
Maude as a Formal Meta-tool?

M. Clavel1, F. Durán2, S. Eker2, J. Meseguer2, and M.-O. Stehr2

1 Department of Philosophy, University of Navarre, Spain
2 SRI International, Menlo Park, CA 94025, USA

Abstract. Given the different perspectives from which a complex soft-
ware system has to be analyzed, the multiplicity of formalisms is unavoid-
able. This poses two important technical challenges: how to rigorously
meet the need to interrelate formalisms, and how to reduce the duplica-
tion of effort in tool and specification building across formalisms. These
challenges could be answered by adequate formal meta-tools that, when
given the specification of a formal inference system, generate an effi-
cient inference engine, and when given a specification of two formalisms
and a translation, generate an actual translator between them. Similarly,
module composition operations that are logic-independent, but that at
present require costly implementation efforts for each formalism, could
be provided for logics in general by module algebra generator meta-tools.
The foundations of meta-tools of this kind can be based on a metatheory
of general logics. Their actual design and implementation can be based
on appropriate logical frameworks having efficient implementations. This
paper explains how the reflective logical framework of rewriting logic can
be used, in conjunction with an efficient reflective implementation such
as the Maude language, to design formal meta-tools such as those de-
scribed above. The feasibility of these ideas and techniques has been
demonstrated by a number of substantial experiments in which new for-
mal tools and new translations between formalisms, efficient enough to
be used in practice, have been generated.

1 Introduction

At present, formal methods for software specification and verification tend to
be monolithic, in the sense that in each approach only one formal system or
specification language is used to formalize the desired system properties. For
this reason, formal systems, and the tools based on them, can be as it were
autistic, because they lack the meta-tools and methods necessary for relating
them to other formalisms and to their supporting tools.

As a consequence, it is at present very difficult to integrate in a rigorous
way different formal descriptions, and to reason across such descriptions. This
situation is very unsatisfactory, and presents one of the biggest obstacles to the

? Supported by DARPA and NASA through Contract NAS2-98073, by Office of Naval
Research Contract N00014-96-C-0114, and by National Science Foundation Grant
CCR-9633363.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1684–1703, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Maude as a Formal Meta-tool 1685

use of formal methods in software engineering because, given the complexity of
large software systems, it is a fact of life that no single perspective, no single
formalization or level of abstraction suffices to represent a system and reason
about its behavior. We use the expression formal interoperability to denote this
capacity to move in a mathematically rigorous way across the different formal-
izations of a system, and to use in a rigorously integrated manner the different
tools supporting such formalizations [52, 49].

By transforming problems in a formalism lacking tools into equivalent prob-
lems in a formalism that has them, formal interoperability can save much time
and effort in tool development. Also, libraries of theories and specifications can
in this way be amortized across many formalisms, avoiding much duplication of
effort. One would similarly like to have rigorous meta-methods and tools making
it easy to solve different parts of a complex problem using different formal tools,
and to then integrate the subproblem solutions into an overall solution.

These considerations suggest that it would be very fruitful to investigate
and develop new formal meta-tools, that is, tools in which we can easily and
rigorously develop many formal tools at a very high level of abstraction; and
also tools through which we can rigorously interoperate existing and future tools.
Specifically, it would be very useful to have:

– Formal Tool Generators, that given a formal description of an inference sys-
tem, generate an inference engine for it that is sufficiently efficient to be
used in practice as a tool.

– Formal Translation Generators, that given formal descriptions of two for-
malisms and of a translation between them, generate an actual translator
that can be used to translate specifications and to interoperate tools across
the given formalisms.

– Module Algebra Generators, that given a formalism with appropriate met-
alogical properties, extend its language of basic specifications into a much
richer algebra of specification-combining operations, including specification
hierarchies, parameterized specifications, and many other specification trans-
formations.

But where will the metatheory supporting such meta-tools come from? To
make such tools mathematically rigorous, the first thing obviously needed is to
have a mathematical metatheory of logics and of translations between logics.
We have been investigating the theory of general logics [47, 44, 52, 11, 16] for
this purpose. This theory axiomatizes the proof-theoretic and model-theoretic
facets of logics and their translations, includes the theory of institutions as its
model-theoretic component [30], and is related to other similar metatheories (see
the survey [52]).

But meta-tools need more than a metatheory. They have to “run” and there-
fore they need an executable metatheory. This can be provided by an adequate
logical framework, that is, by a logic with good properties as a metalogic in
which other logics can be naturally represented, and that, in addition, is exe-
cutable with good performance. Then, an implementation of such a framework
logic could serve as a basis for developing the meta-tools.

1686 M. Clavel et al.

This paper reports on our results and experiments in using the Maude lan-
guage [15, 13] as a formal meta-tool in the senses described above. Maude is
a reflective language based on rewriting logic [48] that essentially contains the
OBJ3 language as an equational sublanguage. Rewriting logic extends equational
logic and has very good properties as a logical framework, in which many other
logics and many semantic formalisms can be naturally represented [43, 51]. A
very important property of the rewriting logic framework is its being reflective
[17, 12]. Reflection is efficiently supported by the Maude implementation and,
together with the high-performance of Maude, is the key feature making possible
the use of Maude as a meta-tool.

The rest of the paper is organized as follows. Section 2 explains in more detail
in which sense rewriting logic is a reflective logical framework, and some basic
principles and methods underlying the use of a rewriting logic implementation
as a formal meta-tool. Section 3 describes the key features of Maude allowing
it to be used as a meta-tool. Our experience in building formal tools in Maude
is described in Section 4, where we report on several formal tool generator and
formal translation generator uses, and on the beginnings of a module algebra
generator capability. We finish the paper with some concluding remarks and
future research directions.

2 A Reflective Logical Framework

A formal meta-tool must both rely on, and support, a precise axiomatization of
different logics. That is what makes it formal, and what distinguishes it from tool
implementations in conventional languages, say Java, in which the implementa-
tion itself is not a suitable formal axiomatization of the tool being implemented.

This leads us to the need for a metatheory of logics, as a necessary foundation
for the design of formal meta-tools. In our work we have used the theory of gen-
eral logics proposed in [47], which provides an axiomatic framework to formalize
the proof theory and model theory of a logic, and which also provides adequate
notions of mapping between logics, that is, of logic translations. This theory
contains Goguen and Burstall’s theory of institutions [30] as its model-theoretic
component.

The theory of general logics allows us to define the space of logics as a cat-
egory, in which the objects are the different logics, and the morphisms are the
different mappings translating one logic into another. We can therefore axioma-
tize a translation Φ from a logic L to a logic L′ as a morphism

(†) Φ : L −→ L′

in the category of logics. A logical framework is then a logic F such that a very
wide class of logics can be mapped to it by maps of logics

(‡) Ψ : L −→ F

Maude as a Formal Meta-tool 1687

called representation maps, that have particularly good properties such as con-
servativity1.

A number of logics, particularly higher-order logics based on typed lambda
calculi, have been proposed as logical frameworks, including the Edinburgh log-
ical framework LF [35, 2, 27], generic theorem provers such as Isabelle [56],
λProlog [54, 25], and Elf [57], and the work of Basin and Constable [4] on met-
alogical frameworks. Other approaches, such as Feferman’s logical framework
FS0 [24]—that has been used in the work of Matthews, Smaill, and Basin [46]—
earlier work by Smullyan [59], and the 2OBJ generic theorem prover of Goguen,
Stevens, Hobley, and Hilberdink [33] are instead first-order. Our work should of
course be placed within the context of the above related work, and of experi-
ments carried out in different frameworks to prototype formal systems (for more
discussion see the survey [52]).

2.1 Rewriting Logic and Reflection

We and other researchers (see references in [51]) have investigated the suitability
of rewriting logic [48] as a logical framework and have found it to have very good
properties for this purpose. One important practical advantage is that, what
might be called the representational distance between a theory T in the original
logic and its rewriting logic representation Ψ(T) is often practically zero. That
is, both T ’s original syntax and its rules of inference are faithfully mirrored by
the rewrite theory Ψ(T).

A rewrite theory (Ω, E, R) is an equational theory (Ω, E) with signature of
operations Ω and equations E together with a collection R of labeled rewrite
rules of the form

r : t −→ t′.

Logically, such rules mean that we can derive the formula t′ from the formula t.
That is, the logical reading of a rewrite rule is that of an inference rule.

Since the syntax Ω and the equational axioms E of a rewrite theory are
entirely user-definable, rewriting logic can represent in a direct and natural way
the formulas of any finitary logic as elements of an algebraic data type defined by
a suitable equational theory (Ω, E). Furthermore, the structural axioms satisfied
by such formulas—for example, associativity and commutativity of a conjunction
operator, or of a set of formulas in a sequent—can also be naturally axiomatized
as equations in such an equational theory. Each inference rule in the logic is then
naturally axiomatized as a rewrite rule, that is applied modulo the equations E.
If there are side conditions in the inference rule, then the corresponding rewrite
rule is conditional [48]. Rewriting logic has then very simple (meta-) rules of
deduction [48], allowing it to mirror deduction in any finitary logic as rewriting
inference. In earlier work with Narciso Mart́ı-Oliet we have shown how this
general method for representing logics in the rewriting logic framework allows
1 A map of logics is conservative [47] if the translation of a sentence is a theorem if

and only if the sentence was a theorem in the original logic. Conservative maps are
sometimes said to be adequate and faithful by other authors.

1688 M. Clavel et al.

very natural and direct representations for many logics, including also a general
method for representing quantifiers [43, 44, 45].

Besides these good properties, there is an additional key property making
rewriting logic remarkably useful as a metalogic, namely reflection. Rewriting
logic is reflective [17, 12] in the precise sense that there is a finitely presented
rewrite theory U such that for any finitely presented rewrite theory T (including
U itself) we have the following equivalence

T ` t −→ t′ ⇐⇒ U ` 〈T , t〉 −→ 〈T , t′〉,

where T and t are terms representing T and t as data elements of U , of respective
types Theory and Term. Since U is representable in itself, we can achieve a
“reflective tower” with an arbitrary number of levels of reflection, since we have

T ` t −→ t′ ⇐⇒ U ` 〈T , t〉 −→ 〈T , t′〉 ⇐⇒ U ` 〈U, 〈T , t〉〉 −→ 〈U, 〈T , t′〉〉 . . .

The key advantage of having a reflective logical framework logic such as rewrit-
ing logic is that we can represent—or as it is said reify—within the logic in a
computable way maps of the form (†) and (‡). We can do so by extending the
universal theory U with equational abstract data type definitions for the data
type of theories TheoryL for each logic L of interest. Then, a map of the form
(†) can be reified as an equationally-defined function

Φ : TheoryL −→ TheoryL′ .

And, similarly, a representation map of the form (‡), with F rewriting logic, can
be reified by a function

Ψ : TheoryL −→ Theory .

If the maps Φ and Ψ are computable, then, by a metatheorem of Bergstra and
Tucker [5] it is possible to define the functions Φ and Ψ by means of corresponding
finite sets of Church-Rosser and terminating equations. That is, such functions
can be effectively defined and executed within rewriting logic.

2.2 Formal Meta-tool Techniques

How can we systematically exploit all these properties to use a reflective im-
plementation of rewriting logic as a meta-tool? Formal tool generator uses can
be well supported by defining representation maps Ψ that are conservative. In
conjunction with a reflective implementation of rewriting logic, we can reify such
representation maps as functions of the form Ψ that give us a systematic way
of executing a logic L by representing each theory T in L—which becomes a
data element T of TheoryL—by the rewrite theory that Ψ(T) metarepresents.
By executing such a rewrite theory we are in fact executing the (representation
of) T . In our experience, the maps Ψ are essentially identity maps, preserving
the original structure of the formulas, and mirroring each inference rule by a

Maude as a Formal Meta-tool 1689

corresponding rewrite rule. Therefore, a user can easily follow and understand
the rewriting logic execution of the theory T thus represented.

But how well can we execute the representation of such a theory T ? In gen-
eral, the inference process of T may be highly nondeterministic, and may have to
be guided by so-called strategies. Will the status of such strategies be logical, or
extra-logical? And will strategies be representable at all in the framework logic?
Rewriting logic reflection saves the day, because strategies have a logical status:
they are computed by rewrite theories at the metalevel. That is, in the reflective
tower they are always one level above the rewrite theory whose execution they
control. Furthermore, there is great freedom for creating different internal strat-
egy languages that extend rewriting logic’s universal theory U to allow a flexible
logical specification of strategies [17, 12, 13].

Formal translator generator uses are of course supported by formally speci-
fying the algebraic data types TheoryL and TheoryL′ of the logics in question
and the translation function Φ. Module algebra generator uses can be supported
by defining a parameterized algebraic data type, say ModAlg [X], that, given a
logic L having good metalogical properties, extends the data type TheoryL of
theories to an algebra of theory-composition operations ModAlg [TheoryL].

Section 3 explains the reflective metalanguage features of Maude that make
meta-tool uses of this kind possible, and Section 4 summarizes our practical
meta-tool experience with Maude.

3 Maude’s Metalanguage Features

Maude [15, 13] is a reflective language whose modules are theories in rewriting
logic. The most general Maude modules are called system modules. Given a
rewrite theory T = (Ω, E, R), a system module has essentially the form mod
T endm, that is, it is expressed with a syntax quite close to the corresponding
mathematical notation for its corresponding rewrite theory.2 The equations E
in the equational theory (Ω, E) underlying the rewrite theory T = (Ω, E, R) are
presented as a union E = A ∪ E′, with A a set of equational axioms introduced
as attributes of certain operators in the signature Ω—for example, a conjunction
operator ∧ can be declared associative and commutative by keywords assoc
and comm—and where E′ is a set of equations that are assumed to be Church-
Rosser and terminating modulo the axioms A. Maude supports rewriting modulo
different combinations of such equational attributes: operators can be declared
associative, commutative, with identity, and idempotent [13]. Maude contains
a sublanguage of functional modules of the form fmod (Ω, E) endfm, with the
equational theory (Ω, E) satisfying the conditions already mentioned. A system
module mod T endm specifies the initial model [48] of the rewrite theory T .
Similarly, a functional module fmod (Ω, E) endfm specifies the initial algebra of
the equational theory (Ω, E).

2 See [13] for a detailed description of Maude’s syntax, which is quite similar to that
of OBJ3 [32].

1690 M. Clavel et al.

3.1 The Module META-LEVEL

A naive implementation of reflection can be very expensive both in time and
in memory use. Therefore, a good implementation must provide efficient ways
of performing reflective computations. In Maude this is achieved through its
predefined META-LEVELmodule, in which key functionality of the universal theory
U of rewriting logic has been efficiently implemented. In particular, META-LEVEL
has sorts Term and Module, so that the representations t and T of a term t and a
module (that is, a rewrite theory) T have sorts Term and Module, respectively. As
the universal theory U that it implements in a built-in fashion, META-LEVEL can
also support a reflective tower with an arbitrary number of levels of reflection.
We summarize below the key functionality provided by META-LEVEL:

– Maude terms are reified as elements of a data type Term of terms;
– Maude modules are reified as terms in a data type Module of modules;
– the process of reducing a term to normal form is reified by a function

meta-reduce;
– the process of applying a rule of a system module to a subject term is reified

by a function meta-apply;
– the process of rewriting a term in a system module using Maude’s default

strategy is reified by a function meta-rewrite; and
– parsing and pretty printing of a term in a module are also reified by corre-

sponding metalevel functions meta-parse and meta-pretty-print.

Representing Terms. Terms are reified as elements of the data type Term of
terms, with the following signature

subsort Qid < Term .
subsort Term < TermList .
op {_}_ : Qid Qid -> Term .
op _[_] : Qid TermList -> Term .
op _,_ : TermList TermList -> TermList [assoc] .

The first declaration, making the sort Qid of quoted identifiers a subsort of Term,
is used to represent variables in a term by the corresponding quoted identifiers.
Thus, the variable N is represented by ’N. The operator { } is used for rep-
resenting constants as pairs, with the first argument the constant, in quoted
form, and the second argument the sort of the constant, also in quoted form.
For example, the constant 0 in the module NAT discussed below is represented
as {’0}’Nat. The operator [] corresponds to the recursive construction of
terms out of subterms, with the first argument the top operator in quoted form,
and the second argument the list of its subterms, where list concatenation is
denoted , . For example, the term s s 0 + s 0 of sort Nat in the module NAT
is metarepresented as

’ + [’s [’s [{’0}’Nat]],’s [{’0}’Nat]].

Maude as a Formal Meta-tool 1691

Representing Modules. Functional and system modules are metarepresented
in a syntax very similar to their original user syntax. The main differences are
that: (1) terms in equations, membership axioms (see [50, 13] for more on mem-
bership axioms) and rules are now metarepresented as explained above; and
(2) sets of identifiers—used in declarations of sorts—are represented as sets of
quoted identifiers built with an associative and commutative operator ; .

To motivate the general syntax for representing modules, we illustrate it
with a simple example—namely, a module NAT for natural numbers with zero
and successor and with a commutative addition operator.

fmod NAT is
sorts Zero Nat .
subsort Zero < Nat .
op 0 : -> Zero .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat [comm] .
vars N M : Nat .
eq 0 + N = N .
eq s N + M = s (N + M) .

endfm

The syntax for the top-level operator representing functional modules is as fol-
lows.

sorts FModule Module .
subsort FModule < Module .

op fmod_is_______endfm : Qid ImportList SortDecl
SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet -> FModule .

The representation NAT of NAT in META-LEVEL is the term

fmod ’NAT is
nil
sorts ’Zero ; ’Nat .
subsort ’Zero < ’Nat .
op ’0 : nil -> ’Zero [none] .
op ’s_ : ’Nat -> ’Nat [none] .
op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .
var ’N : ’Nat .
var ’M : ’Nat .
none
eq ’_+_[{’0}’Nat, ’N] = ’N .
eq ’_+_[’s_[’N], ’M] = ’s_[’_+_[’N, ’M]] .

endfm

Since NAT has no list of imported submodules and no membership axioms those
fields are filled by the nil import list, and the none set of membership axioms.

1692 M. Clavel et al.

Similarly, since the zero and successor operators have no attributes, they have
the none set of attributes.

Note that—just as in the case of terms—terms of sort Module can be metarep-
resented again, yielding then a term of sort Term, and this can be iterated an
arbitrary number of times. This is in fact necessary when a metalevel computa-
tion has to operate at higher levels. A good example is the inductive theorem
prover described in Section 4.1, where modules are metarepresented as terms
of sort Module in the inference rules for induction, but they have to be meta-
metarepresented as terms of sort Term when used in strategies that control the
application of the inductive inference rules.

There are many advanced applications that the META-LEVEL module makes
possible. Firstly, strategies or tactics to guide the application of the rewrite rules
of a theory can be defined by rewrite rules in strategy languages [17, 12, 13],
which are Maude modules extending META-LEVEL in which the more basic forms
of rewriting supported by functions like meta-apply and meta-reduce can be
extended to arbitrarily complex rewrite strategies defined in a declarative way
within the logic. Secondly, as further explained in Section 4.5, an extensible
module algebra of module composition and transformation operations can be
constructed by defining new functions on the data type Module and on other
data types extending it. Thirdly, as explained in Section 4, many uses of Maude
as a metalanguage in which we can implement other languages, including formal
specification languages and formal tools, are naturally and easily supported.

3.2 Additional Metalanguage Features

Suppose that we want to build a theorem prover for a logic, or an executable
formal specification language. We can do so by representing the logic L of the
theorem prover or specification language in question in rewriting logic by means
of a representation map

Ψ : L −→ RWLogic.

Using reflection we can, as already explained in Section 2, internalize such a map
as an equationally defined function Ψ . In Maude this is accomplished using the
module META-LEVEL and its sort Module. We can reify the above representation
map Ψ by defining an abstract data type ModuleL representing theories in the
logic L and specifying Ψ as an equationally-defined function

Ψ : ModuleL −→ Module

in a module extending META-LEVEL. We can then use the functions meta-reduce,
meta-apply, and meta-rewrite, or more complex strategies that use such func-
tions, to execute in Maude the metarepresentation Ψ(T) of a theory T in L. In
other words, we can in this way execute L in Maude.

But we need more. To build a usable formal tool we need to build an environ-
ment for it, including not only the execution aspect just described, but parsing,
pretty printing, and input/output. If we had instead considered formal trans-
lator generator uses of Maude, we would have observed entirely similar needs,

Maude as a Formal Meta-tool 1693

since we need to get the specifications in different logics—originating from, or
going to, different tools—in and out of Maude by appropriate parsing, pretty
printing, and input-output functions. In Maude, these additional metalanguage
features are supported as follows:

– The syntax definition for L is accomplished by defining the data type ModuleL.
In Maude this can be done with very flexible user-definable mixfix syntax,
that can mirror the concrete syntax of an existing tool supporting L.

– Particularities at the lexical level of L can be accommodated by user-definable
bubble sorts, that tailor the adequate notions of token and identifier to the
language in question (see [13]).

– Parsing and pretty printing for L is accomplished by the meta-parse and
meta-pretty-print functions in META-LEVEL, in conjunction with the bub-
ble sorts defined for L.

– Input/output of theory definitions, and of commands for execution in L is
accomplished by the predefined module LOOP-MODE, that provides a generic
read-eval-print loop (see [13]).

In Section 4 we describe our experience in using the META-LEVEL and the above
metalanguage features of Maude as a meta-tool to build formal tools.

4 Using Maude as a Formal Meta-tool

This section summarizes our experience using Maude as a formal meta-tool.
Specifically, we report on three formal tool generator uses—an inductive theorem
prover and a Church-Rosser Checker for membership equational logic, and a
proof assistant for the open calculus of constructions—four formal translator
generator uses, several specification language environment-building uses, and on
the beginnings of a module algebra generator use.

4.1 An Inductive Theorem Prover

Using the reflective features of Maude’s META-LEVEL module, we have built an
inductive theorem prover for equational logic specifications [14] that can be
used to prove inductive properties of both CafeOBJ specifications [26] and of
functional modules in Maude.

The specifications we are dealing with are equational theories T having an
initial algebra semantics. The theory T about which we want to prove inductive
properties is at the object level. The rules of inference for induction can be
naturally expressed as a rewrite theory I. For example, one of the inference
rules is the following constants lemma rule, that reduces universally quantified
goals with variables to ground goals in which the variables have been declared
as constants

T ` (∀{x1, . . . , xn}).p
T ∪ {op c1:-> s1. · · · op cn:-> sn.} ` p[c1/x1, . . . , cn/xn]

1694 M. Clavel et al.

where xi has sort si and the constants c1, . . . , cn do not occur in T . Its expres-
sion as a rewrite rule in Maude—that rewrites the current set of goals modulo
associativity and commutativity—is as follows

rl [constantsLemma]:
goalSet(proveinVariety(IS,T,VQuantification(XS,P)), G)

=> --
goalSet(proveinVariety(IS,addNewConstants(XS, T),

varsToNewConstants(XS,P)), G) .

where the function addNewConstants(XS, T) adds a new constant of the ap-
propriate sort to the theory T for each variable in XS. (The dashes in the rule
are a, notationally convenient, Maude comment convention).

Note that, since this rewrite theory uses T as a data structure—that is,
it actually uses its representation T—the theory I should be defined at the
metalevel. Proving an inductive theorem for T corresponds to applying the rules
in I with some strategy. But since the strategies for any rewrite theory belong to
the metalevel of such a theory, and I is already at the metalevel, we need three
levels to clearly distinguish levels and make our design entirely modular, so that,
for example, we can change the strategy without any change whatsoever to the
inference rules in I. This is illustrated by the following picture, describing the
modular architecture of our theorem prover.

?
6

Meta-metalevel

Metalevel

?
6

Object level Object theory

Induction

Inference Rules for

Inductive Proof

Strategy for

This tool uses several levels of reflection and associative-commutative rewrit-
ing, and expresses the inference rules at a very high level of abstraction. How-
ever, thanks to the efficient implementation of Maude—that can reach more than
1,300,000 rewrites per second on a 450 MHz Pentium II for some applications—
the resulting implementation is a tool of competitive performance that can be
used in practice in interactive mode with typically fast response times. Further-
more, our tool-building experience has been very positive, both in terms of how
quickly we were able to develop the tool, and how easily we can extend it and
maintain it. We are currently extending this theorem prover by extending both
its logic, from equational to rewriting logic, and its inference rules, to support
more powerful reasoning methods, including metalogical reasoning.

Maude as a Formal Meta-tool 1695

4.2 A Church-Rosser Checker

We have also built a Church-Rosser checker tool [14] that analyzes equational
specifications to check whether they satisfy the Church-Rosser property. This
tool can be used to analyze order-sorted [31] equational specifications in CafeOBJ
and in Maude. The tool outputs a collection of proof obligations that can be used
to either modify the specification or to prove them.

The Church-Rosser Checker has a reflective design similar to that of the
inductive theorem prover, but somewhat simpler. Again, the module T , that we
want to check is Church-Rosser, is at the object level. An inference system C for
checking the Church-Rosser property uses T as a data structure, and therefore
is a rewrite theory at the metalevel. However, since the checking process can
be described in a purely functional way, there is no need in this case for an
additional strategy layer at the meta-metalevel: two levels suffice.

Maude does not yet have built-in support for unification, but only for match-
ing. Therefore, we implemented the order-sorted unification algorithm using
rewrite rules which—with unification being the real workhorse of the tool—is
of course inefficient. However, in spite of this inefficiency, of using reflection,
and of making heavy use of associative-commutative rewriting—which is NP-
complete—our tool has competitive performance. For example, it generates a
long list of proof obligations for a substantial example, namely the number hi-
erarchy from the natural to the rational numbers, after 2,091,898 rewrites in 12
seconds running on a 450 MHz Pentium II.

We are currently extending this tool in several ways. Firstly, unification will
be performed by Maude in a built-in way. This will greatly improve performance,
and will enhance the general capabilities of Maude as a formal meta-tool. Sec-
ondly, besides Church-Rosser checking we will support Knuth-Bendix comple-
tion of membership equational logic specifications [7] and coherence completion
of rewrite theories [62].

4.3 Formal Interoperability Experiments

Using the general methods explained in Section 2.2, Maude can be used as a “log-
ical bus” to interoperate in a systematic and rigorous way different formalisms
and their associated tools.

The goal is twofold. Firstly, the mappings relating different formalisms should
themselves be formalized in a metalogic, so that they are rigorously defined and it
becomes possible to subject them to formal metalogical analysis to verify their
correctness. Secondly, the formal definition of a mapping between two logics
should be executable, so that it can be used to carry out the translation and
to interoperate in practice different formal tools. This is precisely what defining
such mappings in Maude makes possible.

Maps of logics can relate any two logics of interest. In particular, when the
target logic is rewriting logic, we can execute in Maude the translated theories.
However, in other cases the goal may be to relate two different formalisms which
may have tools of their own. We describe below some formal interoperability

1696 M. Clavel et al.

experiments—carried out in cooperation with several colleagues—that illustrate
the different uses just discussed and some combined uses.

HOL → Nuprl . The HOL theorem proving system [34] has a rich library of
theories that can save a lot of effort by not having to specify from scratch many
commonly encountered theories. Potentially, this is a very useful resource not
only for HOL, but for other theorem proving systems based on other logics.
Howe [37] defined a map of logics mapping the HOL logic into the logic of Nuprl
[19], and implemented such a mapping to make possible the translation from
HOL theories to Nuprl theories. In this way, the practical goal of relating both
systems and making the HOL libraries available to Nuprl was achieved. However,
the translation itself was carried out by conventional means, and therefore was
not in a form suitable for metalogical analysis.

After studying this mapping with the kind help of D. Howe and R. Constable,
Stehr and Meseguer have recently formally specified it in Maude. The result is
an executable formal specification of the mapping that translates HOL theories
into Nuprl theories. Large HOL libraries have already been translated into Nuprl
this way.

In order to verify the correctness of the translation, we have investigated, in
parallel with the work summarized above, an abstract version of the mapping in
the categorical framework of general logics [47]. Stehr and Meseguer have proved
a strong correctness result, namely, that the mapping is actually a mapping
between the entailment systems of HOL and a classical variant of Nuprl. This
result is of a proof-theoretic nature and hence complementary to the semantical
argument given in [37]. Beyond its role as a direct justification for the translator,
this result suggests an interesting new direction, namely, extending the mapping
between entailment systems to a mapping between proof calculi, which would
mean in practice that theorems could be translated together with their proofs.

LinLogic → RWLogic. As an illustration of the naturalness and flexibility
with which rewriting logic can be used as a logical framework to represent other
logics, Mart́ı-Oliet and Meseguer defined two simple mappings from linear logic
[29] to rewriting logic: one for its propositional fragment, and another for first-
order linear logic [43]. In addition, they explained how—using the fact that
rewriting logic is reflective and the methods discussed in Section 2.2—these
mappings could be specified and executed in Maude, thus endowing linear logic
with an executable environment. Based on these ideas, Clavel and Mart́ı-Oliet
have specified in Maude the mapping from propositional linear logic to rewriting
logic [12].

Wright → CSP → RWLogic. Architectural description languages (ADLs)
can be useful in the early phases of software design, maintenance, and evolution.
Furthermore, if architectural descriptions can be subjected to formal analysis,
design flaws and inconsistencies can be detected quite early in the design process.
The Wright language [1] is an ADL with the attractive feature of having a formal
semantics based on CSP [36].

Maude as a Formal Meta-tool 1697

Meseguer, Nodelman, and Talcott have recently developed in Maude a proto-
type executable environment for Wright using two mappings. The first mapping
gives an executable formal specification of the CSP semantics of Wright, that is,
it associates to each Wright architectural description a CSP process. The second
mapping gives an executable rewriting logic semantics to CSP itself. The compo-
sition of both mappings provides a prototype executable environment for Wright,
which can be used—in conjunction with appropriate rewrite strategies—to both
animate Wright architectural descriptions, and to submit such descriptions to
different forms of formal analysis.

PTS → RWLogic. Pure type systems (PTS) [3] generalize the λ-cube [3],
which already contains important systems, like the simply typed and the (higher-
order) polymorphic lambda calculi, a system λP close to the logical framework
LF [35], and their combination, the calculus of constructions CC [20]. PTS sys-
tems are considered to be of key importance, since their generality and simplicity
makes them an ideal basis for representing higher-order logics either directly, via
the propositions-as-types interpretation [28], or via their use as a logical frame-
work [27].

In [61] we show how the definition of PTS systems can be formalized in
membership equational logic. It is noteworthy that the representational distance
between the informal mathematical presentation of PTS systems with identifica-
tion of α-equivalent terms and the membership equational logic specification of
PTS systems is close to zero. In contrast to a higher-order representation in LF
[35] or Isabelle [56], this first-order inductive approach is closer to mathematical
practice, and the adequacy of the representation does not require complex meta-
logical justifications. It has also greater explanational power, since we explain
higher-order calculi in terms of a first-order system with a very simple semantics.

We have also defined uniform pure type systems (UPTS) a more concrete
variant of PTS systems that do not abstract from the treatment of names, but
use a uniform notion of names based on CINNI [60], a new first-order calculus
of names and substitutions. UPTS systems solve the problem of closure under
α-conversion [58][42] in a very elegant way. A membership equational logic spec-
ification of UPTS systems can be given that contains the equational substitution
calculus and directly formalizes the informal presentation.

Furthermore, [61] describes how meta-operational aspects of UPTS systems,
like type checking and type inference, can be formalized in rewriting logic. For
this purpose the inference system of a UPTS system is specified as a rewrite
theory. The result of this formalization is an executable specification of UPTS
systems that is correct w.r.t. the more abstract specification in an obvious way.

4.4 A Proof Assistant for the Open Calculus of Constructions

Rewriting logic favors the use of abstract specifications. It has a flexible com-
putation system based on conditional rewriting modulo equations, and it uses
a very liberal notion of inductive definitions. PTS systems, in particular CC,
provide higher-order (dependent) types, but they are based on a fixed notion

1698 M. Clavel et al.

of computation, namely β-reduction. This unsatisfying situation has been ad-
dressed by addition of inductive definitions [55][40] and algebraic extensions in
the style of abstract data type systems [6]. Also, the idea of overcoming these
limitations using some combination of membership equational logic with the
calculus of constructions has been suggested as a long-term goal in [39].

To close the gap between these two different paradigms of equational logic
and higher-order type theory we are currently investigating the open calculus
of constructions (OCC) an equational variant of the calculus of constructions
with an open computational system and a flexible universe hierarchy. Using
Maude and the ideas on CINNI and UPTS systems mentioned above, we have
developed an experimental proof assistant for OCC that has additional features
such as definitions and meta-variables. Maude has been extremely useful to ex-
plore the potential of OCC from the very early stage of its design. In addition,
the formal executable specification of OCC exploits the reflective capabilities of
Maude, yielding orders of magnitude speedups over Lego [41] and Coq [38] in
the evaluation of functional expressions.

4.5 Implementing Formal Specification Languages

The efforts required for building adequate tools for formal specification languages
are considerable. Such efforts can be particularly intense when such languages are
executable, since a good execution engine must also be developed. The methods
described in this paper can be used in practice to develop tools and environments
for formal specification languages, including executable ones, and to endow such
languages with a powerful module algebra of specification-combining operations.

We have applied these methods to the design and implementation of Maude
itself. The most basic parts of the language—supporting module hierarchies of
functional and system modules and some predefined modules—are implemented
in C++, giving rise to a sublanguage called Core Maude. This is extended by
special syntax for object-oriented specifications, and by a rich module algebra of
parameterized modules and module composition in the Clear/OBJ style [10, 32]
giving rise to the Full Maude language.

All of Full Maude has been formally specified in Core Maude [23, 22]. This
formal specification—about 7,000 lines—is in fact its implementation, which is
available in the Maude web page (http://maude.csl.sri.com). Our experience
in this regard is very encouraging in several respects. Firstly, because of how
quickly we were able to develop Full Maude. Secondly, because of how easy
it will be to maintain it, modify it, and extend it with new features and new
module operations. Thirdly, because of the competitive performance with which
we can carry out very complex module composition and module transformation
operations, that makes the interaction with Full Maude quite reasonable.

The reflective methods described in this paper, that underly our develop-
ment of Full Maude, are much more general. They can equally be used to de-
velop high-performance executable environments for other formal specification
languages with much less effort and much greater flexibility, maintainability,
and extensibility than what would be required in conventional implementations.

Maude as a Formal Meta-tool 1699

For example, Denker and Millen have specified in Maude their Common Au-
thentication Specification Language (CAPSL) its CIL intermediate language,
and a CAPSL to CIL translator [21], and plan to translate CIL into Maude
to execute CAPSL specifications. Similarly, Braga and Mosses are using Maude
to develop executable environment for Structural Operational Semantics and
for Action Semantics [53]; and Bruni, Meseguer and Montanari have defined a
mapping from Tile Logic to Rewriting Logic [9] and have used it as a basis
for executing tile logic specifications in Maude [8]. It would be quite interesting
to explore Maude implementations for other specification languages such as a
next-generation CafeOBJ [26] and CASL [18].

Furthermore, we plan to generalize the module algebra that we have devel-
oped for Maude into a module algebra generator, that could endow many other
specification languages with powerful and extensible algebras for combining and
transforming specifications. As explained in Section 2.2, this can be done by
defining such a module algebra as a parameterized algebraic data type. The
module algebra of Maude provided by the Full Maude specification should then
be regarded as the particular instance of such a generic construction, namely,
for the case in which the underlying logic L is rewriting logic.

5 Conclusions

We have argued that, given the different perspectives from which a complex soft-
ware system has to be analyzed, the multiplicity of formalisms is unavoidable.
We have also argued that the technical challenges posed by the need to inter-
relate formalisms require advances in formal interoperability and in meta-tool
design that can be based on a metatheory of general logics and on appropriate
logical frameworks having efficient implementations. We have explained how the
reflective logical framework of rewriting logic can be used, in conjunction with
an efficient reflective implementation such as Maude, to design formal meta-tools
and to rigorously support formal interoperability. The feasibility of these ideas
and techniques has been demonstrated by a number of substantial experiments
in which new formal tools and new translations between formalisms, efficient
enough to be used in practice, have been generated.

Much work remains ahead to further advance these ideas. Maude 1.0 was
made publicly available on the web in January 1999. It is well documented [13]
and already supports all the formal meta-tool uses described in this paper. We
are currently working towards version 2.0. In that new version we plan to en-
hance the formal meta-tool features of Maude. Specifically, we plan to increase
Maude’s flexibility in tailoring the lexical level of any language, to enhance its in-
put/output capabilities by means of built-in objects, to provide efficient built-in
support for unification modulo different equational theories, to support efficient
search in the space of rewrite paths, and to further extend the expressiveness of
Maude and of its META-LEVEL module.

We also plan to develop a module algebra generator by generalizing the
current module algebra of Full Maude to a parameterized algebraic data type.
The further development of Maude’s theorem proving tools will also be very

1700 M. Clavel et al.

important, because it will allow carrying out proofs of metalogical properties
about the formalisms and translations represented in Maude.

Finally, more experience on using Maude as a formal meta-tool is needed.
We hope that the recent release of Maude, and the positive experience already
gained will help us and others gain a broader experience in the future.

5.1 Acknowledgments

We thank: Stuart Allen, Robert Constable, and Douglas Howe for their help in
understanding the HOL → Nuprl translation; Uri Nodelman and Carolyn Tal-
cott for their work on the Wright → CSP → RWLogic translation; Grit Denker
and Jon Millen for their work on the CAPSL to CIL translation; Christiano
Braga and Peter Mosses for their work on building executable environments for
SOS and Action Semantics; and Roberto Bruni and Ugo Montanari for their
work on the translation from Tile Logic to Rewriting Logic, all of which are
important experiments discussed in this paper. We also thank our fellow Maude
team members Grit Denker, Patrick Lincoln, Narciso Mart́ı-Oliet and José Que-
sada for their contributions to the theory and practice of Maude, and Carolyn
Talcott for many discussions and extensive joint work on formal interoperability.
We are also grateful to David Basin, Narciso Mart́ı-Oliet, and the referees for
their constructive criticism.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.
Soft. Eng. and Meth., July 1997.

[2] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda calculus
to implement formal systems on a machine. Journal of Automated Reasoning,
9(3):309–354, December 1992.

[3] H. P. Barendregt. Lambda-calculi with types. In S. Abramsky, D. M. Gabbay,
and T. Maibaum, editors, Background: Computational Structures, volume 2 of
Handbook of Logic in Computer Science. Oxford: Clarendon Press, 1992.

[4] D. A. Basin and R. L. Constable. Metalogical frameworks. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 1–29. Cambridge University
Press, 1993.

[5] J. Bergstra and J. Tucker. Characterization of computable data types by means of
a finite equational specification method. In J. W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, Seventh Colloquium, pages 76–
90. Springer-Verlag, 1980. LNCS, Volume 81.

[6] F. Blanqui, J. Jouannaud, and M. Okada. The calculus of algebraic construc-
tions. In Proc. RTA’99: Rewriting Techniques and Applications, Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[7] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. To appear in Theoretical Computer Science, http:
//maude.csl.sri.com.

[8] R. Bruni, J. Meseguer, and U. Montanari. Internal strategies in a rewriting im-
plementation of tile systems. Proc. 2nd Intl. Workshop on Rewriting Logic and
its Applications, ENTCS, North Holland, 1998.

Maude as a Formal Meta-tool 1701

[9] R. Bruni, J. Meseguer, and U. Montanari. Process and term tile logic. Technical
Report SRI-CSL-98-06, SRI International, July 1998.

[10] R. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In
D. Bjorner, editor, Proceedings of the 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292–332. Springer LNCS 86, 1980.

[11] M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical
structure along maps). Theoretical Computer Science, 173:311–347, 1997.

[12] M. Clavel. Reflection in general logics and in rewriting logic, with applications to
the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com.

[14] M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium ’98, Numazu,
Japan. CafeOBJ Project, April 1998. http://maude.csl.sri.com.

[15] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.
[16] M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In

G. Kiczales, editor, Proceedings of Reflection’96, San Francisco, California, April
1996, pages 263–288, 1996. http://jerry.cs.uiuc.edu/reflection/.

[17] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.
[18] CoFI Task Group on Semantics. CASL—The CoFI algebraic specification lan-

guage, version 0.97, Semantics. http://www.brics.dk/Projects/CoFI, July 1997.
[19] R. Constable. Implementing Mathematics with the Nuprl Proof Development Sys-

tem. Prentice Hall, 1987.
[20] T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76(2/3):95–120, 1988.
[21] G. Denker and J. Millen. CAPSL intermediate language. In N. Heintze and

E. Clarke, editors, Proc. of Workshop on Formal Methods and Security Proto-
cols, July 1999, Trento, Italy, 1999. www.cs.bell-labs.com/who/nch/fmsp99/

program.html.
[22] F. Durán. A reflective module algebra with applications to the Maude language.

Ph.D. Thesis, University of Malaga, 1999.
[23] F. Durán and J. Meseguer. An extensible module algebra for Maude. Proc. 2nd

Intl. Workshop on Rewriting Logic and its Applications, ENTCS, North Holland,
1998.

[24] S. Feferman. Finitary inductively presented logics. In R. Ferro et al., editors,
Logic Colloquium’88, pages 191–220. North-Holland, 1989.

[25] A. Felty and D. Miller. Encoding a dependent-type λ-calculus in a logic pro-
gramming language. In M. Stickel, editor, Proc. 10th. Int. Conf. on Automated
Deduction, Kaiserslautern, Germany, July 1990, volume 449 of LNCS, pages 221–
235. Springer-Verlag, 1990.

[26] K. Futatsugi and R. Diaconescu. CafeOBJ report. AMAST Series in Computing,
Vol. 6, World Scientific, 1998.

1702 M. Clavel et al.

[27] P. Gardner. Representing Logics in Type Theory. PhD thesis, Technical Report
CST-93-92, Department of Computer Science, University of Edinburgh, 1992.

[28] H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.
[29] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
[30] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification

and programming. Journal of the ACM, 39(1):95–146, 1992.
[31] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for

multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

[32] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. In-
troducing OBJ. Technical Report SRI-CSL-92-03, SRI International, Computer
Science Laboratory, 1992. To appear in J.A. Goguen and G.R. Malcolm, editors,
Applications of Algebraic Specification Using OBJ, Academic Press, 1999.

[33] J. A. Goguen, A. Stevens, K. Hobley, and H. Hilberdink. 2OBJ: A meta-logical
framework based on equational logic. Philosophical Transactions of the Royal
Society, Series A, 339:69–86, 1992.

[34] M. Gordon. Introduction to HOL: A Theorem Proving Environment. Cambridge
University Press, 1993.

[35] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association Computing Machinery, 40(1):143–184, 1993.

[36] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[37] D. J. Howe. Semantical foundations for embedding HOL in Nuprl. In M. Wirsing

and M. Nivat, editors, Algebraic Methodology and Software Technology, volume
1101 of Lecture Notes in Computer Science, pages 85–101, Berlin, 1996. Springer-
Verlag.

[38] G. Huet, C. Paulin-Mohring, et al. The Coq Proof Assistent Refer-
ence Manual, Version 6.2.4, Coq Project. Technical report, INRIA, 1999.
http://pauillac.inria.fr/coq/.

[39] J. P. Jouannaud. Membership equational logic, calculus of inductive constructions,
and rewrite logic. In 2nd Workshop on Rewrite Logic and Applications, 1998.

[40] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. In-
ternational Series of Monographs on Computer Science. Oxford University Press,
1994.

[41] Z. Luo and R. Pollack. Lego proof development system: User’s manual. LFCS
Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

[42] L. Magnussen. The Implementation of ALF – a Proof Editor based on Martin-
Löf ’s Monomorphic Type Theory with Explicit Substitutions. PhD thesis, Univer-
sity of Göteborg, Dept. of Computer Science, 1994.

[43] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. Technical Report SRI-CSL-93-05, SRI International, Computer Science
Laboratory, August 1993. To appear in D. Gabbay, ed., Handbook of Philosophi-
cal Logic, Kluwer Academic Publishers.

[44] N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks. In D. Gab-
bay, editor, What is a Logical System?, pages 355–392. Oxford University Press,
1994.

[45] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its
Applications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.

Maude as a Formal Meta-tool 1703

[46] S. Matthews, A. Smaill, and D. Basin. Experience with FS0 as a framework
theory. In G. Huet and G. Plotkin, editors, Logical Environments, pages 61–82.
Cambridge University Press, 1993.

[47] J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87, pages
275–329. North-Holland, 1989.

[48] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

[49] J. Meseguer. Formal interoperability. In Proceedings of the 1998 Conference on
Mathematics in Artificial Intelligence, Fort Laurerdale, Florida, January 1998,
1998. http://rutcor.rutgers.edu/~amai/Proceedings.html.

[50] J. Meseguer. Membership algebra as a semantic framework for equational speci-
fication. In F. Parisi-Presicce, ed., Proc. WADT’97, 18–61, Springer LNCS 1376,
1998.

[51] J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwicht-
enberg, editors, Computational Logic, NATO Advanced Study Institute, Markto-
berdorf, Germany, July 29 – August 6, 1997. Springer-Verlag, 1999.

[52] J. Meseguer and N. Mart́ı-Oliet. From abstract data types to logical frame-
works. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends in
Data Type Specification, Santa Margherita, Italy, May/June 1994, pages 48–80.
Springer LNCS 906, 1995.

[53] P. Mosses. Action Semantics. Cambridge University Press, 1992.
[54] G. Nadathur and D. Miller. An overview of λProlog. In K. Bowen and R. Kowalski,

editors, Fifth Int. Joint Conf. and Symp. on Logic Programming, pages 810–827.
The MIT Press, 1988.

[55] C. Paulin-Mohring. Inductive Definitions in the system Coq – Rules and Prop-
erties. In M. Bezem and J. . F. Groote, editors, Typed Lambda Calculi and Ap-
plications, International Conference on Typed Lambda Calculi and Applications,
TLCA 93, volume 664 of Lecture Notes in Computer Science. Springer Varlag,
1993.

[56] L. C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer Science.
Springer Verlag, 1994.

[57] F. Pfenning. Elf: A language for logic definition and verified metaprogramming. In
Proc. Fourth Annual IEEE Symp. on Logic in Computer Science, pages 313–322,
Asilomar, California, June 1989.

[58] R. Pollack. Closure under alpha-conversion. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs: International Workshop TYPES’93, Ni-
jmegen, May 1993, Selected Papers., volume 806 of Lecture Notes in Computer
Science, pages 313–332. Springer-Verlag, 1993.

[59] R. M. Smullyan. Theory of Formal Systems, volume 47 of Annals of Mathematics
Studies. Princeton University Press, 1961.

[60] M.-O. Stehr. CINNI - A New Calculus of Explicit Substitutions and its Appli-
cation to Pure Type Systems. Manuscript, SRI-International, CSL, Menlo Park,
CA, USA.

[61] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic — meta-logical
and meta-operational views. Submitted for publication.

[62] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis et al., edi-
tors, PARLE’94, Proc. Sixth Int. Conf. on Parallel Architectures and Languages
Europe, Athens, Greece, July 1994, volume 817 of LNCS, pages 648–660. Springer-
Verlag, 1994.

	Introduction
	A Reflective Logical Framework
	Rewriting Logic and Reflection
	Formal Meta-tool Techniques

	Maude's Metalanguage Features
	The Module {tt META-LEVEL}
	Additional Metalanguage Features

	Using Maude as a Formal Meta-tool
	An Inductive Theorem Prover
	A Church-Rosser Checker
	Formal Interoperability Experiments
	A Proof Assistant for the Open Calculus of Constructions
	Implementing Formal Specification Languages

	Conclusions
	Acknowledgments

