, p, q) € —>p, we write p L7 q.

Ifée A*and 6 = puy ... up,n > 1, we write pLTq to mean p £S5 20 g
Moreover p LT p, where A is the empty sequence. Givenp € S, with R__,_(p) =
{q]p L>T q, 6 € A*} we denote the set of the states reachable from p by — .
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Act api>p
@ ’ X / X /
< p——p S P01, g—>¢
W p@ gy T pegped
p—p
Delay, ) (q) = ¢/ Delay; 51(q) 5 ¢
123 /
p—p def
Con L x =
r—Dp

Fig. 1. Standard operational semantics of ASTP

Given a process p and a set of constant definitions, the standard transition system
for p is defined as S(p) = (R__,(p), A, —,p). Note that, with abuse of nota-
tion, we use — for denoting both the operational semantics and the transition
relation among the states of the transition system.

On ASTP processes equivalence relations can be defined [22], based on the notion
of bisimulation between states of the related transition systems.

3 Quantitative Temporal Logic and Abstractions

In order to perform quantitative temporal reasoning, we define a logic, that
we call qu-mu-calculus, which is an extension of the mu-calculus [19] and in
particular of the selective mu-calculus [4]. The syntax is the following, where Z
ranges over a set of variables:

pu=tt | fE | Z | p1 Vo | o1 AD2 | [Arand | [r>nd | (0)R,<n @ |
(R>n@ | VZ.0 | nZ.¢

The satisfaction of a formula ¢ by a state p of a transition system, written p = ¢,
is defined as follows: any state satisfies tt and no state satisfies £f; a state sat-
isfies ¢1 V o (@1 A o) if it satisfies ¢; or (and) ¢@o.

[&)r.<n @, (@)R,<n® and []r,>n @, ()R >n ¢ are the quantitative modal oper-
ators. For each quantitative operator,

— RC A~
— n € N, where N is the set of natural numbers; n is called time value. In
() Rr,<n ¢ and [a]|Rr,<n ¢ it must be n > 0.
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The informal meaning of the operators is the following:

(o) r,<n ¢ is satisfied by a state which can evolve to a state satisfying ¢ by
executing «, not preceded by actions in R U {«a}, within n time units.

[@]R,<n ¢ is satisfied by a state which, for every execution of a occurring
within n time units and not preceded by actions in R U {a}, evolves to a
state satisfying ¢.

(a)r,>n ¢ is satisfied by a state which can evolve to a state satisfying ¢ by
executing «, not preceded by actions in RU {a}, after at least n time units.

[@]r,>n ¢ is satisfied by a state which, for every execution of a occurring
after at least n time units and not preceded by actions in R U {a}, evolves
to a state satisfying ¢.

As in standard mu-calculus, a fixed point formula has the form puZ.¢ (vZ.¢)
where uZ (vZ) binds free occurrences of Z in ¢. An occurrence of Z is free if it
is not within the scope of a binder pZ (vZ). A formula is closed if it contains no
free variables. pZ.¢ is the least fix point of the recursive equation Z = ¢, while
vZ.¢ is the greatest one. We consider only closed formulae.

The precise definition of the satisfaction of a closed formula ¢ by a state p of a
transition system 7' is given in Table[Il It uses the relation =—%":

Definition 1 (=" relation). Given a transition system T = (S, A, —r,p),
a set of actions p C A%, and n € N, we define the relation —=5" C S x px S
such that, for each o € p

pé;’nq:pé—a@q, with § € (A—p)*, 16 |y | =n.

where |6 |y | is the number of x actions occurring in §.

k .- .
By p:a>; q we express the fact that it is possible to pass from p to g by exe-
cuting a (possibly empty) sequence of actions not belonging to p and containing
exactly k x, followed by the action « in p.

A transition system T satisfies a formula ¢ iff its initial state satisfies ¢. An
ASTP process p satisfies a formula ¢ iff S(p) satisfies ¢.

3.1 Formula Driven Equivalence

A formula ¢ of the qu-mu-calculus can be used to define a bisimulation equiv-
alence between transition systems. The bisimulation is defined by considering
only the asynchronous actions occurring in the quantitative operators belonging
to the formula (denoted by O(¢)), and the maximum time value of the quanti-
tative operators occurring in the formula (denoted by max(¢)). Thus all formulae
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plE ff
Pl tt
pEéNY  iffpE¢ and pEY
pEoVy  iffpE¢ and pEY

a RU{a}k

p E [o]r,<n ¢ iff Vp'.VEk < n.p =7 p’ implies p’ = ¢
pE (@) rendiff 33k <np=sr P and o o
p E [a]r,>n ¢ iff Vp'.VE > np:a>TU{ bk p’ implies p’ = ¢
pE (@R 2 d i3Ik > np=r 7y and o g
pEVZ.P iff pl=vZ™.¢ for all m
pE uZ.¢ iff p = pZ™.¢ for some m
where, for each m, vZ™.¢ and uZ™.¢ are defined as:
vZ°.¢ = tt uZ.¢ = £f
vZ G = Gl 2™ )7 2™ G = o[uz™. /2]

where the notation ¢[y)/Z] indicates the substitution of ¢ for every free occurrence
of the variable Z in ¢.

Table 1. Satisfaction of a formula by a state

with the same set of occurring actions and the same maximum time value define
the same bisimulation.

Given a set p C A* of actions and a time value n, the (p, n)-bisimulation equiv-
alence relates states p and ¢ if: 1) for each path starting from p, containing k < n
time actions and no action in p and ending with « € p, there is a path starting
from ¢, containing exactly & time actions and no action in p and ending with
a € p, such that the reached states are bisimilar, and ii) for each path starting
from p, containing k > n time actions and no action in p and ending with « € p,
there is a path starting from ¢, containing m > n (possibly m # k) time actions
and no action in p and ending with o € p, such that the reached states are
bisimilar.

Definition 2 ((p, n)-bisimulation, (p, n)-equivalence).
Let T = (S, A,—1,p) and ¥ = (Sx, A,—x,p’) be transition systems, let
pCAY andn € N.

- A {p,n)-bisimulation, B, is a binary relation on St x Sx such that rBq im-
plies:
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. a PI . . . . / a PJ . / /
i) r=p 1, with j < n, implies ¢'.q =" ¢' with v'Bq’; and
i1) q:a>[;j q', with j < n, implies 3r'.r :a>pT’J r’ with 7' Bq'; and
a P ’ . . . . . ’ a P ’ . ’ ’
iii) r=>p ', with j > n, implies 3 > n,3¢'.q =% ¢, with v'Bq’; and
. a P, . . . . . ’ a P, . ’ ’
w) =y ¢, with j > n, implies Fi > n,Ir’'. r =7 ', with r'Bq’.

- T and X are (p,n)-equivalent (T =, , X) iff there exists a (p, n)-bisimulation
B containing the pair (p,p’).

The following proposition holds, relating equivalences with different p and n.

Proposition 1. For each p,p’ C A%, n,n’ € N, if p C p' and n < n/, then

%p’,n’ g %p,n-
Proof. See Appendiz.
In order to relate {p,n)-equivalence with quantitative temporal properties, we

introduce the following definition, concerning equivalences based on sets of for-
mulae.

Definition 3 (logic-based equivalence). Let T' and X' be two transition sys-
tems, and I' be a set of closed formulae:

T=rXiff{foel TE¢={¢pecl:YE ¢}

The following theorem states that (p, n)-equivalent transition systems satisfy the
same set of formulae with occurring actions in p and maximum time value less
than or equal to n.

Theorem 1. Let T = (Sr, A,—r,p) and ¥ = (Sx, A,— x5, q) be transition
systems and let p C A% andn € N.

T=,n2 implies T =gpn X

where

P = {¢:¢ is a closed formula of the qu-mu-calculus such that O(¢) C p
and max(¢) < n}.

Proof. See Appendiz.
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4 Abstract Transition Systems and Abstract Semantics

In order to reduce the number of states of a transition system for model checking,
we now define an abstraction of the transition system on which a formula ¢ can
be equivalently checked. Given a transition system T, let us denote as time path
each path p; LT cee LT pr such that

— no p;, 1 < i <n, occurs more than once in the sequence;
— no p;, 1 <1i < n, is able to perform any asynchronous action.

Let T be a transition system and ¢ be a formula with occurring actions p and
maximum time value n. A (p, n)-abstraction T’ of T has the following properties:

— all asynchronous actions labeling the transitions of T” belong to p;
— the length of each time path of T” is less than or equal to n;
-1 ~,n T.

Given an ASTP process p and a pair (p,n), we define an abstract transition
system by means of a non-standard semantics which consists of a set of inference
rules that skip actions not in p and produce time paths not longer than n.

The non standard rules are shown in Figure[2 (the symmetric rules of Sum; and
Sums are not shown). They use a transition relation *ﬁn parameterized by
an integer m < n. The ideas on which the semantics is based are the following:

— the actions in p are always performed (rules Act;, Delay, and Sum,)

— the actions not in p are skipped: when an action not in p is encountered, a
“look-ahead” is performed in order to reach either an action in p or a time
action (rules Actq, Delays and Sumsy);

— when a time action is encountered, it is skipped only if the process we reach
by this action can perform a sequence of n time units. In order to count the
time units we use the superscript of — ", : the transition p L:n q occurs
when an action belonging to p can be executed after m time actions starting

from p. In fact, in order to generate the transition p LG q , we first prove

-1
that ¢ L>::n ¢ for some ¢’ (rules Delay; and Delays, Sums and Sumy).
Successive applications of Delays and Sumy allow us to skip all time actions
in a sequence but the last n ones.

Note that in the premises of rules Delays, Delay,, Sum;, Sums; Sumgs and
Sumy the standard operational relation — is used, in order to know the first
action of the process and consequently to respect the standard behavior of the
operators, which is different depending on whether the first action is a time
action or not.

The following proposition characterizes the transitions of the non-standard se-
mantics:
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Proposition 2. Let p C A% and n € N. For each ASTP process p,
1. pi{)’nq implies o € p and j = 0;

2. pL:nq implies 1 < m < n.

Proof. See Appendix.

The proposition states that there are two kinds of transitions: the first one
represents the execution of action a € p; the second one represents both the fact
that p can perform a x action and the fact that a path composed by x actions
starts from ¢, with length m — 1, and reaches a state where an action in p can
be performed. Moreover the rules ensures that m is always less then or equal to
n.

The following results hold, relating the standard transition relation with the
non-standard one:

Proposition 3. Let p C A% and n € N. For each ASTP process p,

pJ .
P==spma if

. x J x -1 a 0
Lj<nandp——,,p1—p, P2 Dj —pnq OT;
) x X n—1 a 0
2. j>n and P pnP1 =) P2 " Pn—p (-
Proof. See Appendix.

Now we formally define the notion of abstract transition system.

Definition 4 (abstract transition system). For each ASTP process p, given
p C A® and n € N the abstract transition system for p is defined as

Nop(p) = (R, 0y (0) PULXE =0, P)
where g x, gy dif and only if 3j.q

The following theorem holds, stating that the transition system defined by the
non-standard semantics is a (p, n)-abstraction of S(p) for each process p.

Theorem 2. Let p C A% and n € N. For each ASTP process p,

1. the transitions of N, »(p) are labeled only either by actions in p or by x;
2. the length of each time path without repetition in N, , (p) is less than or equal
ton;

3. S(p) zp,n Np,’II(p)

Proof. See Appendiz.
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Note that, if n = 0, the abstract transition system N, ¢(p) for a process p does
not contain transitions labeled by time actions and expresses only the precedence
properties between the asynchronous actions in p. The following propositions
relates ~, n-equivalences with different p and n.

Proposition 4. Let p,p' C A*, ne N, n’ e NU{w}, pCp andn <n'. For
each ASTP process p,
Nowm(®) =pn Ny (p)-

Proof. By PropositionEh:I and by Theorel;ln 213.

p mooy
p—>p,n,p
U il
Act; apiy,,npaep Act, apr radp
w m non
Del —ﬂ—q_)p"q Del oo d
ela m<n ela T N BT
Y1 pl(g) o a Y2 |pl(q) " pn d’
Del p—p, v i Del pﬁp
ela; m (6% ela; o€
Vs pl(g) gy’ “FP Vi p)(q) pp “EP
o p——p/ S p——p, 0.0 .
um a 0 [VAS um wo @
Yp@g-,.p 5P 2 peqg,. " P
p=op, a-5d, ped pp, a5 D ®d
Sum mF+T m<n Sum W
’ p®q—,, PO * PO,
p meooy
P—pnP def
Con ° T, T =p
pn P

Fig. 2. Non-standard operational semantics for ASTP

Ezample 1. In the following we use x.p to denote the term |0](p); this process
can perform only the action x and then becomes the process p. Moreover we
define x".p (n > 1) as:

n—1

X".p=[0J(x"""p)

x'p = xp
Let us consider a vending machine with a time-dependent behavior. The machine
allows a user to obtain different services: a soft drink immediately after the
request; a coffee after a delay of a time unit; a cappuccino after a delay of
two time units; a cappuccino with chocolate after a delay of three time units.
Moreover, it is possible to recollect the inserted coin, if requested within only

one time unit. The AST P specification of the machine is:
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V' = coin |recollect money V | (V1)
V1 = coffee Vo @ cappuccino Vs & choc_cappuccino Vy & soft_drink Vs
Vo = x.(collect_coffee V)

V3 = x2.(collect_cappuccino V')

Vi = x3.(collect_choc_cappuccino V)
Vs = collect_soft_drink V'

The standard transition for the vending machine contains 14 states and 18 tran-
sitions.
Let us suppose that we have to verify the following two formulae:

i = vZ.[coinly > (collect_soft_drink)y o Z:

“it alway holds that, after a coin has been inserted, a soft drink can be collected
within two time units”.

7/}2 = [COin] ?,>0 [money] {coin},Zlff:

“ it is not possible to recollect the inserted coin after more than one time unit”.

The formula ¢; can be checked on the abstract transition system N, ,,(V),
with p1 = O(th1) = {coin, collect_soft_drink} and ny = max(¢1) = 2, which
has 8 states and 14 transitions, while 12 can be checked on N, ,(V), with
p2 = O(2) = {coin, money} and ne = max(13) = 1, which has 6 states and 13
transitions.

5 Conclusions

In this paper we have presented an approach to the problem of the reduction
of the number of states of a transition system. Many abstraction criteria for
system specifications not including time constraints have been defined, see for
example [4,[6], 9, [11] [12]. For real-time systems the work [17] define abstractions
for transition systems with quantitative labels, but there the abstraction is not
driven by the property to be proved.

We have introduced an abstract semantics for ASTP processes in order to for-
mally define the abstract transition system. The abstract semantics can be imple-
mented in order to design a tool for automatically building an abstract transition
system. In the implementation, some care must be taken to manage infinite loops
which can occur in the look-ahead process.

The reduction performed by the abstract semantics depends on the set p of
actions and on the bound n. In particular, the reduction can be significant either
when the set p is a small subset of A4 or when the bound n is small with respect
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to the length of time paths in the standard transition system. Obviously, no
reduction is performed if p = A and n is greater than the longest time path in
the standard transition system.
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Appendix

Proof of Proposition [l

Proposition 0l For each p,p’ C A% n,n’ € N, if p C p' and n < n/, then

~ ., ., ~
R & Rpn-

Proof. Let T = (Sr, A,—7,p) and ¥ = (Sx, A, —x,p’) be two transition
systems. We show that each (p’,n)-bisimulation B C Sp x Sy is a (p,n)-
bisimulation.

Consider (r,q) € B.

. psJ Sy
i) r==7" 7 with j <n

= {pCo}
i

T%T r’, for some 0 € (p' — p)*

= {(rngeB}
P

g% ¢, with (',¢) € B
= {de(p—p)*andacp}
o PJ ’ .
=y ¢ and j < n.
i1) The proof of this condition follows by a symmetric argument.
i11) r:a>s§j 7', with 7 > n

= {pco}
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r%{ r’, for some § € (p’ — p)*

= {(rngeB}
F>n',3q . q%;ﬂq’, with (r',¢") € B
= {de(p—p)*,aepandn<n’}

qégl ¢ and i > n.
iv) The proof of this condition follows by a symmetric argument.

Proof of Theorem [l

Theorem Ol Let T = (Sr, A,—1,p) and ¥ = (Sx, A,—x,q) be transition
systems and let p C A% andn € N.

T=,n2  implies T =gpn X

where

P = {¢:¢ is a closed formula of the qu-mu-calculus such that O(¢) C p
and max(¢) < n}.

Proof. We prove that, given a state p belonging to T" and a state ¢ belonging
to X

D Rprn q implies p=gen g

By induction on the structure of the formulae without recursion.
Base. tt, £f: straightforward.
Induction step. Let us suppose that the theorem holds for ¢ and ¢, with O(¢) C p

and O(¢) C p.

— ¢ V 9. By inductive hypothesis.

— ¢ A 9. By inductive hypothesis.

- <a>R,<n .
p ': < >R <n
= { definition of satisfaction }

RU
for some k < n, p=>, fadx p’ with p' E ¢
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= { DefinitionM and RU{a} C p }

81 pykl By p:kr o Pakr+1 o,
p=—=7 P1°Dr-1=——7 DPr=—>7 Pr41 =D,

r>0, 6; € (pf({a}UR)), ki+--- 4+ kg1 =k
= { definition of {p, n)-equivalence

and k; <n, 1 <i<r+4+1}

, Pk By Prkr a Prkria . .
1=y @ Gr-17==y =y G Withp ~p, g, 1<i<r+1
= { Definition [ }
a {a}URk
== qr+1
= { inductive hypothesis (¢,+1 = ¢ )

and definition of satisfaction }

q = (@) r,<n ¢. The same holds if ¢ = (@) g, <n ¢.

— [a]lr,<n @, (@) R,>n @, [@]R,>n ¢. Similar to the (@) g <, ¢ case.

For puZ.¢ (resp. vZ.¢) formulae the thesis follows since the truth value of such
formulae corresponds (the transition systems we deal with are finite and finitely
branching [22]) to the V (resp. the A) of an enumerable set of finite non-recursive
formulae.
Proof of Proposition
Proposition 2. Let p C A% and n € N. For each ASTP process p,

1. pi>i,7nq implies o € p and j = 0;

2. pLZ?n q implies 1 <m < n.

Proof. Both points 1 and 2 can be proved by induction on depth of inference.
We prove only point 2. Point 1 can be proved in a similar way.

Point 2. We consider in turn each transition rule as the last rule applied in the
inference.

ap Acti: is not applicable.
x ™ ’
ACt'Z: p ‘}p,n p

= { inductive hypothesis }
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1<m<n.

= { application of Acts }

x m /
ap p,np .

lp)(q) Delayi: ¢, ¢

= { inductive hypothesis }
1<m<n
= { application of Delay; (m <n) }

m—+1
1p)(q) =5, gand1<m+1<n.

m
Delays: g Lp’n q

= { inductive hypothesis }
1<m<n
= { application of Delays (m =n) }

Delays: if p Lp/ and p’ i>Z,Ln p”

= { inductive hypothesis }
1<m<n
= { application of Delays }

p) (@) 2 0"

Delay,: is not applicable.

p @ q,x Similarly to proofs above.

5.1 Proof of Proposition [3
Proposition Bl Let p C A% and n € N. For each ASTP process p,

psJ .
P :a>s(p) q iff

. X J X Jj—1 a 0 .
l.j<nandp—,,p1—,, P2 "Dj —,, ] OT;
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. x " x n—1 a O
2. jzn andp—)p,npl ——pmn P27 Pn——pnq

Proof. Point 1. By induction on j.
. o 0
Base. j =0. p=g5(,) ¢

& { Definition [ }

da *
p—q,6€(A-p—{x})
& { definition of the non standard semantics }

a O
p p,nq

Induction step. Let us suppose that the proposition holds for j < n.

a pJt+l
P=s@p) 4

& { Definition [l }

51 a Pl *
p=5yp =5 01 €(A—p—{x})

& { inductive hypothesis }
;) x I x J-1 a0
P ——pnDP1—7pn P2 "Pj——pnd
& { definition of non standard semantics }
a J+1
p —)p,n p/'

Point 2. By induction on j — n.
Base. j —n = 0. The thesis follows by point 1.

Induction step. Let us suppose that the proposition holds for j —n = k. Suppose
that j —n=%k+ 1.

a psn+k+1
P==5(p) q

& { Definition [ }

4 o pntk %
PP =g, @ 01 € (A—p—{x})

& { inductive hypothesis }

,; X" x n—1 a O
p pmn D1 pn P27 Dn pm 4

& { definition of non standard semantics }

[e3
P—,nP1-
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Proof Theorem

Theorem [2 Let p C A% and n € N. For each ASTP process p,

1. the transitions of N, ,(p) are labeled only either by actions in p or by x;

2. the length of each time path without repetition in N, ,(p) is less than or
equal to n;

3. S(p) ®pn Npn (p)-

Proof.

1. By Proposition

. Since in the relations —7",, used to define N, ,(p), we have that m < n.

3. Let T = S(p) and X' = N, ,(p). We show that B is a (p, n)-bisimulation,
where:

[\

B={(p,p) |[p€T and p € X}

i) p:a>?]p’, with j <n

= { Proposition Bl }
x J x J—1 a 0 ’

p _)p,n P1 —)p,n p2---Dj —)p,np

= { Definition [ }
o PsJ ’

p=—sx P.

ii) The proof of this condition follows by a symmetric argument.

iii) p==1" p/, with j >n

= { Proposition B }
x ™ X n—1 a O ,

P——pnP1—"pn P2 'Pn—"pnP

= { Definition [ }
a P,

p=—5x D

iv) The proof of this condition follows by a symmetric argument.
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