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Abstract. The scheme of a device that should have a simple and reliable

implementation and that, under simply verifiable conditions, should generate a

true random binary sequence is defined. Some tricks are used to suppress bias

and correlation so that the desired statistical properties are obtained without

using any pseudorandom transformation. The proposed scheme is well

represented by an analytic model that describes the system behaviour both
under normal conditions and when different failures occur. Within the model, it

is shown that the system is robust to changes in the circuit parameters.

Furthermore, a test procedure can be defined to verify the correct operation of

the generator without performing any statistical analysis of its output.

Keywords: True random number generators, noise, cryptography, tests for
randomness.

1 Introduction

Cryptographic systems should use only true random number generators for producing
keys and other secret quantities. This paper aims at defining the scheme of a true

random number generator that has a simple and reliable implementation and is not

expensive in production. To ensure all these features, the generator must be able to
stand large tolerances in its components without any calibration or compensation.

Furthermore, possible malfunctions must be foreseen and tests to be made during
prototype development, production and (possibly) operation must be defined. Since

the generator is designed for cryptographic applications, the random source it uses
must be suitable to be constructed in a protected and insulated environment. In this

way the device can be certified to work under general and heavy operating conditions.

A popular way of generating truly random binary sequences is to sample analogical
white noise after it has been quantized by means of a comparator. Because of offsets

and bandwidth limitations, the generated sequence is typically affected by bias and
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symbol correlation, but some tricks are used to suppress both. The bias is eliminated
by sending the quantized signal into a binary counter before sampling it, whereas the

bit correlation is kept under a fixed value by choosing a suitably low sampling
frequency [1-5]. Therefore, in this kind of generators, defects in the bit statistics are

not masked (e.g. by means of a pseudorandom transformation) but simply suppressed.

This can be considered the most correct solution since the device should generate a
sequence whose entropy is the maximum possible, not a sequence whose entropy

looks like the maximum possible. In a certification testing one is thus forced to
conclude by an analysis of the scheme that, if the output sequence looks random, i.e.,

if it passes the statistical tests, it is actually random.

The generator proposed in this paper (see Fig. 1) follows this scheme, but its
peculiarity is that the input noise is sampled and held. This solution ensures that the

input noise does not change its value during the comparator response time so that the
devices in the successive stages can operate under the conditions they are designed for

[3]. The proposed scheme is then well represented by an analytic model that describes
the device behaviour both under normal conditions and in presence of different

failures. In this way the system insensibility to changes in the circuit parameters can

be evaluated. Within the same model, a test procedure can be defined to verify the
correct operation of the circuit without performing any statistical analysis of its

output. It is shown that, if the random source is shielded (so that no external signal is
injected) and does not sustain self-oscillations, the circuit operation can be tested by

simply counting the transitions of an internal signal.

Fig. 1. Block design of the generator

The rest of the paper is organized as follows. In Section 2 each of the blocks that

constitute the circuit is described and its role is explained. Furthermore, the generator
self-testing procedure is proposed. In Section 3 an analytical model of the circuit is

sketched and the autocorrelation function of the binary counter output, i.e., of the

signal to be sampled for obtaining a binary random sequence, is given. Results of
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numerical simulations, which are in good agreement with the model, are also
reported. A criterion for choosing the output sampling frequency, based on the form

of the autocorrelation function, is then proposed. Some instructions for the practical
design of the generator are given in Section 4 and conclusions of the work are

presented in Section 5. The details of the calculation of the autocorrelation function

are described in Appendix A and some numerical results supporting the self-testing
procedure are reported in Appendix B.

2 Scheme of the Circuit

Our scheme uses a gaussian white noise source, e.g. shot noise in a directly polarized
semiconductor junction. Shot noise is completely controlled by the polarization

current, but its amplitude is typically very low and must therefore be strongly
amplified. Since a high gain is required, some caution must be taken in the amplifier

design so that external disturbances are shielded and coloured noises are not added
[6]. In Fig. 1 the amplified real noise generator is represented by an ideal noise
generator connected in series with a low-pass filter, whose cutoff frequency n0

represents the bandwidth limitations of the real generator.
The sampling and holding operation ensures that the comparator works correctly

and permits to sample the binary counter output in a synchronous way. All the

statistical defects that could appear in the output binary sequence if it were generated
by sampling an unstable signal are therefore avoided. It will be explained in the

following how the holding time, i.e., the period of the clock Ck1, must be chosen for
this purpose. Details of the sample-and-hold circuit will not be examined because it is

well known that such devices, operating up to some GHz, can be implemented in a
simple and economical way.

To obtain simple analytic results, in the following the sampled noise that enters the

comparator is supposed to be white, i.e., uncorrelated. This hypothesis is reasonable,
since the sampled noise correlation is fixed by the filter bandwidth and by the input
sampling frequency, i.e., the frequency of Ck1. For instance, if x t( )  is the signal

obtained by means of a first order Butterworth filtering [7] of white noise, its
autocorrelation function is, see e.g. [8],

R x t( ) =
x t( )x t + t( )

x t( )
2

= exp -2pn0 t( )  ,
(1)

where brackets denote statistical average. If the input sampling frequency is n1, the

correlation between two consecutive samples of x t( )  is
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exp -2p n0 n1( ) (2)

and is controlled by  the ratio of the two frequencies.

The comparator converts the analogical noise into a binary signal. Comparators
with hysteresis are generally used to obtain a fast response time. Notice that the

comparator is supposed to be the slowest circuit component, so that its response time

tc  determines the whole system operating frequency. Using current technologies, this

is often the case.

The binary counter ensures that its output takes on both its possible values for the

same average time1, even if its input is biased because of the offsets introduced by the
comparator and by the sample-and-hold [9]. An alternative way of eliminating bias is
to control the comparator threshold by means of a feedback loop, see e.g. [10].

Anyway, it is well known that this solution may introduce some degree of correlation

in the output bits [2]. Furthermore, the feedback circuit is critical and requires
accurate calibration, which is not needed in our scheme.

The DFF (delay flip flop) samples the binary counter output at times corresponding

to the edges of the clock Ck22 and generates the required binary sequence. The N
counter produces Ck2 as a submultiple of the clock Ck1 at which the input noise is

sampled. N  is chosen to keep the output bit correlation lower than a fixed value.

Since Ck2 is synchronous with Ck1 by construction, if the period of Ck1 is larger

than the comparator response time tc
3 it is ensured that the binary counter output is

sampled when it is in a stable state. Any effect due to threshold offset, asymmetry in

saturation output voltages and in rising/falling times, threshold dependence upon the

state of the device and bandwidth limitation of the components is therefore avoided.
These effects are very insidious, since they cause fluctuations of the time required by

the binary counter output for crossing the DFF threshold and can reintroduce in this
way a new bias to the produced bits [3]. In fact, as long as the comparator response

time is small enough, both the binary counter and the DFF work on the usual binary

signals they are designed for, so that the behaviour of these devices should be
extremely reliable.

On the other hand one can be persuaded that an increase in tc , as well as any

offset and any decrease in the amplifier gain and bandwidth, can be detected. In fact,

while making the output statistics worse, all these effects result in a decrease of the

                                                            
1 Corresponding to the average time between two transitions of the comparator in the same

direction.
2 Notice that the output sampling may be triggered indifferently by negative or positive edges

of Ck2.
3 Response times of the following stages are supposed to be negligible with respect to tc .
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number of circuit internal transitions.4 In Appendix B it is shown by numerical results
that such a decrease is noticeable before the output statistics is substantially damaged.
Counting the internal transitions can therefore be a simple self-testing procedure for

the generator. In Appendix A the expected number of transitions during a given time

interval is calculated under ideal conditions. If the counted number  shows a
significant departure from this expected value, it is reasonable to suspect that some

circuit component is faulty enough to spoil the statistics of the produced bits, that
consequently have to be discarded.

3 Model of the Circuit and Output Correlation

The amplified noise x t( )  is assumed to be a stationary and ergodic stochastic process

and the random variable x n  represents the value sampled at the instant t n  and held

until t n+1 . The comparator output during this interval, if there is no hysteresis and the

threshold value is 0, can be defined as

y n = sign x n( ) =
+1 if x n ³ 0

-1 if x n < 0
ì
í
î

 .
(3)

This transformation is known in literature as hard limiting or clipping [11]. Here
the value -1 is chosen instead of 0  so that y n = 0 means that no bias occurs. This

happens if there is no offset, i.e., the comparator threshold coincides with the sampled
noise mean value, x n = 0. The following calculations are made under such

hypothesis, that will be discussed at the end of this section. If the clipped noise
produced by the comparator is unbiased, its autocorrelation function is

R k y yy n n k( ) = +  . (4)

The sampled noise x n  is supposed to be d -correlated, that is R x k( ) = dk, 0 , where

d  is the Kronecker symbol. As stated in the previous section, this hypothesis is not
critical. In Appendix A it is shown that, as long as the comparator shows no
hysteresis, R y k( )  is d -shaped too.

The binary counter output, denoted by z n , takes on the values ±1. For the very

nature of this device, z n = 0  and this result holds even if there is any offset in the

previous stages, causing y n  to differ from zero. The binary counter output

autocorrelation function is

                                                            
4 This is not true for periodic disturbances, which are suppressed by a careful circuit shielding.
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R z k( ) = z nz n+k  . (5)

If no hysteresis is present, calculation of this function (see Appendix A) yields the
result

R k
k

z
k( ) = -2

4
2 cos

p
 . (6)

It must be remarked that, after passing through the binary counter, the noise is no
longer d -correlated.

When the comparator shows hysteresis, the relation (3) becomes

y
x x y

x x yn
n u n

n d n

=
-( ) = -

-( ) = +

ì
í
ï

îï

-

-

sign

sign

if

if
1

1

1

1
 ,

(7)

where x u  and x d  are two different threshold values and x u > x d . As it can be seen

in Appendix A, the calculation of R y k( )  and R z k( ) is connected to the problem of

counting the noise zero crossings, which in presence of hysteresis is usually

considered difficult [1]. Nevertheless for discrete time evolution analytic results can
be obtained if thresholds are symmetric with respect to the noise mean value, i.e., if

x d = -x u . In this case, since the used input noise distribution p x( )  is symmetric too,

the probability p  of a comparator state change at any time step does not depend upon

the change direction and it is given by

p = p x( )dx
xu

¥

ò = p x( )dx
-¥

-xu

ò <
1
2

 .
(8)

In Appendix A the result

R y k( ) = 1- 2p( )
k

 , (9)

which shows that hysteresis provides the comparator output with memory even if

the input noise is white, is obtained. Furthermore in Appendix A it is shown that

R z k( ) = r p( )[ ]
k

cos k q p( )[ ]  , (10)

where

r p( ) = 1- p( )
2
+ p2[ ]

1/2
(11)

(notice that 0 < r p( ) < 1) and
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q p( ) = arc tan
p

1- p

æ

è
ç

ö

ø
÷ .

(12)

Eq. (10) shows that the envelope of R z k( ) decays exponentially for any value of

the probability p . In particular, the fastest possible decay takes place for p = 1 2 , i.e.,

when no hysteresis is present and Eq. (10) reduces to Eq. (6).

Fig. 2. Analytical form (continuous line) and numerical values (circles) of R z k( ) without

hysteresis (left) and with hysteresis (right). In the latter case the threshold values are ±0.1

The circuit behaviour has been numerically simulated by means of the Simulink

software. Gaussian white noise with standard normal distribution has been used and

R z k( ) has been estimated as a time average using 800000 samples of z n . The plot on

the left in Fig. 2 shows the result of a simulation where no hysteresis is present,

together with the theoretical curve (6), whereas the plot on the right shows the result

of a simulation with x u = 0.15, together with the theoretical curve (10). In the latter

case the value of p  is

p =
1

2p
exp -

x 2

2

æ

è
ç

ö

ø
÷dx

0.1

¥

ò @ 0.46  .
(13)

In both figures the agreement between theoretical values and numerical data

(represented by circles) looks good. Indeed, the r.m.s. difference is about 10-3 .
The form of R z k( ) provides us with a criterion for choosing the output sampling

frequency. If a bit correlation lower than e is required, the minimum value k 0  such

that

r p( )[ ]
k
< e " k ³ k 0 (14)

                                                            
5 Notice that thresholds are measured in units of the noise mean amplitude.
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has to be determined. k 0  is the optimal ratio of the input sampling frequency to the

output one and therefore the value N = k 0  must be chosen for the N  counter.6

Throughout the calculations no offset has been supposed. If this were the case, the

comparator output would be unbiased and the binary counter would not be needed at
all. The analytical study of the correlation becomes difficult and cumbersome if offset

is taken into account, but the results found here under simplifying hypotheses allow a
conservative estimate of the output sampling frequency even in real circumstances.

Consider indeed a comparator affected by the offset s, with thresholds s ± x u . For

a given input noise this device shows a larger transition rate with respect to a
comparator with no offset and thresholds ±x 0 , where x 0 = s + x u . An intuitive

explanation can be gained by looking at Fig. 3, where the case s > 0  is represented
and x t( )  is shown instead of its samples.

Fig. 3. Crossings of thresholds affected by offset (dots) and of broader thresholds with no offset
(squares) by the same input noise

A smaller transition rate causes a slower decay of the correlation. Therefore a

conservative estimate of the output sampling frequency can be obtained by
considering the correlation calculated for the larger hysteresis band defined above to

include offset.

4 Some Design Instructions

The designer of a random number generator of the type considered here should take

into account the following set of instructions.
1) The input sampling frequency n1, i.e., the clock frequency of the circuit, is

determined by the comparator response time tc  through the condition

                                                            
6 N could also be chosen in order to obtain cos[Nq(p)]=0, but such a condition is more critical

than the one stated in Eq. (14).

0

s + xu = +x0

s - xu

-x0
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n1 <
1
tc

 . (15)

2) The correlation of the sampled noise must be negligible with respect to the

correlation introduced by the subsequent stages. If the maximum acceptable value for
the latter is e, the amplifier cutoff frequency n0  must verify

exp -2p n0 n1( ) < e (16)

for the filter considered here, or a similar condition for a different filter. Eq. (16)
gives

n0 > n1

lne

2p
 . (17)

In Appendix B it is shown that a practically white input noise can be obtained even
if n0  and n1 are of the same order. A similar result is obtained in [9].

3) Once the input noise distribution p x( )  has been estimated, the probability

p = p x( )dx
x0

¥

ò
(18)

is determined by x 0 . This positive quantity has been defined in the previous section

in terms of the actual hysteresis and offset, both measured in units of the noise mean
amplitude. r p( ) is then calculated by means of Eq. (11).

4) Finally the condition

N ³
lne

ln r p( )[ ]
 , (19)

which follows from Eq. (14) with k 0 = N , sets the value of N  and therefore of the bit

rate

n2 =
n1

N
 . (20)

Notice that, once the bit correlation e has been fixed, n2  increases with p , i.e., as

it is intuitive, the bit rate grows as long as offset and comparator hysteresis, which
cannot be totally suppressed, diminish with respect to the noise amplitude.
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5 Conclusions

The complete unpredictability of the random numbers used by a cryptographic system

is a necessary condition for the system security that can be satisfied only by means of
a truly random source. On the other hand, sources of this kind often produce bit

sequences whose statistics depend in a critical way on details of the implementation.
The circuit proposed in this paper belongs to a kind of true random number

generators that are well known to produce unbiased bit sequences. It is designed to be

insensitive as possible to fluctuations in the behaviour of the circuit components so
that no calibration nor compensation is required. Furthermore, it is satisfactorily

described by an analytical model that gives a relationship between the bit rate and the
maximum expected bit correlation. The  model gives also the expected value of the

circuit internal transition rate. Since in our design phenomena that could spoil the bit

statistics also slow down the circuit dynamics, counting the transitions and comparing
their rate to its expected value can be a good self-testing procedure.

An actual circuit that verifies the hypotheses underlying our model generates
binary sequences whose randomness is ensured by the circuit design. Such a system

requires a small amount of time for its testing during production, since demanding
statistical tests can be performed on prototypes only. Furthermore, true randomness of

the generated bits can be controlled in a simple and effective way even while the

system is operating.
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Appendix A: Calculation of the Autocorrelation Functions

In the following the probability Pk l( )  that the comparator change its state a number l

of times in the interval t n , t n+k[ ] will be needed. l  is the number of noise zero

crossings during the considered interval. Under the assumptions of discrete time
evolution, white noise and no offset, if the distribution p x( )  of x n  is symmetric (not

necessarily gaussian), the probability p  of a comparator state change at any time step

does not depend upon the change direction. Therefore Pk l( )  follows a binomial

distribution,

Pk l( ) =
k

l
æ

è
ç

ö

ø
÷ pl 1- p( )

k-l
 .

(A.1)

When the comparator shows no hysteresis,

p = p x( )dx
0

¥

ò =
1
2

 .
(A.2)

When hysteresis is present, the hypotheses leading to the binomial distribution

Pk l( )  given by Eq. (A.1) still hold provided that thresholds are symmetric with

respect to the sampled noise mean value, i.e., x d = -x u . In this case the value of p  is

given by Eq. (8).
Since the clipped noise y n  is represented by a sign function, its autocorrelation

R y k( ) , defined as in Eq. (4), can be given the form
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R y k( ) = Pk l( )
leven
å - Pk l( )

lodd
å  . (A.3)

It can be proven by simple algebra, using Eqs. (A.3) and (A.1), that

R y k( ) = 1- 2p( )
k (A.4)

(here and in the following, the absolute value of k  is used to generalize results to

negative values of k ). When no hysteresis is present, Eq. (A.2) holds and therefore

R y k( ) = dk, 0  . (A.5)

R z k( ) can be evaluated by means of the probability Pe k( )  that the binary counter

change its state an even number of times in t n , t n+k[ ]. Indeed R z k( ) can be given a

form analogous to Eq. (A.3), which is also equivalent to

R z k( ) = 2Pe k( ) -1 . (A.6)

If at the instant t n  the comparator has changed its state an even number of times, in

t n , t n+k[ ] every transition of the counter corresponds to two transitions of the

comparator. Therefore in this case the number l  of comparator state changes must be
equal to 4m  or 4m +1, where m  is an integer such that l Î 0... k{ }, to make the

counter change its state 2m  times. On the other hand, if at the instant t n  the

comparator has changed its state an odd number of times, its first transition in
t n , t n+k[ ] coincides with the first counter transition. Therefore in this case one less

comparator transition is needed for an even number of counter transitions to occur and
l  must be equal to 4m -1 or 4m .

When there is no hysteresis, it follows from Eqs. (A.3) and (A.5) that the number
of comparator transitions occurred before t n  has the same probability of being even

or odd for every value of n . In presence of hysteresis this is no longer an exact result,
but it is nevertheless a valid approximation, since R y k( )  drops exponentially. In both

cases thus

Pe k( ) =
1
2

Pk l( )
lº0

mod 4

å + Pk l( )
lº1

mod 4

å
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
+

1
2

Pk l( )
lº-1

mod 4

å + Pk l( )
lº0

mod 4

å
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

= + ( ) - ( )

æ

è

ç
ç
ç

ö

ø

÷
÷
÷º º

å å
1

2
1

0
4

2
4

P l P lk

l
mod

k

l
mod

 .

(A.7)

This result gives Eq. (A.6) the form
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R z k( ) = Pk l( )
lº0

mod 4

å - Pk l( )
lº2

mod 4

å  . (A.8)

Substituting Eq. (A.1) into Eq. (A.8) gives

R z k( ) =
k

2n
æ

è
ç

ö

ø
÷ -1( )

n p2n 1- p( )
k-2n

n
å = Â 1- p( ) ± ip[ ]

k{ }  ,
(A.9)

where Â  denotes the real part. This expression is generalized by taking the absolute
value of k  and it can be put in the form (10) using the polar representation of
complex numbers. If there is no hysteresis, p = 1 2  and Eq. (6) is obtained.

Appendix B: Number of Internal Transitions vs. Output
Correlation

Counting the internal transitions is a good self-testing procedure for the generator

we designed, as long as the increase in output correlation is due to phenomena that

slow down the circuit dynamics and not to periodic disturbances. The connection
between the number of transitions and the output correlation has been confirmed by

further numerical simulations of the circuit in which two different effects have been
separately considered.

The first phenomenon taken into account has been the increase in the comparator

hysteresis, which, in our model, can represent lowering input noise as well as
increasing offset. In each simulation 100000 samples of z n  have been generated for a

fixed value of the hysteresis band half width x 0 . Some of the results are shown in

Table 1. Eq. (18), where p x( )  is the standard normal distribution, holds for the

probability p  and the expected number of binary counter transitions,

N z =
p

2
N samples = 50000 p  , (B.1)

is in good agreement with the counted number Nz .

In Table 1 theoretical and numerical values of R z 20( )  are also reported, since

N = 20  can be a suitable value for the N  counter. Theoretical values have been

calculated by means of Eqs. (10-12). As the r.m.s. difference between theoretical and
numerical values of R z k( ) is about 5x10-3  in each experiment, simulations can be

considered consistent with the model. Notice that data in parenthesis, whose absolute

value is lower than the r.m.s. error, are shown only for the sake of completeness. It
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can be seen that a significant increase in correlation occurs when the number of
transitions reduces to about one half of the initial value.

Table 1. Number of internal transitions and output correlation (both expected and numerical)

for different comparator threshold values.

x 0 N z N z R z 20( )

theor.

R z 20( )

num.

0 25000 25166 -0.0010  (0.0045)

0.1 23029 23149 3 x 10-5  (10-5)

0.5 15515 15463 -0.0021  (0.0006)

0.7 12208 12133 0.0105 0.0204

1 7883 7894 -0.0355 -0.0353

In the second series of simulations the effect of a finite noise bandwidth, i.e., of a
correlated input, has been studied. In each experiment 100000 samples of z n  have

been generated for a fixed value of the frequency ratio n0 n1  always assuming no

hysteresis, i.e., x 0 = 0 . Some of the results are shown in Table 2.

Table 2. Number of internal transitions (expected and numerical) and numerical output

correlation for different cutoff frequencies.

n0 n1
N z N z R z 20( )

num.

¥ 25000 25166 0.0045

0.5 24312 24384 -0.0010

0.1 16044 16071 -0.0058

0.05 11967 11953 -0.0156

0.01 5583 5706 0.1546

In this case the expected value N z , which looks in good agreement with the

numerical value N z , is still given by Eq. (B.1), but p  has now the form
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p =
1
p

arccos R x 1( )[ ] = 1
p

arccos exp -2p n0 n1( )[ ] , (B.2)

according to the well known arcsine law [12] assuming first order Butterworth
filtering. It can be seen in this case too that a significant increase in correlation occurs

when the number of transitions reduces to about one half of the initial value.
Notice that numerical values only of R z 20( )  are reported in Table 2. Indeed, the

model used throughout this paper for determining the function R z k( ) considers input

white noise. This hypothesis is crucial for the binomial distribution (A.1) to hold. As
the frequency ratio decreases, the model loses its validity and, for n0 n1 £ 0.1, it can

be seen that it gives no longer account for the numerical results. On the other hand,
Table 2 shows how larger values of n0 n1 , e.g. 0.5, do not cause significant

deviations from the ideal case of infinite n0 . This result confirms that the white noise

hypothesis is not critical.
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