
Low Complexity Bit-Parallel Finite Field
Arithmetic Using Polynomial Basis

Huapeng Wu

Dept of ECE, IIT, Chicago IL 60616
hpwu@ece.iit.edu

Abstract. Bit-parallel finite field multiplication in F2m using polyno-
mial basis can be realized in two steps: polynomial multiplication and re-
duction modulo the irreducible polynomial. In this article, we prove that
the modular polynomial reduction can be done with (r − 1)(m − 1) bit
additions, where r is the Hamming weight of the irreducible polynomial.
We also show that a bit-parallel squaring operation using polynomial
basis costs not more than

⌊
m + k − 1

2

⌋
bit operations if an irreducible

trinomial of form xm +xk +1 over F2 is used. Consequently, it is argued
that to solve multiplicative inverse in F2m using polynomial basis can be
as good as using normal basis.

1 Introduction

The increasing use of cryptographic techniques in computer and communication
network systems has inspired many researchers to find ways to perform fast
or bit-parallel algorithms and architectures over finite fields of characteristic
two. Besides the discrete logarithm cryptosystems over F2n , the elliptic curve
cryptosystems, which utilize the group of points on an elliptic curve over a field,
can also be realized using finite fields of characteristic two. These groups are
generally used to take advantage of their efficiency over multiprecision arithmetic
for large prime fields. The elliptic curve cryptosystems also have the advantage
of their high cryptographic strength relative to the key size, and thus they are
especially attractive in applications such as the financial industry, smart cards
and wireless areas where power and bandwidth are limited.

There are generally three types of basis in finite field, namely, normal basis
(NB), polynomial basis (PB) and dual basis (DB). Normal basis is often chosen
in cryptographic application, since squaring operation is only a cyclic shift of the
lines and thus inversion and exponentiation can be efficiently performed. Massey
and Omura first found a regular architecture for normal basis multiplication [13],
while the use of the optimal normal basis further reduces the complexity of mul-
tiplication [16]. Polynomial basis has long been used for finite field arithmetic.
Polynomial basis multiplication based on the irreducible trinomial xm + xk + 1
with 1 ≤ k ≤

⌊
m
2

⌋
are attractive because they require fewer bit operations for

modular reduction. Mastrovito has proposed a bit-parallel multiplication algo-
rithm and architecture when f(x) is a trinomial [14]. He has shown that the

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 280–291, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 281

number of both bit multiplications and bit additions needed is proportional to
2m2 when the degree of f(x) is no greater than 15 and not equal to 8. The
Karatsuba-Ofman (KOA) algorithm has also been considered for building bit-
parallel finite field multipliers [1,17]. An implementation of KOA [17] has shown
that bit-parallel multiplication architectures in certain composite fields can have
significantly lower complexity, compared to those proposed in [14]. However, the
time delay of the architectures using the KOA can be longer. Polynomial dual
basis and normal dual basis have also been considered for efficient multiplica-
tion [21,19].

In this article, we prove that bit-parallel reduction modulo the irreducible
polynomial costs only (r − 1)(m − 1) when the irreducible polynomial f(x) has
the Hamming weight of r. Consequent work can be shown that a bit-parallel
multiplier in F2m over F2 can be built with at most m2 AND gates and m2 − 1
XOR gates for any integer m when an irreducible trinomial of degree m exists.
Polynomial basis bit-parallel squaring is also discussed. When the irreducible po-
lynomial is chosen as a trinomial of form xm + xk + 1, then bit-parallel squaring
operation can realized with no more than

⌊
m + k − 1

2

⌋
bit additions. Conse-

quently, it is argued that to solve multiplicative inverse in F2m using polynomial
basis can be as good as using normal basis.

The organization of this paper is as follows: Polynomial basis bit-parallel
multiplication and squaring are discussed in Section 2 and Section 3, respectively.
In Section 4, we argue that to solve multiplicative inverse using polynomial basis
can be as good as using normal basis. Finally, a few concluding remarks are given
in Section 5.

2 Bit-Parallel Polynomial Basis Multiplication in F2m

Let the finite field F2m be generated with an irreducible r-term polynomial

f(x) = xm +
r−2∑
i=0

xei , where 0 = e0 < e1 < · · · < er−2 < m. Let A(x) =
m−1∑
i=0

aix
i

and B(x) =
m−1∑
i=0

bix
i be any two elements in F2m . Then, C(x) =

m−1∑
i=0

cix
i ∈ F2m ,

the product of A(x) and B(x) can be obtained in two steps:

1. Polynomial multiplication:

S(x) = A(x)B(x), (1)

where S(x) =
2m−2∑
k=0

skxk, and sk is given by

sk
4
=

∑
i+j=k

06i,j6m−1

aibj , k = 0, 1, 2, . . . , 2m − 2.

282 H. Wu

2. Reduction modulo the irreducible polynomial:

C(x) = S(x) mod f(x), (2)

where C(x) =
m−1∑
i=0

cix
i, ci ∈ F2.

Obviously, the complexities of polynomial basis bit-parallel multiplication in F2m

are determined by these two parts. The complexity of the first step (polynomial
multiplication) is independent of choice of the irreducible polynomial f(x), and
it has been shown to be O(m log m log log m) in bit operations [18]. We will show
that the second step (modular reduction) requires at most (r − 1)(m − 1) bit
operations, where r is the Hamming weight of the irreducible polynomial f(x).

2.1 Polynomial Multiplication

In the first step of PB multiplication (1), if S(x) is computed from A(x) and
B(x) by the conventional polynomial multiplication method, it requires m2 mul-
tiplications and (m − 1)2 additions in the ground field and the time delay is
TA + dlog2 meTX . However, there are some asymptotically faster methods for
polynomial multiplication over finite fields [3], such as, the Fast Fourier Trans-
form method [3,11] and the Karatsuba-Ofman algorithm [10,1,17]. They can
result in asymptotically fewer bit operations at the expense of longer time delay
and/or certain costly pre- and post-computations. Another technique for po-
lynomial basis multiplication that can combine polynomial multiplication with
modulo reduction into one single step is called the Montgomery method [15,12].

2.2 Reduction Modulo a Polynomial

For modular reduction C(x) = S(x) mod f(x), where deg f = m,deg S 6 2m−2
and deg C 6 m − 1, if the conventional polynomial division method is used, the
complexity is O(m2) in ground field operations. Mastrovito [14] has found that if
the irreducible polynomial is chosen properly for m 6 15, m 6= 8, the complexity
of modulo reduction can be greatly reduced by using some partial sums. Paar [17]
has also discussed this issue for certain small values of m. However, their methods
are based on computer based exhaustive search and available for only moderately
small size fields. In the following, we will present a new algorithm that can
perform modulo reduction in (r − 1)(m − 1) ground field operations for any
irreducible polynomial f(x) with the Hamming weight r.

Theorem 1. If the Hamming weight of the irreducible polynomial f(x) is r,
then the modular polynomial reduction (2) can be done with (r − 1)(m − 1) bit
operations.

Proof: Define
m+l∑
i=0

six
i mod f(x)

4
=

m−1∑
i=0

t
(l)
i xi, l = −1, 0, 1, . . . , m − 2. (3)

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 283

t
(l)
i ’s have the initial values t

(−1)
i = si, and, we try to solve for the ‘final’ values

t
(m−2)
i = ci, i = 0, 1, 2, . . . , m − 1.

In the following, we shall prove by induction that the complexity of solving
t
(m−2)
i , i = 0, 1, 2, . . . , m − 1, is (r − 1)(m − 1) bit operations.

When l = 0, from (3) we have

m−1∑
i=0

t
(0)
i xi =

m∑
i=0

six
i =

m−1∑
i=0

six
i + smxm

=
m−1∑
i=0

t
(−1)
i xi + sm[1 + xe1 + · · · + xer−2]

Clearly, t
(0)
i =

{
t
(−1)
i + sm, if i = 0, e1, e2, . . . , er−2,

t
(−1)
i , if 1 ≤ i ≤ m − 1, and i 6= e1, e2, . . . , er−2.

It can be seen that r − 1 bit additions are required for obtaining t
(0)
i from

t
(−1)
i , i = 0, 1, . . . , m − 1.

Assume when 0 ≤ l < l′, r − 1 bit-additions are required for obtaining t
(l)
i

from t
(l−1)
i , i = 0, 1, . . . , m − 1. Then, when l = l′, we have

m−1∑
i=0

t
(l′)
i si =

m+l′∑
i=0

six
i =

m+l′−1∑
i=0

six
i + sm+l′x

m+l′

=
m−1∑
i=0

t
(l′−1)
i xi + sm+l′x

l′xm

=
m−1∑
i=0

t
(l′−1)
i xi + sm+l′x

l′ [1 + xe1 + · · · + xer−2]

If m > l′ + er−2, then

t
(l′)
i =

{
t
(l′−1)
i + sm+l′ , if i = l′, l′ + e1, . . . , l′ + er−2,

t
(l′−1)
i , otherwise.

284 H. Wu

Obviously, t
(l′)
i can be computed from t

(l′−1)
i using r − 1 bit additions. Now

suppose that l′ + er′−1 < m 6 l′ + er′ , r′ ∈ {1, . . . , r − 2}, thus it follows

m+l′∑
i=0

six
i = {

m−1∑
i=0

t
(l′−1)
i xi + sm+l′x

l′ [1 + xe1 + · · · + xer′−1]}

+sm+l′x
l′ [xer′ + xer′+1 + · · · + xer−2]

=
m−1∑
i=0

t
(l′,0)
i xi + sm+l′x

l′ [xer′ + xer′+1 + · · · + xer−2]

=
m−1∑
i=0

t
(l′,0)
i xi + sm+l′x

l′+er′ + · · · + sm+l′x
l′+er−2 (4)

where
m−1∑
i=0

t
(l′,0)
i

4
=

m−1∑
i=0

t
(l′−1)
i xi + sm+l′x

l′ [1 + xe1 + · · · + xer′−1]. Since we have

t
(l′,0)
i =

{
t
(l′−1)
i + sm+l′ , if i = l′, l′ + e1, . . . , l′ + er′−1,

t
(l′−1)
i , otherwise,

it can be seen that r′ bit additions are required to obtain t
(l′,0)
i from t

(l′−1)
i , i =

0, 1, . . . , m − 1.
In the following we shall prove that t

(l′)
i , i = 0, 1, . . . , m−1, can be obtained

from t
(l′,0)
i with r − r′ − 1 bit additions. Define

m−1∑
i=0

t
(l′,1)
i xi 4

=
m−1∑
i=0

t
(l′,0)
i xi + sm+l′x

l′+er′ mod f(x), i = 0, 1, . . . , m − 1. (5)

Since 0 ≤ l′ + er′ − m < l′, we have

m−1∑
i=0

t
(l′+er′ −m)
i xi =

m−1∑
i=0

t
(l′+er′ −m−1)
i xi + sl′+er′ x

l′+er′ mod f(x), i = 0, 1, . . . , m − 1.

(6)

Since t
(l′+er′ −m)
i has been obtained from t

(l′+er′ −m−1)
i with r − 1 bit additions

as assumed, comparing (5) to (6), we can see that (5) and (6) can be combi-
ned together to save bit operations. That is, when l = l′ + er′ − m, instead of
performing (6), we perform

m−1∑
i=0

t
(l′+er′ −m−1)
i xi + (sl′+er′ + sm+l′)xl′+er′ mod f(x) =

m−1∑
i=0

t
(l′+er′ −m,?)
i xi

(7)

with r bit additions, while (5) can be saved. In the sense of the count of bit
operations, we may equivalently say that (5) requires one bit addition, while

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 285

(6) still needs r − 1 bit operations. Similar arguments can be applied to the
remaining r − r′ − 2 terms sm+l′x

l′+ej , j = r′ + 1, r′ + 2, . . . , r − 2 in (4). Thus
for l = l′, r − 1 bit additions are required for obtaining t

(l′)
i from t

(l′−1)
i , for i =

0, 1, . . . , m − 1. Therefore, to compute t
(l)
i from t

(l−1)
i , i = 0, 1, . . . , m − 1, needs

r − 1 bit additions for any integer l. We conclude that computing ci = t
(m−2)
i

from si, i = 0, 1, . . . , 2m − 2 requires (m − 1)(r − 1) bit additions. �
Theorem 1 can be easily extended to Fqm as it is stated in Theorem 2. A

proof for Theorem 2 is analogous to that of Theorem 1.

Theorem 2. If the monic irreducible polynomial f(x) ∈ Fq[x] of degree m has
the Hamming weight of r, then the modular polynomial reduction in polynomial
basis multiplication can be done with (r − 1)(m − 1) multiplications and (r −
1)(m − 1) additions in Fq.

If the conventional method for polynomial multiplication is used, some results
of consequent work on finite field multiplier architecture are shown as follows:

If the finite field F2m is generated with an irreducible trinomial f(x) = 1 +
xk + xm, 1 6 k 6

⌊
m
2

⌋
, then a bit-parallel polynomial basis multiplier can be

constructed with CSA = m2,

(i) CSX = m2 − 1 and CT = TA + (dlog2 me + 1) TX for k = 1;
(ii) CSX = m2 − 1 and CT = TA + (dlog2 me + 2)TX for 1 < k < m

2 ;
(iii) CSX = m2 − m

2 and CT = TA + (dlog2 me + 1) TX for k = m
2 .

3 Polynomial Basis Bit-Parallel Squaring

3.1 Complexity of Polynomial Basis Bit-Parallel Squaring in F2m

Let f(x) be the irreducible polynomial over F2 generating the field F2m . Let

A(x) =
m−1∑
i=0

aix
i be the polynomial representation of an arbitrary element of

F2m . The squaring operation of A(x) is C(x)
4
=

m−1∑
i=0

cix
i = A2(x) mod f(x) =

a0 +a1x
2 +a2x

4 + . . .+ad m
2 ex2d m

2 e + . . .+am−1x
2m−2 mod f(x). It can be seen

that squaring in F2m is actually a case of polynomial modular reduction that
has been discussed in the last section, where the degree of each squared terms
in A2(x) is an even integer between 0 and 2m − 2. From the discussion in the
last section, the following corollary is obvious.

Corollary 1. Let the field F2m be generated with the irreducible r-term po-
lynomial f(x) of degree m. Then squaring a field element in parallel can be
performed with at most (r − 1)(m − 1) addition operations in F2.

When f(x) is an irreducible trinomial, however, both the size complexity and
time complexity can be further reduced.

286 H. Wu

Theorem 3. Let the field F2m be generated with the irreducible trinomial
f(x) = xm + xk + 1, where m is even and k odd. Then squaring a field ele-
ment in a bit-parallel fashion can be performed with at most m + k − 1

2 bit
operations. �

Proof: Let

A2(x) =
m−1∑
i=0

aix
2i =

2m−2∑
i=0

a′
ix

i,

where a′
i

4
= a i

2
if i even, and 0 if i odd. Define

m+2l∑
i=0

a′
ix

i mod f(x)
4
=

m−1∑
i=0

t
(l)
i xi, l = −1, 0, 1, . . . ,

m

2
− 1.

The terms t
(l)
i ’s have their initial values t

(−1)
i = a′

i, and we try to solve the final
values t

(m
2 −1)

i = ci, i = 0, 1, . . . , m − 1.
When l = 0,

m−1∑
i=0

t
(0)
i xi =

m∑
i=0

a′
ix

i =
m−1∑
i=0

a′
ix

i + a′
mxm =

m−1∑
i=0

a′
ix

i + a′
m(1 + xk).

∴ t
(0)
i =




a′
i + a′

m, i = 0;
a′

m, i = k.
a′

i, 0 < i 6 m − 1, i even;
0, i odd, i 6= k;

Clearly, one bit addition is needed to compute t
(0)
i from t

(−1)
i , i = 0, 1, . . . , m−1.

For l > 0, we have

m−1∑
i=0

t
(l)
i xi =

m+2l∑
i=0

a′
ix

i

=
m+2(l−1)∑

i=0

a′
ix

i + a′
m+2lx

m+2l

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2lx
2l(1 + xk)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2lx
2l + a′

m+2lx
k+2l.

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 287

If k + 2l < m or l < m − k
2 , then

t
(l)
i =




t
(l−1)
i , 0 6 i 6 m − 1, i 6= 2l, i even; or i = k, k + 2, . . . , k + 2(l − 1);

0, i odd, i 6= k, k + 2, . . . , k + 2l;
t
(l−1)
i + a′

m+2l, i = 2l;
a′

m+2l, i = k + 2l.

(8)

It can be seen that only one bit addition is required to compute t
(l)
i from t

(l′−1)
i

for 0 < l < m − k
2 and i = 0, 1, . . . , m − 1.

In the following we proceed with induction. When l = m − k + 1
2 (∵ m − k

is odd) and l < m
2 , we have

m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2lx
m+2l

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2lx
2l + a′

m+2lx
k+2l

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2lx
2l + a′

m+2lx + a′
m+2lx

k+1.

Then,

t
(l)
i =




t
(l−1)
i + a′

m+2l, i = 2l or i = k + 1;
a′

m+2l, i = 1;
t
(l−1)
i , i even,i 6= 2l, k + 1;

or i = k, k + 2, . . . , k + 2(l − 1);
0, i odd, i 6= k, k + 2, . . . , k + 2(l − 1) and i 6= 1.

(9)

Obviously, two bit additions are required to compute t
(l)
i from t

(l−1)
i , i = 0, 1, . . . , m − 1.

288 H. Wu

Assume that for m − k + 1
2 6 l < l′, (9) holds, then for l = l′ < m

2 , we have

m−1∑
i=0

t
(l′)
i xi =

m−1∑
i=0

t
(l′−1)
i xi + am+2l′x

m+2l′

=
m−1∑
i=0

t
(l′−1)
i xi + a′

m+2l′x
2l′ [1 + xk]

=
m−1∑
i=0

t
(l′−1)
i xi + a′

m+2l′x
2l′ + +a′

m+2l′x
2l′+k

=
m−1∑
i=0

t
(l′−1)
i xi + a′

m+2l′x
2l′ + a′

m+2l′x
k+2l′−m + a′

m+2l′x
2k+2l′−m

=
m−1∑
i=0

t
(l′,0)
i xi + a′

m+2l′x
2k+2l′−m, (10)

where t
(l′,0)
i is defined by

m−1∑
i=0

t
(l′,0)
i xi 4

=
m−1∑
i=0

t
(l′−1)
i xi + a′

m+2l′x
2l′ + a′

m+2l′x
k+2l′−m.

Since 2l′ < m, and k + 2l′ − m is odd and less than k,

t
(l′,0)
i =




t
(l′−1)
i + a′

m+2l′ , i = 2l′;
a′

m+2l′ , i = k + 2l′ − m;
t
(l′−1)
i , 0 6 i 6 m − 1, i 6= 2l′, i even; or i = k, k + 2, . . . , k + 2(l′ − 1);

or i = 1, 3, . . . , k + 2(l′ − 1) − m;
0, i odd, i 6= k, k + 2, . . . , k + 2(l′ − 1), i 6= 1, 3, . . . ,

k + 2(l′ − 1) − m.

(11)

Thus it requires one bit addition to obtain t
(l′,0)
i from t

(l′−1)
i , i = 0, 1, . . . , m−1.

When 2k + 2l′ − m < m, we have t
(l′)
i = t

(l′,0)
i if i 6= 2k + 2l′ − m, otherwise

t
(l′)
i = t

(l′,0)
i + a′

m+2l′ . In this case it is therefore two bit operations are required

to compute t
(l′)
i from t

(l′−1)
i for i = 0, . . . , m − 1.

When 2k + 2l′ − m > m, consider

m−1∑
i=0

t
(k+l′−m)
i =

m−1∑
i=0

t
(k+l′−m−1)
i + a′

2k+2l′−mx2k+2l′−m. (12)

It can be seen that the last terms of the right hand side of (10) and (12) are the
same except for the coefficient. At the step l = k + l′ − m, instead of performing
(12), if we perform

m−1∑
i=0

t
(k+l′−m,?)
i =

m−1∑
i=0

t
(k+l′−m−1)
i + (a′

2k+2l′−m + a′
m+2l′)x

2k+2l′−m (13)

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 289

at the cost of one more bit operation, then at step l = l′, the term t
(l′)
i can be

computed from t
(l′−1)
i , i = 0, . . . , m−1 with only one bit operation. Equivalently,

we might say that at step l = l′, term t
(l′)
i can be computed from t

(l′−1)
i , i =

0, 1, . . . , m−1, at the cost of two bit operations. Thus for m − k + 1
2 6 l < m

2 −1,
it requires two bit additions at each step.

We conclude that the total cost for computing ci = t
(m

2 −1)
i from t

(−1)
i =

a′
i, i = 0, 1, . . . , m − 1 is m − k + 1

2 + 2(m
2 − 1 − m − k − 1

2) = m + k − 1
2 bit

operations. �

Theorem 4. Let the field F2m be generated with the irreducible trinomial
f(x) = xm + xk + 1, where m is odd and k even. Then bit-parallel squaring
in F2m can be performed with at most m + k − 1

2 bit additions.

Theorem 5. Let the field F2m be generated with the irreducible trinomial
f(x) = xm + xk + 1, where both m and k are odd. Then bit-parallel squaring in
F2m can be performed with at most m − 1

2 bit additions. �

Proofs of Theorems 4 and 5 are similar to that of Theorem 3.
Some results of consequent work on implementation of bit-parallel squaring

operation done by us is given below.

Theorem 6. Let the field F2m be generated with the irreducible trinomial
f(x) = xm + xk + 1, where m + k is odd. Then a bit-parallel squarer can be
implemented with at most m + k − 1

2 XOR gates. For k = 1 or 2, the incurred
time delay is TX , and for 2 < k 6 m

2 , it is 2TX .

Theorem 7. Let the field F2m be generated with the irreducible trinomial
f(x) = xm + xk + 1, where both m and k are odd. Then a bit-parallel squarer
can be implemented with at most m − 1

2 XOR gates. The incurred time delay is
TX if k = 1, and 2TX if 2 < k < m

2 .

4 Inversion

Inversion operation is required in elliptic curve cryptosystem when computing
point multiples. This operation is usually performed with two methods. One is
the extended Euclidean algorithm and the other is to exponentiate the element
using the following identity

x−1 = x2m−2. (14)

The extended Euclid’s algorithm usually requires the field element having a po-
lynomial basis representation [5], where the most used operations are field addi-
tion, shifting and loading. Efficient algorithms have been proposed for the second
method, for example, [8] and [2]. Both algorithms use about 3

2 log (m − 1) field

290 H. Wu

multiplications on average1 and m−1 squaring operations. It has been generally
accepted that normal basis should be used for this method since squaring in nor-
mal basis is only a cycle shift of the coefficients [8,2]. However, with the results
presented in this paper, we argue that to solve inverse using (14) polynomial
basis representation can be as efficient as normal basis representation.

It has been shown in [7] that a normal basis multiplication can be performed
with 2m2 − 1 bit operations when a type I optimal normal basis is used. If a
type II optimal normal basis or a non-optimal normal basis is used, it takes
at least 3m2 bit operations to accomplish a field multiplication [16,6]. On the
other hand, If the polynomial basis generated with an irreducible trinomial is
used, a bit-parallel multiplication needs at most 2m2 − 1 bit operations while
a bit-parallel squaring costs not greater than m bit operations. In this case,
the complexity to solve the inverse using (14) in terms of bit operations with
different bases is given in the following table.

Table 1. The complexity (in bit operations) of inversion using the algorithms in [8].

Multiplications Squarings
Type I optimal NB (2m2 − 1) (log2(m − 1) + H(m − 1) − 1) –
Type II optimal NB ≥ 3m2 (log2(m − 1) + H(m − 1) − 1) –

Trinomial-generated PB (2m2 − 1) (log2(m − 1) + H(m − 1) − 1) < m(m − 1)

It can be seen from the table that the complexity using polynomial basis ge-
nerated with an irreducible trinomial is comparable to that using type I optimal
normal basis, while much smaller than that using type II optimal normal basis
or non-optimal basis. Moreover, given finite field F2m there is more chance that
an irreducible trinomial exists than that a type I optimal normal basis does. In
fact, for 2 6 m 6 1000, there is an irrducible trinomial in F2m for 545 values of
m while there exists a type I optimal normal basis for only 67 values of m [4,9].

5 Concluding Remarks

In this article, we have shown that a bit-parallel multiplication operation in F2m

using polynomial basis can be performed in 2m2+(r−3)m−(r−2) bit operations.
We have also proven that a bit-parallel squaring operation using polynomial
basis costs not more than

⌊
m + k − 1

2

⌋
bit operations if an irreducible trinomial

xm+xk+1 over F2 is used. Consequently, it is argued that to solve multiplicative
inverse in F2m using polynomial basis can be as good as using normal basis.

Consequent work on implementation has shown that the resultant bit-parallel
multiplier and bit-parallel squarer also have low time delay.

1 Assume that the Hamming weight of m − 1 is 1
2 log (m − 1) on average.

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis 291

Acknowledgements
This work was done when the author worked for his Ph.D degree with the

Dept of ECE, University of Waterloo. The author thanks Professor Hasan and
Professor Blake for their encouragement and valuable comments.

References

1. Afanasyev, V.B.: On the complexity of finite field arithmetic. Proc 5th Joint Soviet-
Swedish Intern. Workshop on IT, Moscow, USSR, 1991, 9-12

2. Agnew, G.B., Beth, R., Mullin, R.C., Vanstone, S.A.: Arithmetic operations in
GF(2m). J. Cryptology 6 (1993) 3-13

3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publ. Co., Reading, MA, 1974

4. Blake, I.F., Gao, S., Lambert, R.: Constructive Problems for Irreducible Polynomials
over Finite Fields. Canadian Workshop on IT, Springer-Verlag, 1993

5. Brunner, H., Curiger, A., Hofstetter, M.: On computing multiplicative inverse in
GF(2m). IEEE Trans. Comput. 42 (1993) 1010-1015

6. Gao, S., Vanstone, S.A.: On orders of optimal normal basis generators. Math. Comp.
64 (1995) 1227-1233

7. Hasan, M.A., Wang, M., Bhargava, V.K.: A modified Massey-Omura parallel mul-
tiplier for a class of finite fields. IEEE Trans. Comput. 42 (1993) 1278-1280

8. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverse in GF(2m)
using normal bases. Inform. and Comput. 78 (1988) 171-177

9. Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields GF(2m).
Inform. and Comput. 83 (1989) 21-40

10. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Sov.
Phys.-Dokl. (English translation), 7 (1963) 595-596

11. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading, MA, 1981

12. Koç, Ç. K., Acar, T.: Montgomery multiplication in GF(2k). Designs, Codes and
Cryptography, 14 (1998) 57-69

13. Massey, J.L., Omura, J.K.: Computational method and apparatus for finite field
arithmetic. U.S. Patent No.4587627, 1984.

14. Mastrovito, E.D.: VLSI Architectures for Computations in Galois Fields. Ph.D
Thesis, Linköping University, 1991, Linköping, Sweden

15. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44
(1985) 519-521

16. Mullin, R., Onyszchuk, I., Vanstone, S.A., Wilson, R.: Optimal normal bases in
GF(pn). Disc. Appl. Math. 22 (1988) 149-161

17. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Ph.D Thesis, VDI-Verlag, Düsseldorf, 1994

18. Schönhage, A.: Schnelle Multiplikation von Polynomen uber Korpern der Charak-
teristik 2. Acta Inf. 7 (1977) 395-398

19. Wang, C.C.: An algorithm to design finite field multipliers using a self-dual normal
basis. IEEE Trans. Comput. 38 (1989) 1457-1459

20. Wu, H.: Efficient Computations in Finite Fields with Cryptographic Significance.
Ph.D Thesis, University of Waterloo, Waterloo, Canada, 1998

21. Wu, H., Hasan, M.A., Blake, I.F.: Low complexity weakly dual basis bit-parallel
multiplier over finite fields. IEEE Trans. Comput. 47 (1998) 1223-1234

	Introduction
	Bit-Parallel Polynomial Basis Multiplication in $@mathbb {F}_{2^m}$
	Polynomial Multiplication
	Reduction Modulo a Polynomial

	Polynomial Basis Bit-Parallel Squaring
	Complexity of Polynomial Basis Bit-Parallel Squaring in $@mathbb {F}_{2^m}$

	Inversion
	Concluding Remarks

