Speeding up Elliptic Cryptosystems
by Using a Signed Binary Window Method

Kenji Koyama, Yukio Tsuruoka

NTT Cominunication Science Laboratories
Seikacho, Kyoto, 619-02 Japan

Abstract. The basic operation in elliptic cryptosystems is the computa-
tion of a multiple d- P of a point P on the elliptic curve modulo n. We pro-
pose a fast and systematic method of reducing the number of operations
over elliptic curves. The proposed method is based on pre-computation
to generate an adequate addition-subtraction chain for multiplier the d.
By increasing the average length of zero runs in a signed binary repre-
sentation of d, we can speed up the window method. Formulating the
time complexity of the proposed method makes clear that the proposed
method is faster than other methods. For example, for d with length
512 bits, the proposed method requires 602.6 multiplications on average.
Finally. we point out that each addition/subtraction over the elliptic
curve using homogeneous coordinates can be done in 3 multiplications if
parallel processing is allowed.

1 Introduction

Elliptic curves over a finite field Fp or a ring Z,, can be applied to implement
analogs [9] [11] [13] of the Diffie-Hellman scheme [4], ElGamal scheme [6] and
RSA scheme [15], as well as primality testing [7] and integer factorization [12][13].
Cryptosystems based on elliptic curves, called elliptic cryptosysiems, seem more
secure than the original schemes. For example, it i1s conjectured that the low
exponent attack on the RSA scheme cannot be analogously applied to the at-
tack on the elliptic RSA scheme using a low multiplier [9]. The basic operation
performed on an elliptic curve is the computation of a multiple d- P of a point P
on the elliptic curve modulo n, which corresponds to the computation of ¢ mod
n. For a large n and d, the time complexity of elementary operations as well as
the number of elementary operations are very high. Thus, reducing the number
of such operations is important when implementing the above algorithms.

One solution is a so-called binary method [10] based on the addition chain
[10] for multipliers d of d - P or exponents d of % In general, an addition chain
for a given d is a sequence of positive integers

ay (= 1)—ay —as— - —a, (=d),

where r is the number of additions, and a; = a; + a, for some k < j < ¢, for all
i=1,2,...,r. The binary method is a systematic algorithm based on an addition
chain with elements that are powers of 2, i.e. a two-valued binary representation

E.F. Brickell (Ed.): Advances in Cryptology - CRYPTO *92, LNCS 740, pp. 345-357, 1993.
© Springer-Verlag Berlin Heidelberg 1993

346

of d. To evaluate d- P or &9, the ordinary binary method without pre-computation
requires % | loge d | multiplications on average. The ordinary binary method
does not always guarantee the minimum number of multiplications (the shortest
addition chain). Obtaining the shortest addition chain is a NP-complete problem
[5]. There have been many studies on the computation of 2¢ (1] {2] [3] [8) [16]
and a few studies on the computation of d - P [14] to achieve fast and efficient
computation. Among the variants of the binary method attempted to speed up
the computation of x%, Bos and Coster [1] proposed a heuristic window method
based on an addition sequence. The addition sequence is a generalized addition
chain including the given set of values. In their algorithm, the two-valued binary
representation of d is split into pieces (windows), and the value of each window
is computed in shorter addition sequence.

An addition chain can be extended to an addition-subiraction chain [2] [10]
(14}, with a rule a; = @; £ a; in place of a; = a; + a. This idea corresponds to
the evaluation of ¢ using multiplication and division. For integers, division (or
the computation of a multiplicative inverse modulo n) is a costly operation, and
implementing this idea does not seem feasible. The reason why elliptic curves
are so attractive is that the division in Z, is replaced by a subtraction, which
has the same cost as an addition. An addition (subtraction) formula on elliptic
curves does not contain a division in Z,, particularly when homogeneous coordi-
nates are used. Thus, the addition-subtraction chain can be effectively applied
to computations over elliptic curves.

This paper proposes a fast and systematic method of computing a multiple
d- P of a point P on the elliptic curve modulo n. By increasing the average length
of zero runs in a signed binary representation of d, the window method can be
speeded up. The organization of this paper is as follows. Section 2 describes a
new signed binary window method, clarifying the difference between previous
methods and the new method, and analyzes the number of operations for the
proposed method. Section 3 shows that the proposed method is faster than
other methods. Elliptic curves over a finite field and a ring and the addition
formula over elliptic curves are briefly reviewed in Section 4. Then, serial/parallel
cotnputations implemented in homogeneous coordinates and affine coordinates
are compared.

2 New Method

The proposed method is a window method based on an adequately chosen signed
binary representation of d. The new method is described, clarifying the differ-
ences between the previous window method [1] based on ordinary binary repre-
sentation and the new one in this section. The window method is an extension
of the 2*¥-ary method. For a given number d, the window method consists of
four phases: (1) representation of d, (2) splitting the representation into seg-
ments (windows), (3) computing all the segments, and (4) concatenating all the
segiments,

347

2.1 Representation

For a given number d, the original window method uses an ordinary (two-valued)
binary representation B : (by,bx_1,...,00), where b; € {0,1}, A = |logad].
The proposed method uses the signed (three-valued) binary representation T :
tL-15---,t1,%0), tr—1 # 0 for d satisfying d = Zf‘;ol t; 2%, where t; € {1,0,1},
and T denotes —1. Note that in ordinary binary representation B is uniquely
determined for a given d, but T is not.

Morain-Olivos [14] and Jedwab-Mitchell [8] proposed algorithms to transform
B into the equivalent T, for minimizing the weight (the number of non-zero
digits) of T. Note that Morain-Olivos's method (MO method) is equivalent to
Jedwab-Mitchell’s method (JM method). We propose a new transform algorithm
which increases the average length of zero runs in T, while minimizing the weight
of T. The average length of the zero runs i specific T, denoted by Z(T), is
defined as follows.

1= . T+2(-1) if1;=0 :
Z(T)zzgz(z), :(z):{o 020 (0<i<L—1),

where z(—1) = 0. |

Let B’ be a subsequence of B, and let 7" he a subsequeuce of T. A rule for
transforming B’ to equivalent T is as follows.

Transformation Rule ~

B' . (1---bi---1) can be transformed into 7' : [10--.1;---1], where ¢; =
b; — 1.

Let #o(B') be a number of zeroes in B’, and let #,(B’) be a number of non-
zero digits in B’. The weight of T” is estimated as #,(7”) = 2+)_|t:i| =
24356 — 1| = 24+ #0(B'). Thus, the weight decreases by the transformation
if #1(B') — #o(B') > 2

The proposed transform algorithm inputs B in LSB first order and counts
the difference D(B') = #1(B’) — #o(B'), and applies the transformation rule
repeatedly to appropriate B with D(B’) > 3. The main difference between the
proposed method and other methods is a threshold value (such as 3) to apply the
transformation rule. MO method applies the rule to B’ with D(B’) > 2. Further,
the output of both MO method and JM method are sperse, which means no two
adjacent digits are nonzero. However, the output of the proposed method is not
sparse. MO method and the proposed method generate T with same the same
welght. Thus, the average length of zero runs of output of the proposed method
is greater than that of MO method.

348
The proposed transform algorithm is shown below.

algorithm transform (input B: array, output T array)
begin
M=0J=06Y =06 =00 =06V =0W:=02 =0
while X < |log,d] do begin
if BlNX]=1thenY =Y +lelseY :=Y} -1,
N=X+1
if M =0 then begin
if Y = Z > 3 then begin
while J < W do begin T[J] := B[J};J :=J + 1 end;
T == J=J+L V=Y, U=X; M:=1
end else if Y < Z then begin Z :=Y,; W := X end
end else begin
it 1" =Y > 3 then begin
while J < U do
begin T[J] := B[J] - 1;J := J + 1 end;
Tl =1 J=J+12Z2=Y, W:=X, M:=0
end else if ¥ > V' then begin V =Y, I/ := X end
end
end;
fM=0V(M=1AV <Y) then begin
while J < X do begin T[J] := B[/] - M;J :=J + 1 end,
T = 1~M,T[J+1]:=M
end else begin
while J < I/ do begin T[J] := B[J] - 1;J := J + 1 end,
T =1 J:=J1+1;
while J < X do begin T[J] := B[J];J := J + 1 end;
T =LTJ+1]:=0
end
return T
end

[Example] For a given d = 25722562047811804942, the binary representation for
d is:

B (10110010011111000111001011110011000000100110001000101111100001110)
MO method transforms B into:

T : [10101001010000T00100101010001010T000000101010001001010000100010010]
The proposed algorithm transforms B into:

T : [1011001010000T001000110700001101000000100110001000110000100010010]

The average length of zero runs for MO method is 1.29 and that of the proposed
algorithm is 1.42.

349

2.2 Splitting

The splitting phase is common to both ordinary binary representation B and
signed binary representation 7". Let w be the width of the window. B or T is
split into segments with a length at most w. The following splitting procedure
generates a list of all segments. For simplicity, the input array is represented by
T.
procedure split (input 7" array, w: integer, output S: array)
Let segment list § be empty
while (length(7") > w)
begin
Let 1V be the left w digits of T
Let R be T excluding W.
Let 1V be W excluding the right 0’s.
Let R be R excluding the left 0’s.
Add new segment I to segment list S
T:= R.
end
Add last segment T' to segment list S
return S

[Example] Assume 7 is the signed binary representation generated by the trans-

form algorithm in the previous example. When w = 4, the splitting algorithm
outputs the list of segments as

[10110010100001001000110T0000I10I0000001001 10001000110000100010010]

where each block of underlined digits represents a segment. Note that the trans-
form algorithm increases the run fength of 0's in the segment gaps.

2.3 Computing the Segmehts

In B, the value of each segment is an odd positive integer up to 2% — 1. In T,
if w > 3, the segment value never becomes 2¥ — 1 or —(2%¥ — 1) because of the
property of the transform algorithm. Thus, each segment value is an odd integer
from —(2¥ — 3) to 2% — 3. The absolute values of all segments are obtained by
the following simple addition sequence. (i.e. 1,2,3,5,7,...,2" = 3)

ap=1, a1 =2, an =3, ai=ai_1+2 (3<i<2v"l 1)

Therefore, in 7', all segment values can be computed by at most 2¥~! — 1 addi-
tions. In B, all segment values can be computed by at most 2~! additions.

For the above example, segment values become {11,5,7,-13,-13,9,1,1,3,-1,7}.
Thus, all (absolute) segment values are computed by an addition sequence as
1,2,3,5,...,13 in 7 additions.

In reference [1], Bos and Coster computed all segments using a heuristic ad-
dition sequence. When the distribution of segment values is sparse, the heuris-
tic method may be effective. However, if the distribution 1s dense a systematic

350

method may be more effective. When A = 511 and w = 5, the distribution be-
comes dense and consequently the proposed systematic method is more effective.

2.4 Concatenating and The Number of Operations

Concatenation requires doublings and non-doubling additions.
For example, for the split T in the above example, concatenation is achieved by:

dP = ((-+ - (({(11P - 2243 4. 5P) . 2W1 _7p) . 23+ _ 13P)...) . 2%+ - P).
23+ L 7Py 2L
The inner most 11 P corresponds to the most significant segment, and the expo-
nent ? + 3 corresponds to the sum of the length 2 of the following window gap
and the length 3 of the next segment.

Let L be the length of B or 7". Note that L is A+ 1 for Band Lis A +1
or A+ 2 for 7. Let Z’ be the average length of zero runs in the most significant
windows for B or T. In other words, Z is the average number of 0’s deleted in
W by the splitting algorithm in the beginning. Let Z” be the average length
of zero runs deleted in R by the splitting algorithm for B or T. The average
length of the most significant segment is w — Z’. The number of doublings in
concatenation is same as the length of T (or B) except for the most significant
segment. Thus, the number of doublings in concatenation is L — (w— Z') for B
and T'. The average number of segments becomes L/(w+ Z"), which corresponds
to the number of non-doubling additions in concatenation.

Thus, on average, the window method requires R operations:

R=(L+Z —w)+

T + C,

where ¢ =2¥"1for B, and C' = 2*~1 — 1 for T.

2.5 Analysis of the uumber of operations

In this subsection, parameters L, Z’, Z"” and w in the above expression R are
analyzed.

The length of T is either (A + 1) or (A+ 2). The transform algorithm outputs 7'
of length A + 2 with probability 1/4. Thus, the average length of T', denoted by
L, is expressed by L = % (A+2)+ % (A+1)=A+5/4.

Let p be the probability that 0 occurs in B. If each digit in B is independent, a
straight analysis results in 2’ = p(1—p¥)/(1—p) and Z" = p(1—p{L=®))/(1-p)
for B.1f p =05, then Z/ =1 —2"% and 2" = 1 - 2t¥=L)_If is significant,
then Z" =~ 7' ~ | for B. For simplicity, let Zg represent Z’ and Z" for B.

The expected value of Z(T) for all possible T, denoted by Zr, is analyzed as
follows. The essence of the transform algorithim is represented by the automaton
in Figure 1. The automaton inputs a sequence of bits{0,1} of B in LSB first
order, and outputs {1,0,1}*.

In Figure 1, each arc is labeled by an input digit b € {0,1}. All output digits
are determined by one of the following two functions.

351

f(b):{i—] if 83 <'so. y(b):{l if 53 <.59,

otherwise, 1 otherwise,

where the condition denoted by s3 < sg means that sz is visited before sy by
forthcoming transition. Solid arc corresponds to f(b), and dotted arc corresponds
to g(b).

Assume input (i.e. B) comes from a memoryless binary information source with
p = 0.5. Let z; be an average length of zero runs at state s;. Each value of z; is
obtained by solving the following equations.

z0 = (1/2)(1 + =),
2= (1/2)(1 + 2¢) + (1/2) Prob(s3 < sq|s2)(23),
zo = (1/2)(1 + z3) + (1/2) Prob(50<b3131) 71),
3 = (1/2)(1 + =3),
za = (1/2)(1+ z3) + (1/2) Prob(se < salss)(1 + z5),
5= (/21 + z0) + (1/2) Prob(ss < solsa)(1 + z1),

where Prob(s; < s;|si) means the probability of the case of (s; < s;) from state
sg. In the above equa.t‘ion\ Prob(ss < sols2) = Prob(sp < adlsl) = Prob(sg <
s3/85) = Prob(s (1/2) + (1/2)(1/4)+(1/2)(1/4*) + - - - = 2/3. Thus,
2021, 21"-—"2, 3322 ..3—1, -4—2 q5—2

Let p; be a stationary probability of state s;. All p; are calculated by solving the
equation ¥V = M -V where V' is the vector of all p; and M is the given transition
matrix. The result is pg = 1/4, p1 = /6, pa = 1/12, p3 = 1/4, pa = 1/6, ps =
1/12. Therefore, Zp = 21 _o¥i - = = 3/2 for the proposed method. Note that,
Zy = 4/3 for MO method and JM method.

In summaty, using L = A+5/4 and Zy = 3/2, the average number of operations
R for T', or Rr, Is rewritten as:

11 A+2
R.T:(A+I—'(t;)+m+2“ -1

The optimal value of window size w depcnds on the size of d. It is obtained by
solving 2= Ry = 0. For d with A = 511, w = 5 is the optimal window size.

3 Comparison with other methods

Brickell [2] proposed a fast hardware implementation of computing z¢ mod n
using the precomputation of the multiplicative inverse 2~} mod n.

Morain and Olivos [14] proposed an addition-subtraction chain algorithm based
on a binary method. Their method obtains dy , and d_ for d(d = dy —d_), and
computes d - P as (d+ - P) — (d_ - P). In MO method, dy - P (and d_ - P) are
computed using the ordinary binary method. The average number of operations
for MO method is %/\ + O(1).

352

Yacobi [16] applied the idea of data compression (Lempel-Ziv’s incremental
parsing algorithm) to splitting binary representation. The average number of
operations in Yacobi’s method is A+ (log(A) — loglog(A))/2+ 1.5\ /log()), where
A = |logad]. In his method, the segment size is initially small, and increases by
parsing B. This method is nefficient for small d such as A = 511

Bos and Coster [1] proposed a heuristics for an addition sequence and used a
bigger window such as w = 10. This method requires an average of 605 operations
for A = 511. However, their method is based on heuristics.

A comparison of several addition(-subtraction) chain algorithms is shown in
Table.1. From Table.1, the proposed method is seen to be faster than the other
methods.

Table 1. The number of operations for d of 512 bit length

Method Chain| Av. | Worst
Binary Method [10] A 766.5 | 1022
Signed Binary Method [2] [8] [14] A/S |681.7| 768
Yacobi’s Method [16] A 635.1 —
Window Method (w = 5) [1] A 609.3 | 630
Bos-Coster's Method [1] A 605 —
Signed Binary Window Method (w=15) | A/S | 602.6| 629

4 The Speed of Each Addition over Elliptic Curves

4.1 Elliptic Curves over a Finite Field and a Ring

Let ' be a field of characteristic # 2.3, and let «,b € K be two parameters
satisfying 4a3 + 270% # 0. An elliptic curve over &' with parameters a and b is
defined as the set of points (x,y) with 2,y € A satisfying this equation on the
affine plane
¥ = 2> faxr+b,

together with a special element denoted O and called the point at infinity [11].
Elliptic curves over the finite field F, with p elements, for some prime p, are
denoted by £,. What makes elliptic curves interesting in cryptography and
number-theoretic applications is the fact that an addition operation on the points
of an elliptic curve £, can be defined to make it an abelian group.

Elliptic curves over the ring Z,,, where n i1s an odd composite square—free"
integer, can be defined in a similar way to E,. For simplicity, let n be the product
of two distinct large primes p and ¢ as in the RSA scheme{15] and the KMQV
scheme[9]. Addition on E,, whenever it is defined, is equivalent to the group
operation (defined by comiponent) on £, x E;. Thus, every point P = (z,y)
on £, can be represented uniquely as a pair [P, P;] = [(2p, ¥p), (24, 9,)] where
P, € E, and P, € E,. Note that addition on E,, is undefined if and only if
exactly one of the points P, and P, is the point at infinity. It is important to
note that when all prime factors of n are large, it is extremely unlikely that the
sum of two points on [, is undefined.

353

4.2 Addition Formulae over Elliptic Curves

Let Py = (x1,y1) and Py = (&2,y2) be two points on the elliptic curve Ej,. The
point Py = Py + Py = (z3,y3) is defined according to the following rules. If
P, =0, then Ps= Py + Py = Po. f P, = =P, that is, 1 = 25 and y; = —ypa,
then Py = Py + P» = Q. When P, P; # @, and Py # ~P,, an addition formula
to find P3 = Py 4+ P» = (x3,y3) is given below according to two cases: a non-
doubling addition formula where P; # P2 and a doubling formula P, = P,
[11].

Non-doubling Addition Formula in Affine Coordinates

rs = A — 2] — o

(1)
ys = M@y — 43) — ¥,
where X = (yo ~ y1)/(£2 — 21).
Doubling Formula in Affine Coordinates
23 =\ — 22
(2)

yz = Alry — a3) — ¥,

where X = (327 + a)/2y;.

Note that a subtraction to find P; = P, — P is defined by changing the sign of
y2 in the addition formula P; = P; + Ps.

A point (x,y) on the affine plane is equivalent to a point (X,Y,Z) on the
projective plane, where ¢ = N/Z, y = Y/Z. That is, an elliptic curve is also
defined as the set of points (X', Y, Z) in homogeneous coordinates satisfying the
equation

Z¥r= X% +aX 7% +b2°,

together with the point at infinity (0,1,0). The non-doubling addition formula
(1) and the doubling formula (2) in affine coordinates can be rewritten in ho-
mogeneous coordinates. Replace z; with X;/Z; and y; with ¥;/Z; (i = 1,2)
and reduce the fractions of x3 and y3 to a common denominator. Then, the
resulting numerators of z3 and yz hecome X3 and Y, and the common de-
nominator becomes Z3. Let Py = (X1, Y1.2,) € Ep, P» = (X2,Y2,22) € E,,
and P3 = (X3,Y3,Z3) € E,. The addition formulae to find Pz = P, + Py in
homogeneous coordinates are expressed as follows.

354

Non-doubling Addition Formula in Homogeneous Coordinates

(N3 = X{Zi—2XPXaZ\23 + 2N\ X3232, — X\Y72,23 + 2X,Y1Y22223
—X\YPZ3Z3 = N3Z3 + XoVP 2323 = 2X N Y2323 + X2V 21 Z,,
{ Yo= X3V22Z{ = 2X3Y1Z322 = YP 212, + 3X\ X312323 — 3X{X2Y22222 + (3)

3Y\¥PZ3Z} + 0X3VL 2, 23 — 3VYa 2028 — XN\ 23 + Y2, 24,

Zz= —.\?Zl Z; + 3.\';“J\’QZ$Z-_? - 3.\’1.\’-_?2?23 + .\’-_‘?ZfZQ.

\

Doubling formula in Homogeneous Coordinates
Xs = Y1 2(a*Z] + 6a X727 + 9N} - 8X1Y}2Zy),
Y3 = —a®Z} —9a*N{Z] - 27aX]Z] + 12aXY7 2} - 27 X§ + 36X3Y2Z, - 8Y,1Z},

Zs = 8YRZ3.

)

By introducing moderate intermediate variables that are more moderate than
ones in [9], addition formulae (3) and (4) can be revised to minimize the number
of multiplications in serial processing. The revised addition formulae in homo-

geneous coordinates are:

Revised Non-doubling Addition Formula in Homogeneous Coordi-

nates

4\73 = lo’."l
Yz = U(VIN1Zs— A) — V3Y, 2, (5)

Z3= V32,2,

where U = YoZy — Y129, V = XNaZi— X122, A=U2Z12,-V?T, T=

XoZy + X Za.

Revised Doubling Formula in Homogeneous Coordinates
Na = 254,
Ys= W(4F - H) — 8E7?, (6)

Z3 = 853‘

where S = ¥1Z,., W =3X?+aZ2, E=V,S, F=X,E, H=W?_8F.

Note that all of the above computations are modulo p or modulo n.

355

4.3 Performance Evaluation of Addition Formulae

Computations of the multiples of a point on the elliptic curves E, can be per-
formed in affine coordinates or homogeneous coordinates. The time complexity
of the addition formulae implemented in these coordinates was compared. Each
elementary addition over F,, was calculated using addition, subtraction, mul-
tiplication and division in Z,. For simplicity, addition, subtraction and special
multiplication by a small constant such as 2y; and 3{2?) ware neglected because
they are much faster than multiplication and diviston in Z,. In addition formulae
(3)-(4) and (5)-(6) in homogeneous coordinates, contrary to addition formulae
(1)-(2) in affine coordinates, the divisions in Z,, in each addition over E, can be
avoided. Computation in homogeneous coordinates requires 1 division (1/23) in
Z, to obtain both x3 = X3/Z3 and y3 = Y3/Z3 in the final stage of the chain.
Note that division in Z, can be implemented using the generalized Euclidean
algorithm for computing the greatest common divisor.

A serial computation of non-doubling addition formula (1) requires two mul-
tiplications and one division in Z,. A serial computation of doubling formula
(2) requires three multiplications and one division in Z,,. A serial computation
of non-doubling addition formula {5) required 15 multiplications in Z,,. For the
KMOV elliptic cryptosystem with ¢ = 0, the computation of W in the dou-
bling formula (6) can be simplified as W = 3X{. Thus, a serial computation of
doubling formula (6) requires 10 multiplications in Z,,.

Assume that parallel processing of each addition over E,, is allowed in spe-
cial hardware. For simplicity, the time {or communication among processors is
neglected. In affine coordinates, parallel processings of non-doubling addition
and doubling require the same computational complexity as those in serial pro-
cessing. Consider parallel processing of the addition formula in homogeneous
coordinates. In general, parallel multiplication permits any polynomial of degree
2k to be computed in one step from the set of polynomials of degree k, where
each step requires the time of one multiplication in Z,,. The non-doubling addi-
tion formula (3) consists of polynomials of degree 8 with G variables, therefore,
the values of X3, Y3, Z3 can be obtained in 3 steps. The doubling formula {4)
consists of polynomials of degree 6 with 4 variables {including a), therefore, the
values of X3, Ya, Z3 can be similarly obtained in 3 steps. That is, the related
terms of degree 2 are computed in the first step, the related terms of degree 4
in the second step, and every term of degree 8 or 6 in the target polynomials in
the third step. :

Denote ¢ be the ratio of the computation amount of division m Z, to that
of multiplication in Z,. Note that ¢ > 1. Let R be the number of operations
of addition formula in addition-subtraction chain. Assume that non-doubling
additions occur with probability p, and doublings occur with probability (1 —
pn). For the proposed signed binary window method, we have p, = 1/6 and
R = 602.6 for A = 511 as described in Section 2. Table 2 shows the numbers
of multiplications in Z,, in serial/parallel processings in affine coordinates and
homogeneous coordinates. I'rom Table 2, we can observe that serial computation
in homogeneous coordinates 1s faster than that in affine coordinates if ¢ > 8

356

and A = 511. Moreover, when A = 511, parallel computation in homogeneous
coordinates is always faster than that in affine coordinates.

Table 2. The number of mult./div. in Z,, in the total chain

|Processing| Coordinates | mult. [div.]

Affine (2p+3(1-p)R | R
Serial ~ 283 R

Homogeneous||(15p + 10{1 — p))R] 1
~ 1083 R

Parallel |Homogeneous 3 R 1

When the multiplication chain is carried out based on alphabetically ordered
factoring in formula (3). 17 processors are needed in the first step, 29 processors
in the second step, and 24 processors in the third step. Since each processor
can be used repeatedly, this multiplication system (or addition formula engine)
requires 29 processors. Note that parallel computation of formula (4) requires
less than 29 processors. As a result, each addition over the elliptic curve can be
done in 3 multiplications if 29 parallel processors are used.

5 Conclusion

We have proposed a fast and systematic method of computing a multiple d - P
over elliptic curves. This speeding up method is also applicable to computation
in the group where the inverse operation is as fast as an ordinary operation.
Furthermore, we pointed out that if parallel processing is allowed, each addition
over the curve using homogeneous coordinates can be done in 3 multiplications.

References

1. Bos, J. and Coster, M: “Addition chain heuristics” Proc. of CRYPT(0’89 (1989).

3. Brickell, E.F.:“A fast modular multiplication algorithm with application to two
key cryptography” Proc. of CRYPTO 82 (1982).

3. Brickell, E.F.. Gordon, D.M., McCurley, K.S., and Wilson, D.: “Fast exponentia-
tion with precomputation » Proc. of EUROCRYPT'92 (1992).

4. Diffie, W. and Hellman, M.E.: “New directions in cryptography”, IEEE Transac-
tions on Information Theory, Vol. 22, No. 6, (1976), pp. 644-654.

5. Downey, P. Leony, B. and Sethi, R:“Computing sequences with addition chains”,
Siam J. Comput. 3 (1981) pp. 638-696.

6. ElGamal, T.:“A public key cryptosystem and a signature scheme based on the
discrete logarithm”, TEEE Transactions on Information Theory, Vol. 31, No. 4,
(1985), pp. 4169-472.

10.

11.

12.

13.

14.

15.

16.

357

Goldwasser, S. and Killian, J.:*Almost all primes can be quickly certified”, Proc.
18th STOC. Berkeley, (1986). pp. 316-329.

Jedwab, I. and Mitchell, C, 1.:“Minimum weight modified signed-digit represen-
tations and fast exponentiation”, Electronics Letters Vol. 25, No. 17, (1989), pp.
1171-1172.

Koyama, K. Maurer, U. Okamota, T and Vanstone, S, A: “New public-key schemes
based on elliptic curves over the ring Z,”, Proc. of CRYPT(Q'91 (1991).

Knuth, D.E.: “Seminumerical algorithm (arithmetic)” The Art of Computer Pro-
gramming Vol.2, Addison Wesley, (1969).

Koblitz, N.:4 course in number theory and cryptography, Berlin: Springer-Verlag,
(1987).

Lenstra, H. W. Jr.: “Factoring integers with elliptic curves”, Ann. of Math. 126
(1987), pp. 649-673. ’

Montgomery, P.L.:*Speeding the Pollard and elliptic curve methods of factoriza-
tion”, Math. Comp. 48, (1937}, pp. 243-264.

Morain, F. and Olivos, J.: “Speeding up the computations on an elliptic curve
using addition-subtraction chains” Theoretical Informatics and Applications Vol.
24, No. 6 (1990) pp. 531-544.

Rivest, R.L. Shamir, A. and Adleman, L.:*A method for obtaining digital signa-
tures and public-key cryptosystems”, Communications of the ACM, Vol. 21, No.
2, (1978), pp. 120-126.

Yacobi, Y.: “Exponentiating faster with addition chains® Proc. of EURO-
CRYPT 90 (1990).

output functions

——————

b-1 if s3«s0
f(b)=
(&) {b otherwise

p=d 1 if $3<s0
o®) {1 otherwise

Figure.1 Automaton for the transform algorithm

	Speeding up Elliptic Cryptosystemsby Using a Signed Binary Window Method
	1 Iiitroduction
	2 New Method
	2.1 R.epresentatioii
	2.2 Splitting
	2.3 Computing the Segiiiciits
	2.4 Concatenating and The Number of Operations

	2.5 Aualysis of the number of operations

	3 Comparison with other methods
	4 The Speed of Each Addition over Elliptic Curves

	4.1 Elliptic Curves over a Finite Field and a Ring

	4.2 Addition Foriniilae over Elliptic Curves
	4.3 Perforilialice Evaluation of' Addition Formulae

	5 Coiiclusioii
	References

