
TRIPLE—A Query, Inference, and
Transformation Language for the Semantic Web�

Michael Sintek1,2 and Stefan Decker2

1 DFKI GmbH Kaiserslautern
2 Stanford University Database Group

Abstract. This paper presents TRIPLE, a layered and modular rule
language for the Semantic Web [1]. TRIPLE is based on Horn logic and
borrows many basic features from F-Logic [11] but is especially designed
for querying and transforming RDF models [20].
TRIPLE can be viewed as a successor of SiLRI (Simple Logic-based RDF
Interpreter [5]). One of the most important differences to F-Logic and
SiLRI is that TRIPLE does not have a fixed semantics for object-oriented
features like classes and inheritance. Its layered architecture allows such
features to be easily defined for different object-oriented and other data
models like UML, Topic Maps, or RDF Schema [19]. Description logics
extensions of RDF (Schema) like OIL [17] and DAML+OIL [3] that
cannot be fully handled by Horn logic are provided as modules that
interact with a description logic classifier, e.g. FaCT [9], resulting in a hy-
brid rule language. This paper sketches syntax and semantics of TRIPLE.

Keywords: Metadata, Knowledge Representation and Reasoning, RDF,
DAML, F-Logic

1 Introduction

On the Semantic Web many different communities are publishing their formal
data, and it is unlikely that established data models for representing this data
will disappear. Examples of already established data models include UML, Top-
icMaps, RDF Schema, Entity Relationship Models, DAML+OIL, and more,
highly specialized data models. Integrating data based on these different data
models has proven to be an error-prone and expensive task: different storage
and query engines have to be combined into one program, and data has to be
translated constantly from one representation to another. A first step to improve
this situation is the use of RDF as a common representation formalism for all
data involved.1 This, however, does not solve the problem entirely. Although
many query languages and inference engines for RDF exist (e.g., SiLRI [5], RQL
� This work was supported by the German Ministry for Education and Research,

bmb+f (Grant: 01 IW 901, Project FRODO: A Framework for Distributed Organi-
zational Memories) and the DARPA DAML Program, Project OntoAgents.

1 See http://www-db.stanford.edu/∼melnik/rdf/uml/ for a representation of UML in
RDF and [12] for a representation of TopicMaps in RDF.

I. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 364–378, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

TRIPLE, a Language for the Semantic Web 365

[10], SQUISH2), none of them is capable of representing multiple semantics as
required by the different heterogeneous data models. E.g., when querying UML
data the Generalization relation should be treated as a transitive relationship,
as well as rdfs:subClassOf in RDF Schema. None of the cited query languages
has the ability to query different data models with different kinds of semantics.
Although some of them (RQL and SiLRI) have a built-in semantics for RDF
Schema, this does not generalize to other data models.
To remedy the situation we propose TRIPLE, a rule language, aiming to sup-

port applications in need of RDF reasoning and transformation under several
different semantics. The core language is based on Horn logic which is syn-
tactically extended to support RDF primitives like namespaces, resources, and
statements (triples, which gave TRIPLE its name). This core language can be
compiled into Horn logic programs and enacted by Prolog systems like XSB
[18].
Inference systems for data models like RDF Schema can be implemented

directly in TRIPLE if expressible in Horn logic or may be provided as modules
interacting with external reasoning components, if not implementable with Horn
logic (e.g., for Description Logic based languages like DAML+OIL).

TRIPLE provides a (human readable) ASCII-syntax as well as an RDF-based
syntax.
In this section we introduce TRIPLE. Section 2 presents the layered archi-

tecture of TRIPLE, Section 3 introduces its RDF-based syntax (for the subset
TRIPLE0), and Section 4 gives a semantic characterization. Section 5 finally con-
cludes the paper.
The reader is supposed to be familiar with RDF and RDF Schema.

1.1 Features of TRIPLE

In the following, the main features of TRIPLE (i.e., those extending Horn logic)
are informally described. Note that not all the features are available in TRIPLE0
(cf. Section 2).

Namespaces and Resources TRIPLE has special support for namespaces and
resource identifiers. Namespaces are declared via clause-like constructs of the
form nsabbrev := namespace., e.g.

rdf := ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”.

Resources are written as nsabbrev:name, where nsabbrev is a namespace ab-
breviation and name is the local name of the resource.
Resource abbreviations can be introduced analogously to namespace abbre-

viations, e.g.
isa := rdfs:subClassOf.

2 See http://ilrt.org/discovery/2000/10/swsql/

366 Michael Sintek and Stefan Decker

Statements and Molecules An RDF statement (triple) is—inspired by F-Logic
object syntax—written as

subject[predicate→ object]

Several statements with the same subject can be abbreviated as “molecules”:

stefan[hasAge→ 33; isMarried→ yes; . . .]

RDF statements (and molecules) can be nested, eg.:

stefan[marriedTo→ birgit[hasAge→ 32]]

Models RDF models, i.e., sets of statements, are made explicit in TRIPLE (“first
class citizens”).3 Statements, molecules, and also Horn atoms that are true in
a specific model are written as atom@model (similar to Flora-2 module syn-
tax), where atom is a statement, molecule, or Horn atom and model is a model
specification (i.e., a resource denoting a model), e.g.

michael[hasAge→ 34]@factsAboutDFKI

TRIPLE also allows Skolem functions as model specifications. Skolem func-
tions can be used to transform one model (or several models) into a new one
when used in rules (e.g., for ontology mapping/integration):

O[P → Q]@sf(m1, X, Y) ←− . . .

If all (or many) statements/molecules or Horn atoms in a formula (see Section
3) are from one model, the following abbreviation can be used: formula@model.
All statements/molecules and Horn atoms in formula without an explicit model
specification are implicitly suffixed with @model.
Instead of constants, variables, and Skolem functions also boolean combina-

tions can be used, eg.: (model1 ∩model2) specifying the intersection of two mod-
els, (model1 ∪model2) specifying the union of two models, and (model1\model2)
specifying the set-difference of two models.

Reified Statements Reified statements are written as <statement> and can be
used inside other statements, allowing “modal” statements like

stefan[believes→<Ora[isAuthorOf→ homepage]>]

Path Expressions For navigation purposes, path expressions have proven to be
very useful in object oriented languages. TRIPLE allows the usage of path ex-
pressions instead of subject, predicate, or object definitions (and at all other
places where terms are allowed). Path expressions are dot-delimited sequences
of resources, e.g.:

stefan.spouse.mother

denotes Stefan’s mother in law.
3 Note that the notion of model in RDF does not coincide with its use in (mathemat-

ical) logics.

TRIPLE, a Language for the Semantic Web 367

Logical Formulae TRIPLE uses the usual set of connectives and quantifiers for
building formulae from statements/molecules and Horn atoms, i.e., ∧, ∨, ¬, ∀, ∃,
etc.4 All variables must be introduced via quantifiers, therefore marking them is
not necessary (i.e., TRIPLE does not require variables to start with an uppercase
letter as in Prolog).

Clauses and Blocks A TRIPLE clause is either a fact or a rule. Rule heads may
only contain conjunctions of molecules and Horn atoms and must not contain
(explicitly or implicitly) any disjunctive or negated expressions.
To assert that a set of clauses is true in a specific model, a model block is

used:
@model {clauses}

or, in case the model specification is parameterized:

∀ Mdl @model(Mdl) {clauses}

1.2 Example: Dublin Core Metadata

The Dublin Core Metadata Initiative [4] defines a set of elements for marking up
documents with metadata like title, creator, date, subject, etc. An encoding of
Dublin Core metadata in RDF is straightforward. The example in Figure 1 adds
some simple metadata to a document and defines a (Horn) rule that searches for
documents with a specified subject.5

2 The TRIPLE Layered Architecture

As already mentioned, TRIPLE is a layered rule language. Two different kinds
of layers are supported:

– syntactical extensions of Horn logic to support basic RDF constructs like
resources and statements

– modules for semantic extensions of RDF like RDF Schema, OIL, and
DAML+OIL, implemented either directly in TRIPLE or via interaction with
external reasoning components

TRIPLE is the extension of Horn logic as described in Section 1.1. TRIPLE0 is
the subset of TRIPLE without quantifiers and negation (and has already been im-
plemented on top of XSB, see http://www.dfki.uni-kl.de/frodo/triple/),
TRIPLE−

0 is the subset without quantifiers, but with negation. TRIPLE0 and
4 For TRIPLE programs in plain ASCII syntax, the symbols AND, OR, NOT,

FORALL, EXISTS, <-, ->, etc. are used; cf. the example in Section 2.1.
5 Note that symbols in TRIPLE can be enclosed in single or double quotes; if a symbol

does not contain special characters and starts with a letter, no quotes are needed.
Thus, TRIPLE, ’TRIPLE’, and ”TRIPLE” all denote the same symbol.

368 Michael Sintek and Stefan Decker

rdf := ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”.
dc := ”http://purl.org/dc/elements/1.0/”.
dfki := ”http://www.dfki.de/”.

@dfki:documents {

dfki:d 01 01[
dc:title→ ”TRIPLE”;
dc:creator→ ”Michael Sintek”;
dc:creator→ ”Stefan Decker”;
dc:subject→ RDF;
dc:subject→ triples; . . .].

∀ S, D search(S, D) ←−
D[dc:subject→ S].

}

Fig. 1. Example: Dublin Core Metadata

TRIPLE−
0 mainly exist to simplify the implementation of the higher layers. For

TRIPLE0, a representation in RDF exists which is explained in Section 3.

The following two sections describe the modular extensions for RDF Schema
and DAML+OIL, called TRIPLE/RDFS and TRIPLE/DAML+OIL.

2.1 TRIPLE/RDFS

This section shows how rules axiomatizing (part of the) semantics of RDF
Schema are implemented in TRIPLE. The rules can be used together with a
Horn logic based inference engine like XSB to derive additional knowledge from
an RDF Schema specification.
Figure 2 show the RDF Schema module in plain ASCII notation.
The first lines define namespaces (for RDF and RDF Schema) and abbrevi-

ations (for type, subPropertyOf and subClassOf).
The rules are enclosed by a model specification block:
∀ Mdl @rdfschema(Mdl) {. . .}

The Skolem function rdfschema(Mdl) is the model identifier of all facts derived by
the rules enclosed by the model specification block. The parameter Mdl denotes
the RDF Schema specification. The model rdfschema(Mdl) contains all state-
ments from the model Mdl plus everything derived additionally by the rules.
The rule
∀ O, P, V O[P → V] ←−

O[P → V]@Mdl.
specifies that every triple contained in the model Mdl is also element of the
model with the identifier rdfschema(Mdl). The next rule defines the inheritance
of values from sub properties to super properties. The remaining rules define the

TRIPLE, a Language for the Semantic Web 369

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
subPropertyOf := rdfs:subPropertyOf.
subClassOf := rdfs:subClassOf.
FORALL Mdl @rdfschema(Mdl) {
transitive(subPropertyOf).
transitive(subClassOf).
FORALL O,P,V O[P->V] <-

O[P->V]@Mdl.
FORALL O,P,V O[P->V] <-
EXISTS S S[subPropertyOf->P] AND O[S->V].

FORALL O,P,V O[P->V] <-
transitive(P) AND
EXISTS W (O[P->W] AND W[P->V]).

FORALL O,T O[type->T] <-
EXISTS S (S[subClassOf->T] AND O[type->S]).

}

Fig. 2. RDF Schema in TRIPLE

semantics of transitive properties (subPropertyOf and subClassOf) and of the
type property.
In Figure 3, a simple RDF Schema for motor vehicles is given: the root class

is xyz:MotorVehicle, which has the direct subclasses xyz:PassengerVehicle,
xyz:Truck, and xyz:Van. xyz:MiniVan is defined as a common subclass of
xyz:Van and xyz:PassengerVehicle.

The following query searches for all direct and indirect subclasses of
xyz:MotorVehicle, using the RDF Schema definition for rdfs:subClassOf as
defined in the rdfschema(Mdl) model:

FORALL C <- C[rdfs:subClassOf->xyz:MotorVehicle]@rdfschema(cars).

@cars {
xyz := ‘‘http://www.w3.org/2000/03/example/vehicles#".
xyz:MotorVehicle[rdfs:subClassOf -> rdfs:Resource].
xyz:PassengerVehicle[rdfs:subClassOf -> xyz:MotorVehicle].
xyz:Truck[rdfs:subClassOf -> xyz:MotorVehicle].
xyz:Van[rdfs:subClassOf -> xyz:MotorVehicle].
xyz:MiniVan[
rdfs:subClassOf -> xyz:Van;
rdfs:subClassOf -> xyz:PassengerVehicle].

}

Fig. 3. RDF Schema Example

370 Michael Sintek and Stefan Decker

This is achieved by passing the ontology (cars) as a parameter to the RDF
Schema rules, whereas the query

FORALL C <- C[rdfs:subClassOf->xyz:MotorVehicle]@cars.

results in just the direct subclasses of xyz:MotorVehicle.

2.2 TRIPLE/DAML+OIL

DAML+OIL [3] (and also OIL [17]) are description logics extensions of RDF
Schema that cannot be mapped to Horn logic directly. For this reason, a model
daml oil(Mdl) is provided that accesses a description logics classifier (e.g., FaCT)
to realize the semantics of DAML+OIL. Access to the daml oil(Mdl) model
is restricted to premises in rules; facts and rule heads must not contain any
references to it.
The resulting rule language is a hybrid rule language amalgamating Horn

rules and description logics similar to Carin [13]. The main difference is that
Carin’s primary goal is to remain complete and correct. This is achieved by
restricting the Horn part to function-free, recursive rules and by either restricting
the description logics part by removing the constructors ∀R.C and (≤ n R) or by
further restricting the Horn rules to be role-safe (i.e., by restricting the way in
which variables can appear in role atoms in the rules, similar to safety conditions
on Datalog KBs).
In TRIPLE/DAML+OIL, neither the Horn rules nor the description logics

part are restricted in any way, resulting in an incomplete language. But since
Prolog implementations for Horn logic are already incomplete, this does not
make things worse. The resulting language is, on the other hand, quite powerful
and meets the pragmatic requirements of a rule and transformation language for
the semantic web.
In the DAML+OIL example in Figure 4, Herbivore and Carnivore are (in-

correctly) defined to be disjoint, therefore the class Omnivore is unsatisfiable
which will be revealed by the query unsatisfiable(animals:Omnivore) @
check(animals:ontology).

3 TRIPLE0 in RDF

In this section, we describe how to represent TRIPLE0 in RDF. Appendix A
contains the RDF Schema definition for TRIPLE0.
Representing a rule language like TRIPLE in RDF (or XML) allows rules to

be distributed on the Web, e.g. between communicating agents, which is the
primary goal of the RuleML initiative [2].
A possible scenario could be similar to that of mobile agents, e.g.: a customer

intending to purchase some goods formulates his interests/preferences etc. as a
set of TRIPLE rules and facts, sends them (encoded in RDF) to some vendors
who enact them on their local knowledge bases (after transformation into their
own rule languages), and then send the results back to the buyer.

TRIPLE, a Language for the Semantic Web 371

daml := ’http://www.daml.org/.../daml+oil#’.
animals := ’http://www.example.org/animals#’.
@animals:ontology {
animals:Animal[rdf:type -> daml:Class].
animals:Herbivore[rdf:type -> daml:Class;
daml:subClassOf -> animals:Animal].

animals:Carnivore[rdf:type -> daml:Class;
rdfs:subClassOf -> animals:Animal;
daml:disjointWith -> animals:Herbivore].

animals:Omnivore[rdf:type -> daml:Class;
rdfs:subClassOf -> animals:Herbivore;
rdfs:subClassOf -> animals:Carnivore].

}
FORALL Ont @check(Ont) {
FORALL C unsatisfiable(C) <-
C[daml:subClassOf ->
daml:Nothing]@daml_oil(Ont).

}

Fig. 4. Animals Example for TRIPLE/DAML+OIL

Namespace for TRIPLE in RDF In the following,
‘triple’ denotes the TRIPLE namespace (something like
‘http://www.semanticweb.org/2001/06/30/triple#’).

Abbreviations Abbreviations for namespaces and resources are not necessary: we
simply use the XML namespace and entity declarations.

Triples, Molecules, Path Expressions a[b → c] becomes an instance of
triple:Triple which is a subclass of rdf:Statement:

<triple:Triple>
<triple:subject rdf:resource="#a"/>
<triple:predicate rdf:resource="#b"/>
<triple:object rdf:resource="#c"/>

</triple:Triple>

There is no need for an RDF representation of molecules like a[b → c; p →
q; . . .] since they are equivalent to the conjunction of single Triples. The same
holds for path expressions (which can be split into separate Triples).

Associated Models, Model Expressions Every Triple can have an associated
model: a[b→ c]@m becomes

<triple:Triple>
<triple:subject rdf:resource="#a"/>
<triple:predicate rdf:resource="#b"/>

372 Michael Sintek and Stefan Decker

A : N −→ resource(A, N) (1)

O[P → V] −→ statement(O, P, V) (2)

S@M −→ true(S, M) for statements (and atoms) S (3)

<S > −→ S for statements S (4)

O[P1 → V1; P2 → V2; . . .]@M −→ O[P1 → V1]@M ∧ (5)

O[P2 → V2]@M ∧ . . .

true(S, M1 ∩M2) −→ true(S, M1) ∧ true(S, M2) (6)

true(S, M1\M2) −→ true(S, M1) ∧ ¬ true(S, M2) (7)

X := Y. S(X) −→ ∀ X (X = Y ∧ S(X)) (8)

for clause sequences S(X)

Fig. 5. The RDF-specific Rewrite Rules

<triple:object rdf:resource="#c"/>
<triple:model rdf:resource="#m"/>

</triple:Triple>

Note that triple:model is a property that may be used on all formulas and
clauses, not only on Triples (see the section on @-Expressions below). Any
term can be used as a model; complex model expressions can be built with
triple:ModelUnion, triple:ModelIntersection etc., e.g.:

<triple:ModelUnion>
<triple:firstModel rdf:resource="#m"/>
<triple:secondModel rdf:resource="#n"/>

</triple:ModelUnion>

Furthermore, a triple model may be denoted by a Skolem function to allow
parameterized models (triple:SkolemModel).

Terms triple:Term comprises rdfs:Literal, triple:Variable, triple:Structure,
triple:Resource, triple:ReifiedTriple, triple:Model etc.

Atoms and Formulas We have two sorts of Atoms: triple:Triple and
triple:HornAtom, where HornAtoms are the normal Horn atoms like p(a,X).
Since we do not support Lloyd-Topor transformations in TRIPLE0, Atom and

And/Or formulas are the only formulas.

Clauses A triple:Clause simply consists of a head (with range triple:Atom) and
a body (with range triple:Formula), both of which may be empty to form facts
and queries. It may also have an associated model (see below).

@-Expressions All forms of @-expressions are mapped to usages of the
triple:model property, even for the { } enclosed blocks, e.g.

TRIPLE, a Language for the Semantic Web 373

@someModel {
clause1.
clause2.

}

becomes

<triple:Clause rdf:ID"clause1">
<triple:model rdf:resource="#someModel"/>

</triple:Clause>

<triple:Clause rdf:ID"clause2">
<triple:model rdf:resource="#someModel"/>

</triple:Clause>

4 Semantic Characterization of TRIPLE

This section provides a first indirect semantic characterization of TRIPLE by
defining a mapping to Horn Logic. This allows TRIPLE to be implemented on
top of XSB (i.e., Prolog with tabled resolution), analogously to the F-Logic Flora
[15].
Figure 5 shows the rewrite rules for mapping RDF-specific features like re-

sources and statements. All other mappings are well-known (Lloyd-Topor trans-
formations for handling of quantifier [14]) or straightforward (see the SiLRI
system [5]). Example:
p:jdow[p:lastname→ doe]@m1. −→
true(statement(resource(p, jdow), resource(p, lastname), doe), m1)

In a future document, a model-theoretic semantics based on minimal Her-
brand models and fixpoint operators will be provided. Compared to the Model
Theory proposal to RDF [8] we did not yet consider anonymous resources. This
is subject of further investigation.

5 Conclusion

In this paper, we presented TRIPLE, a novel query and transformation language
for RDF. Its core is a syntactical extension of Horn logic similar to F-Logic, but
specialized for the requirements on the semantic web by making web resources,
(RDF) models, and statements first class citizens.
Its main purpose is to query web resources in a declarative way, e.g. for

intelligent information retrieval based on background knowledge like ontologies
and search heuristics. For early approaches in this area, refer to, e.g., [7,6,16].

TRIPLE’s layered architecture allows extensions of RDF to be implemented
as extension modules (via parameterized models). Simple object-oriented exten-
sions like RDF Schema can be directly implemented with the extended Horn

374 Michael Sintek and Stefan Decker

logic features of TRIPLE, other extensions like DAML+OIL are realized via in-
teraction with external reasoning components like a description logics classifier.

TRIPLE’s model concept (esp. the parameterized models) enables the
transformation of models, thus enabling knowledge base and ontology map-
ping/integration tasks which are needed in distributed settings as the semantic
web (see, e.g., [21]).
Since models are first class citizens in TRIPLE, modal functionalities as

needed in agent communication are also provided (e.g., agent A “believes” state-
ments in model M, which has been received from agent B, to be true).

TRIPLE is currently being developed by the authors. An implementation of
TRIPLE based on XSB is available at: http://triple.semanticweb.org. In
this version, all RDF data and TRIPLE rules are compiled into a single PRO-
LOG program, therefore restricting the size of the knowledge base to what the
underlying PROLOG system (i.e., XSB) can handle.
Future versions will allow querying distributed RDF data without compiling

remote data to the local (PROLOG) knowledge base.

References

1. Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate Destiny
of the World Wide Web by Its Inventor. Harper San Francisco, September 1999.

2. Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale of RuleML: A
Markup Language for Semantic Web Rules. In International Semantic Web Work-
ing Symposium (SWWS), 2001.

3. DAML Joint Committee. DAML+OIL, 2001. URL: http://www.daml.org/
2001/03/daml+oil-index.html.

4. DCMI. Dublin Core Metadata Initiative, 2001. URL: http://purl.org/dc/.
5. Stefan Decker, Dan Brickley, Janne Saarela, and Jürgen Angele. A query and

inference service for RDF. In QL’98 — The Query Languages Workshop, Boston,
USA, 1998. WorldWideWeb Consortium (W3C).

6. Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer. Ontobroker: On-
tology Based Access to Distributed and Semi-Structured Information. In R. Meers-
man et al., editor, Semantic Issues in Multimedia Systems. Kluwer Academic Pub-
lisher, 1999.

7. Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer. Ontobroker: The
Very High Idea. In Proc. 11th Int. Florida AI Research Symposium (FLAIRS-98),
May 1998.

8. Patrick Hayes. RDF model theory (W3C working draft). Technical report, W3C,
2002.

9. Ian Horrocks. The FaCT System, 2001. URL: http://www.cs.man.ac.uk/
∼horrocks/FaCT/.

10. G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying
CommunityWeb portals, 2001.

11. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42:741–843, July 1995.

12. Martin S. Lacher and Stefan Decker. RDF, Topic Maps, and the Semantic Web.
Markup Languages: Theory and Practice, 2002. Accepted for publication.

TRIPLE, a Language for the Semantic Web 375

13. Alon Y. Levy and Marie-Christine Rousset. CARIN: A Representation Language
Combining Horn Rules and Description Logics. In 12th European Conference on
Artificial Intelligence, 1996.

14. J.W. Lloyd and R.W. Topor. Making Prolog more Expressive. Journal of Logic
Programming, 3:225–240, 1984.

15. B. Ludäscher, Guizhen Yang, and Michael Kifer. FLORA: The secret of object-
oriented logic programming. Technical report, SUNY at Stony Brook, 1999.

16. Sean Luke, Lee Spector, David Rager, and Jim Hendler. Ontology-based Web
Agents. In Proceedings of First International Conference on Autonomous Agents
(AA-97), 1997.

17. OIL. Ontology Inference Layer, 2001. URL: http://www.ontoknowledge.org/
oil/.

18. SUNY. The XSB Programming System. Dept. of Computer Sci-
ence, SUNY at Stony Brook, 2000. URL: http://www.cs.sunysb.edu/
∼sbprolog/xsb-page.html.

19. W3C. Resource Description Framework (RDF) Schema Specification 1.0, 2001.
URL: http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

20. W3C. Semantic Web Activity: Resource Description Framework (RDF), 2001.
URL: http://www.w3.org/RDF/.

21. Gio Wiederhold, editor. Intelligent Integration of Information. Kluwer Academic
Publishers, July 1996.

A RDF Schema for TRIPLE0

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
<!ENTITY triple ’http://www.semanticweb.org/2001/06/30/triple#’>]>
<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;"
xmlns:triple="&triple;" xmlns="&triple;">

<rdfs:Class rdf:ID="Triple">
<rdfs:subClassOf rdf:resource="&rdf;Statement"/>
<rdfs:subClassOf rdf:resource="&triple;Atom"/>

</rdfs:Class>

<rdf:Property rdf:ID="subject">
<rdfs:subPropertyOf rdf:resource="&rdf;subject"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>

</rdf:Property>

<rdf:Property rdf:ID="predicate">
<rdfs:subPropertyOf rdf:resource="&rdf;predicate"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>

</rdf:Property>

376 Michael Sintek and Stefan Decker

<rdf:Property rdf:ID="object">
<rdfs:subPropertyOf rdf:resource="&rdf;object"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>

</rdf:Property>

...

<rdfs:Class rdf:ID="Term"/>

<rdfs:Class rdf:ID="Variable">
<rdfs:subClassOf rdf:resource="&triple;Term"/>

</rdfs:Class>

<Description rdf:about="&rdfs;Literal">
<rdfs:subClassOf rdf:resource="&triple;Term"/>

</Description>

<rdfs:Class rdf:ID="Resource">
<rdfs:subClassOf rdf:resource="&triple;Term"/>

</rdfs:Class>

<rdfs:Class rdf:ID="ReifiedTriple">
<rdfs:subClassOf rdf:resource="&triple;Term"/>

</rdfs:Class>

<rdf:Property rdf:ID="triple">
<rdfs:domain rdf:resource="&triple;ReifiedTriple"/>
<rdfs:range rdf:resource="&triple;Triple"/>

</rdf:Property>

<rdfs:Class rdf:ID="Structure">
<rdfs:subClassOf rdf:resource="&triple;Term"/>

</rdfs:Class>

<rdf:Property rdf:ID="functor">
<rdfs:domain rdf:resource="&triple;Structure"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:ID="args">
<rdfs:domain rdf:resource="&triple;Structure"/>
<rdfs:range rdf:resource="&triple;TermSeq"/>

</rdf:Property>

<rdfs:Class rdf:ID="TermSeq">
<rdfs:subClassOf rdf:resource="&rdf;Seq"/>

</rdfs:Class>

TRIPLE, a Language for the Semantic Web 377

<rdfs:Class rdf:ID="Formula"/>

<rdf:Property rdf:ID="model">
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:domain rdf:resource="&triple;Formula"/>
<rdfs:range rdf:resource="&triple;Term"/>

</rdf:Property>

<rdfs:Class rdf:ID="BinaryFormula">
<rdfs:subClassOf rdf:resource="&triple;Formula"/>

</rdfs:Class>

<rdf:Property rdf:ID="firstFormula">
<rdfs:domain rdf:resource="&triple;BinaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>

</rdf:Property>

<rdf:Property rdf:ID="secondFormula">
<rdfs:domain rdf:resource="&triple;BinaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>

</rdf:Property>

<rdfs:Class rdf:ID="And">
<rdfs:subClassOf rdf:resource="&triple;BinaryFormula"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Or">
<rdfs:subClassOf rdf:resource="&triple;BinaryFormula"/>

</rdfs:Class>

<rdfs:Class rdf:ID="UnaryFormula">
<rdfs:subClassOf rdf:resource="&triple;Formula"/>

</rdfs:Class>

<rdf:Property rdf:ID="formula">
<rdfs:domain rdf:resource="&triple;UnaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>

</rdf:Property>

<rdfs:Class rdf:ID="Atom">
<rdfs:subClassOf rdf:resource="&triple;Formula"/>

</rdfs:Class>

<rdfs:Class rdf:ID="HornAtom">
<rdfs:subClassOf rdf:resource="&triple;Atom"/>

</rdfs:Class>

<rdf:Property rdf:ID="predicateSymbol">
<rdfs:domain rdf:resource="&triple;HornAtom"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

378 Michael Sintek and Stefan Decker

</rdf:Property>

<rdf:Property rdf:about="#args">
<rdfs:domain rdf:resource="&triple;HornAtom"/>

</rdf:Property>

<rdfs:Class rdf:ID="Clause"/>

<rdf:Property rdf:ID="head">
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:range rdf:resource="&triple;Atom"/>

</rdf:Property>

<rdf:Property rdf:ID="body">
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:range rdf:resource="&triple;Formula"/>

</rdf:Property>

</rdf:RDF>

	1 Introduction
	1.1 Features of TRIPLE
	1.2 Example: Dublin Core Metadata

	2 The TRIPLE Layered Architecture
	2.1 TRIPLE/RDFS
	2.2 TRIPLE/DAML+OIL

	3 TRIPLE_0 in RDF
	4 Semantic Characterization of TRIPLE
	5 Conclusion
	References
	A RDF Schema for TRIPLE_0

