
Bringing Together
Semantic Web and Web Services

Joachim Peer

Institute for Media and Communications Management
University of St. Gallen

Blumenbergplatz 9, 9000 St. Gallen, Switzerland
joachim.peer@unisg.ch

Abstract. There are two major ongoing efforts to advance the World
Wide Web. On one side there is the Semantic Web research, on the
other side is the Web Service research. Both activities aim to make con-
tent on the web accessible and usable not only for humans but also
for machines in order to create a foundation for intelligent automated
services and business processes. These two efforts are highly complemen-
tary, and there is work in progress towards a unification of them. This
paper contributes to this process of unification by presenting a method
of connecting Web Services descriptions with Semantic Web ontologies.

1 Introduction

The World Wide Web is built for human use rather than for use by machines. At
the moment we can identify two efforts being undertaken to make information
on the web better accessible to machines. One of the efforts is the Web Service
initiative, the other effort is the Semantic Web research.

It is the objective of both of these efforts to create a “next generation web”,
which provides new means for machines to use information on the web. While the
Web Service effort is primary focused on syntactical standardisation of data ex-
change and service publishing, the Semantic Web effort is focused on expressing
explicit semantics on the web.

This paper shows that the Semantic Web and Web Services are different
but complementary approaches which can be combined to enhance the current
web. Furthermore this paper will demonstrate that the convergence of these
two efforts can be achieved with technology already available today. As a first
step to validate this assumption the paper will present a concept of semantic
annotations of WSDL documents.

This paper is structured as follows: Section 2 presents the existing background
for this paper by describing the two approaches to provide a “next generation
web” as well as the needs for their combination and the gap existing between
them. Section 3 describes an approach to bridge this gap and illustrates it by
an example. The paper concludes with a summary of findings and an outlook of
activities to implement the suggested solution.

I. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 279–291, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

280 Joachim Peer

2 Foundations

2.1 Web Services

Web Services are self contained, self described modular applications, which can
be published, found and used on the web [12]. The infrastructural basis of the
Web Services concept is formed by a small set of XML based standards.

Web services are important cornerstones of emerging architectures and appli-
cation frameworks like Microsoft.NET, IBM Dynamic eBusiness and Sun ONE.
Even eCommerce architectures like eSpeak or ebXML have been adapted to fit
into the Web Service infrastructure. These and many other ongoing activities
indicate the industrial backing of the Web Service efforts. The development of
Web Service related efforts is coordinated by the World Wide Web consortium
and by industrial consortia like the Web Service Interoperability Group.

The original motivation behind these activities is to enhance interoperability
between heterogeneous information systems. Interoperability is primarily needed
by two majors areas of application: on the one hand it is needed for enterprise
application integration (EAI) in order to connect separated systems quickly and
at low costs; on the other hand, interoperability is needed by business to business
(B2B) integration, to reduce costs and enhance flexibility of cooperation.

The current Web Service architecture is built around a small set of de facto
standards for message transfer, Web Service description and Web Service dis-
covery:

Web Service Standards. The standard for the exchange of messages between
Web Services is called Simple Object Access Protocol (SOAP) [22]. The SOAP
specification defines an XML schema for a container which holds messages to
be transported; it also defines a set of encoding rules and a convention for the
representation of remote procedure calls (RPC) and responses.

The concept behind SOAP is not new. Many of its ideas are derived from
RPC-related techniques like DCOM, CORBA or RMI. The key benefit of SOAP
is its platform independence which its predecessors could not provide. SOAP is
neither bound to Windows, nor to Java nor to some implementations of Object
Request Brokers. This makes SOAP the preferred communication protocol in
the world of Web Services.

The current standard of the description of Web Services is the Web Service
Description Language (WSDL) [23] which is currently under review at the World
Wide Web consortium. The syntax of WSDL is defined in XML Schema. If SOAP
is to be compared with RPC related techniques such as CORBA or RMI, WSDL
has to be compared with Interface Definition Languages (IDL). The technical
requirements and details needed when accessing a Web Service are described by
a WSDL document. A WSDL document describes the location of a web service,
its available operations and their associated messages and data types as well as
the format of their result values.

This paper will use some elements of the WSDL terminology; therefore the
most important elements of WSDL documents will be described briefly: The

Bringing Together Semantic Web and Web Services 281

XML Schema types of message parameters may be defined using a <types> ele-
ment. A <message> element is needed to compose such data types into messages.
Messages need to be grouped into operations, which may define an <input>, an
<output> and a <fault> message. Depending on the presence or absence of
input- and output messages, operations may be defined as one-way messages,
request/response messages, solicit/response messages or notifications. Opera-
tions are grouped within a specific <portType> element. All WSDL elements
described so far allow the definition of web service signatures in an abstract
and portable manner. To make these abstract operations available via a defined
method of transport, <binding> elements are used which declare message for-
mats and protocol details for operations and messages of a particular portType.
An individual endpoint address of a binding is defined by a <port> element,
which in turn may be referenced by a <service> element. WSDL documents
can incorporate information from other WSDL documents using an <import>
element. This allows modularization of WSDL descriptions and stimulates the
reuse of common abstract messages, operations and data types. This way WSDL
enables the standardization of abstract Web Service descriptions.

In order to help potential users to discover Web Services for particular
tasks, infrastructures like “Yellow Pages” are needed. Various different archi-
tectures are proposed for this kind of service. The most important concept is the
registry-based UDDI (Universal Description, Discovery and Integration) frame-
work, which enables the registration of businesses and services using various
kinds of taxonomies (e.g. UNSPSC, SIC, NAICS). Web Services that are not en-
listed in registries may be published on Web Pages using Web Service Inspection
Language [9] documents, which may be processed by search engines.

Limitations of Web Services. The Web Service standards described above
are technical conventions which allow parties to easily exchange information in
a standardized manner. These standards solve many problems on the technical
level but the semantics of Web Services and Web Service descriptions as a whole
are not addressed by them. The following fragment of a Web Service description
illustrates this fact:
<message name="getTemperatureRequest">
<part name="zipcode" type="xsd:string"/>

</message>
<message name="getTemperatureResponse">
<part name="temperature" type="xsd:float"/>

</message>
<portType name="TemperatureServicePortType">
<operation name="getTemperature" >
<input message="tns:getTemperatureRequest"

name="getTemperatureRequest"/>
<output message="tns:getTemperatureResponse"

name="getTemperatureResponse"/>
</operation>

</portType>

282 Joachim Peer

An agent capable of WSDL can process this data structure and is able to
interpret that the service offers messages called getTemperatureRequest and
getTemperatureResponse. It can also interpret that these messages are used
by a request/response operation called getTemperature. Furthermore it can
determine the name and XML Schema types of the parameters zipcode and
temperature. But it will not be able to figure out the actual meaning of these
operations, e.g. that the service described will take Zone Improvement Plan
(ZIP)-code of a North American city and will return the temperature of the air
in that city expressed in units of Fahrenheit.

An agent is only able to interpret and process such information correctly if its
internal model of the domain is in some way connected to the hidden semantics
of the WSDL description. This kind of connection can be achieved if both the
internal model of the agents and the description of the web service are related
to a shared conceptualization.

A simple kind of a shared conceptualization is a domain-specific standard,
which assigns a certain semantic meaning to a specific syntactical structure. The
modularization of WSDL allows to define such standards; e.g. domain specific
port types (and its supporting operations, messages and data types) may be
multilaterally declared as a standard an may be incorporated into individual
web service descriptions using WSDL <import> statements and can be bound to
a specific protocol and physical address using <binding> and <port> elements.

As a result, agents programmed against that domain-specific standard de-
scriptions can interact with every Web Service compliant to that standard; the
agents’ internal model is connected to the semantic meaning represented by the
standard. This kind of connection is typically established by a developer who
interprets the standard and incorporates its meaning into the agent she/he is
implementing.

The benefits of this concept are the simple means for implementation and
the predictable behaviour of automatic agents. The disadvantages of this concept
can be described as follows: agents programmed against a specific set of Web
Service interfaces can only solve a very restricted set of problems using a very
restricted set of problem solving methods; they are basically static and inflexible.

If the semantics of such standards would be described explicitly in a machine
interpretable manner, agents could gather information about purpose and usage
of services at runtime and would be able to behave in a more flexible manner.
This problem area is the object of investigations undertaken by Semantic Web
research.

2.2 Semantic Web

The Semantic Web can be defined as “an extension of the current web in which
information is given well-defined meaning, better enabling computers and people
to work in cooperation” [1].

The core concept of the Semantic Web is the representation of data in a
machine interpretable way. The basic means for this purpose is provided by the
Ressource Description Framework (RDF) [18]. RDF allows the representation of

Bringing Together Semantic Web and Web Services 283

data as triples of subjects, predicates and their values, thus providing a basic
and widely applicable binary propositional language.

To build more complex models, a Frame-like technique [15] is needed to
separate the universe of discourse in classes, properties and their instanciations
thus providing stronger modelling capabilites. These are provided by the RDF
Schema standard [19].

The use of RDF and RDF Schema enables the construction of semantic
nets [17] which can describe all kinds of resources. However, the problem with
semantic nets is that they tend to lead to very complex graphs with sub-optimal
reasoning behaviour.

A proposed solution to this problem is to restrict the expressiveness of seman-
tic nets. This topic is well studied by the research field of Description Logics.
Description logics restrict semantic nets to adhere to a controlled set of epis-
temological constructors (”primitives”) which may be used as building blocks
defining complex structures (ontologies1).

The set of constructors supported by a Description Logics system determines
its reasoning behaviour. These relationships are well studied not only in theory
but also in concrete systems like FaCT [8] or CLASSIC [2].

Efforts to leverage the benefits of Description Logics to the Semantic Web
have led to the creation of the ontology language DAML+OIL. The syntax and
some basic semantics of DAML+OIL are defined using RDF Schema. The precise
semantics of its constructors are defined by axiomatic semantics expressed in first
order logics [3] as well as by model theoretic semantics [7].

Applying Semantic Web Technology to Web Services. Adding semantic
information to syntactical Web Service definitions can help an automatic agent
to better interpret the purpose and usage of Web Services, thus leading to a
higher level of flexibility. However, this assumption is based on two premises
(a) that the referenced ontologies are built in a way that supports automatic
reasoning and (b) that the agent is able to relate the concepts provided in the
ontology to concepts of its internal model of the world.

As it has been discussed above, premise (a) can be fulfilled by using Descrip-
tion Logics based ontology formalisms like DAML+OIL. However, premise (b)
can only be satisfied if the elements used in the referenced ontology are derived
from concepts, which are common to all parties involved. This calls for stan-
dardised top level ontologies and agreements of the semantics expressed by that
ontologies.

A DAML+OIL based framework providing such well defined ontologies for
semantic markup of Web Services is DAML-S [12,14], which is currently under
development and available as version 0.6. DAML-S aims to provide a set of onto-
logical constructs which enables agents to automatically discover, evaluate and
invoke Web Services, potentially as a part of an overall task (workflow). Addi-

1 This paper uses the definition provided by Gruber [6], who defines an ontology as a
“formalization of a conceptualization”.

284 Joachim Peer

tional capabilities like monitoring of Web Services are supposed to be supported
by future versions of DAML-S.

DAML-S consists of a couple of top-level ontologies containing constructs to
describe various aspects of services needed to express its aim and usage. They are
expressed by a “ServiceProfile”, a “ServiceModel” and a “ServiceGrounding”.

A ServiceProfile contains information needed to get a high level overview of
the purpose of a service, its general input and output, its requirements (precon-
ditions like membership or financial liquidity) and the effects of its execution.
Moreover a ServiceProfile may provide non-functional aspects of the service like
guaranteed levels of quality and it can also provide some information about the
service provider. This kind of data is needed by an agent to quickly determine
the applicability of a particular service for a particular task.

A ServiceModel provides a more detailed description of the operations pro-
vided by the Web Service. It allows the description of a Web Service in terms
of a set of processes and the input, output, preconditions and effects of each of
the processes. The process structure may be built in a recursive way, i.e. services
may consist of a set of sub-services. ServiceModels may also contain statements
about the runtime behaviour and interaction patterns of processes by defining
workflow constructs like conditional switches, loops or parallel executions.

This kind of modelling enables both the fine-grained description of Web Ser-
vices on the lower level of operations and message-parameters as well as the
description of a Web Service and its behaviour as a whole.

The Remaining Gap. In contrast to the ServiceProfile and ServiceModel the
proposed ontology for a ServiceGrounding does not exist yet. Therefore it is
currently not possible to exploit the benefits of the semantic description of Web
Services. This paper provides an approach that can provide that missing link for
the domain of Web Services.

3 Proposed Solution

This paper proposes a method to bridge the gap between the semantic descrip-
tions of Web Services (i.e. DAML-S ServiceProfiles and ServiceModels) on the
one side and the technical descriptions (i.e. WSDL documents) on the other side.

The motivation behind our approach is as follows: all the technical aspects
of Web Service usage are already described in WSDL documents. Instead of
modelling all of that information in a meta data language, we propose to use the
data in the WSDL document directly. The bridge between WSDL descriptions
an Semantic Web ontologies is defined within the WSDL document.

To bridge between the structural WSDL definition and its intended meaning,
we need to map two kinds of structural data to its semantics:

– Message Parts, and indirectly their respective data types
– Operations

Bringing Together Semantic Web and Web Services 285

In order to map structural data types to their semantics, a flexible data mapping
mechanism is required. Such a mechanism can be found in the Meaning Definition
Language (MDL) [24]:

3.1 Meaning Definition Language

MDL is an XML based language which allows to explicitly define how the struc-
tures of an XML data type conveys meanings. The meanings referenced may be
contained in ontologies expressed by languages like DAML+OIL.

Basically, MDL defines the semantic information carried by nodes of an XML
Schema definition. Nodes are referenced using XPATH [21] expressions. The
meta model of the MDL is based on a triple of objects, properties and associa-
tions. This meta model leads to a widely applicable way of mapping structure
to meaning (i.e. classes, properties and associations defined in DAML+OIL on-
tologies): To define how an XML Schema definition represents an instance of a
class, the XPATH of at least one node type needs to be provided; to define how
a schema represents a property, the XPATHs of at least two node types need to
be provided; to define how a schema represents an association, the XPATHs of
at least three nodes types need to be provided [24].

XML documents are hiding information not only inside their structure, but
also inside the actual values of related elements and attributes. For instance,
a certain XML element with XPATH ”/school/pupil” may be assigned to a
class “mature-student” or to a class “young-student” in dependence of a related
attribute “age”. To handle these and much more complicated cases, MDL pro-
vides several ways to incorporate conditions, using XPATH-compliant syntax.
The listing below illustrates this technique, demonstrating how to define the
meaning of elements of an XML Schema by mapping them to ontology elements
like “mature-student” and “young-student”:
<element context = ’/school/pupil>
<me:object class= ’mature-student’ >
<me:when objectToLeftValue = ’@age’

test = ’>’ rightValue = ’30’/>
<me:inclusion>
<me:condition assoc="attends"
obj1="mature-student" obj2="school" />

</me:inclusion>
</me:object>
<me:object class= ’young-student’ >
<me:when objectToLeftValue = ’@age’

test = ’<=’ rightValue = ’30’/>
<me:inclusion>
<me:condition assoc="attends"
obj1="young-student" obj2="school" />

</me:inclusion>
</me:object>
</element>

286 Joachim Peer

A very useful property of MDL mappings is their bi-directionality: a valid
MDL mapping between the elements of an XML Schema type and the elements
of an ontology contains sufficient information to transform ontological data to
its respective XML representation as well as to extract the meaning of a given
XML document.

This feature is of great importance for the overall concept of the integra-
tion of Web Services with the Semantic Web. An agent capable of processing
DAML+OIL may use MDL to transform data from a DAML+OIL repository
into the XML grammar required by the service it wants to interact with. In
case of a service response, the agent may use MDL to automatically generate
DAML+OIL representations from the XML-based service-output.

3.2 Hook-Ups

The actual application of data mappings is performed by links defined inside
the WSDL document. We will call these links “Hook-Ups”. Hook-Ups must not
violate the structural integrity of a WSDL file, because SOAP containers, de-
velopment environments and common Web Service applications dealing with
WSDL documents would be unable to process such documents. Therefore we
use an annotation method as used by systems like SHOE [11] or Ontobroker’s
HTMLA [4] and use an extension mechanism provided by the hosting data for-
mat. In the case of WSDL, which is based on XML, we can use the extensions
mechanism provided by XML namespaces [20].

Hook-Ups for Message Parts and Data Types. For combining message
parts with their respective meaning we propose to use a namespace-qualified
Hook-Up “semantic:schema-adjunct” which refers to an external MDL definition
(called “adjunct” in MDL jargon). Alternatively, the MDL definition may be
part of the XML schema definition inside the <types> element of the WSDL
document. The standardized XML Schema element <appinfo> could be used
for this purpose. However, this option has the disadvantage of ignoring that the
meaning of an XML Schema type may change with the context (e.g. message
type) it is associated with. Therefore this paper proposes to define the reference
to a schema-adjunct always in correspondence to the message it is used in (as
it will be shown in Fig.1 below).

Hook-Ups for Operations. Semantic Hook-Ups for message-parts as de-
scribed above already provide an important part of the semantics of an op-
eration. However, this is not a sufficient description yet. We also need to map
the semantics of an operation as a whole to its respective meaningful pendant
in a (DAML-S) ontology.

For this reason this paper proposes to provide a WSDL <operation> element
with a Hook-Up by introducing an attribute <operation> in the newly created
namespace.

Bringing Together Semantic Web and Web Services 287

3.3 An Example

We will now illustrate this technique by annotating the WSDL code fragment
already introduced in Sect. 2.1. The semantic annotations adhere to the names-
pace prefix semantic.

In this example we define the meaning of the operation “getTemperature”
by adding a Hook-Up <semantic:operation> referring to the DAML+OIL con-
struct which defines the meaning of the operation (in this case, this meaning is
provided by the DAML+OIL class http://another.org/agentTasks2344.daml#
MeasuringTemperature).

Message parts contained in this operation are linked to their meaningful
pendants, a DAML-S process-input “zip_code” and a DAML-S process-output
“temperature”.

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE uridef[
<!ENTITY ont1 ‘‘http://some.org/classificationschemate.daml">
<!ENTITY ont2 ‘‘http://some.other.org/nature.daml">
<!ENTITY ont3 ‘‘http://another.org/agentTasks2344.daml">
<!ENTITY adj ‘‘http://another.org/adjunct ‘‘>

]> <definitions name="DemoTemperatureService"
targetNamespace="http://weatherstation.org/temperature"
xmlns:tns="http://weatherservice.com/temperature"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:semantic="http://some.org/spec/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

<message name="getTemperatureRequest">
<part name="zipcode" type="xsd:string"
semantic:type="&ont1;#ZipCode"
semantic:schema-adjunct="&adj;_zipcode.mdl"/>

</message>
<message name="getTemperatureResponse">
<part name="return"
semantic:type="&ont2;#CelsiusTemperature"
semantic:schema-adjunct="&adj;_temperature.mdl"/>

</message>
<portType name="DemoTemperatureServicePortType">
<operation name="getTemperature"
semantic:operation="&ont3;#MeasuringTemperature" >
<input message="tns:getTemperatureRequest"/>
<output message="tns:getTemperatureResponse"/>

</operation>
</portType>
<-- rest of the WSDL document (binding, service - element) -->

</definitions>

288 Joachim Peer

A graphical representation of this semantic annotation is shown in Fig. 1:

<service>

<operation>

<input>

<output>

service:
Service

Temperature
Service

service:
Process
Model

service
:Profile

rdfs:subClassOf

service:presents
service:describedBy

process:
input

zip_
code

m:Zip
Code

rdfs:range

temp
erature

rdfs:subPropertyOf

rdfs:subPropertyOf

n:Temperat
ure

rdfs:range

Measurement
Process

<part>

<part>
MDL

MDL

service:Simp
leProssess

<operation>

... ...

rdfs:subClassOf

rdfs:domain

rdfs:domain

process:hasProcess

World of Web Services World of Declarative Semantics

rdfs:subClassOf

...

Fig. 1. Linking a WSDL document to its meaning

The annotated WSDL description may be referenced by a t-Model entry of
a UDDI registry and it may be used by agents which are not capable of drawing
logical inferences, thus providing necessary backward compatibility to existing
solutions.

The DAML-S descriptions the WSDL annotations refer to may be stored at
any other place on the web and may be found and processed by (Semantic) Web
Crawlers and made accessible for search engines like ASCS (e.g. Agent Semantic
Communication Service [10]). Such search engines or similar tools for semantic
reasoning may be used to query DAML-S descriptions to find the Web-Services
(and their WSDL descriptions) which fit the needs for a particular process or
task.

If the search was successful and an URL of an annotated WSDL description of
the matching service or services was found, then the agent can use the annotated
WSDL document to gather the technical details needed for calling the services’
operations and to transform DAML+OIL instances to XML elements used by
the Web Service. The XML based result values returned by the Web Service may
then be transformed back into DAML+OIL-instances, and may used for further
processing by the agent, eventually triggering additional service calls.

Bringing Together Semantic Web and Web Services 289

4 Related Work

The idea of combining Semantic Web techniques with the concept of Web Ser-
vices was presented in several publications, with different focus. A very influen-
tial work is DAML-S [13,14], which establishes a framework for reasoning over
web service meta data. The relationships between WSDL and DAML-S were
also briefly discussed in [13], where the authors state that WSDL differs from
DAML-S, because DAML-S covers all aspects of service descriptions, whereas
WSDL is primarily focussing on service grounding. The present paper is based
on this finding and suggests a way how agents capable of DAML-S can interact
with WSDL-based service groundings.

A proposal with some similarities to the ideas described in the present paper
can be found in [16]. This paper demonstrates how WSDL descriptions can be
expressed using RDF, thus providing a bridge between Semantic Web and Web
Services. The concept presented in [16] has the advantage that all elements of
(RDF encoded) WSDL descriptions are identified by an URI, thus allowing other
RDF documents to assert statements about them. This way the semantic Hook-
Ups could be defined completely outside the WSDL document. However, the
disadvantage of such a method is that RDF encoded WSDL documents can not
be considered as valid WSDL. This requires to maintain both an XML encoded
and an RDF encoded version of the WSDL document and to keep both in sync.

5 Summary and Outlook

Semantic Web research and the Web Service initiative are different but com-
plementary approaches to enable automatic agents accessing information on the
web in a better way than on the classical human-centric World Wide Web.

Furthermore this paper argues that the convergence of these two efforts can
be achieved with technology available today. As a first step to validate this
assumption the paper presented a concept of semantic annotations of WSDL
which link the structural elements of WSDL documents to semantics contained
in DAML-S models. This concept contributes to the improvement of the current
usage of Web Service technology.

However, the assumptions presented by this paper are not tested yet. The
next step will be to build a prototype which actually demonstrates the con-
cepts presented in this paper in order to test this approach. The challenge
of this project lies in combining existing technologies such as WSDL-, UDDI-
and SOAP-APIs, XML schema validators, MDL interpreters, RDF parsers and
DAML+OIL engines.

Acknowledgements

The author would like to thank Izabella Mierzejewska, Markus Greunz and Rolf
Grütter for their valuable inputs and support.

290 Joachim Peer

References

1. Berners-Lee, T.; Hendler, J.; Lassile, O.: The Semantic Web. Scientific American,
Vol. 5/01, 2001.
(http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html)

2. Borgida, A.; Brachman, R.J.; McGuinness D.L; Alperin Resnick, L.: CLASSIC:
A Structural Data Model for Objects. in Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data , pp 59-67, 1989.

3. Fikes, R.; McGuinness, D.: An Axiomatic Semantics for RDF, RDF Schema, and
DAML+OIL. Stanford University, 2001.
(http://www.daml.org/2001/03/axiomatic-semantics.html)

4. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer Verlag, 2001.

5. Festa, P.: Wanted: Web Service Standards. Online Magazine Article, 2001.
(http://zdnet.com.com/2100-1104-835247.html)

6. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Tech-
nical Report, Stanford University, 1997.

7. van Harmelen, F.; Patel-Schneider, P.; Horrocks, I.: A Model Theoretic Se-
mantics for DAML+OIL. 2001. (http://www.daml.org/2001/03/model-theoretic-
semantics.html)

8. Horrocks, I.: The FaCT system. In H. de Swart (editor), Automate Reasoning with
Analytic Tableaux and Related Methods: International Conference Tableaux’98,
number 1397 in Lecture Notes in Artificial Intelligence, pp 307-312, Springer-
Verlag, 1998. (http:/www.cs.man.ac.uk/˜horrocks/Publications/download/1998/
t98-paper.ps.gz)

9. International Business Machines Corporation: Web Services Inspection Lan-
guage (WS-Inspection) 1.0. Specification, 2001. (http://www-106.ibm.com/
developerworks/webservices/library/ws-wsilspec.html?dwzone=webservices)

10. Lee, J.; Pease, A.; Barbee; C.: Experimenting with ASCS Semantic Search. Project
Report, 2002. (http://reliant.teknowledge.com/DAML/DAML.ps)

11. Luke, S.; Spector, L.; Rager, D.: Ontology-Based Knowledge Discovery on the
World Wid Web. In: Proceedings of the Workshop on Internet-based Information
Systems at the AAAI-96, Portland, Oregon, USA, August 4-8, 1996.

12. Martin, J.: Web Services: The Next Big Thing. XML Journal 2, 2001.
(http://www.sys-con.com/xml/archivesbad.cfm)

13. Martin, D.; Burstein, M.; Ankolenkar, A.; Paolucci, M.; Payne, T.; Sycara, K;
Lassila, O.; McIlraith, S.; Son, T.C; Zeng, H.; Hobbs, J.; Narayanan, S; McDermott,
D.: DAML-S: Semantic Markup for Web Services. White paper, 2001.
(http://www.daml.org/services/daml-s/2001/10/daml-s.pdf)

14. McIlraith, S.A.; Son, T.C.; Zeng, H.: Semantic web services. IEEEIntelligent Sys-
tems, 16(2), March/April, 2001.

15. Minsky, M.: A Framework for Representing Knowledge. MIT-AI Laboratory Memo
306, June, 1974. (http://web.media.mit.edu/ minsky/papers/Frames/frames.html)

16. Ogbuji, U.: Supercharging WSDL with RDF - Managing structured Web Service
metadata. IBM developerWorks article, 2000.

17. Quillian, M.R.: Semantic memory. In: Minsky, M(editor), Semantic Information
Processing. M.I.T. Press, 1968.

18. World Wide Web Consortium: Resource Description Framework (RDF) Model and
Syntax Specification. Specification, 1999. (http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/)

Bringing Together Semantic Web and Web Services 291

19. World Wide Web Consortium: Resource Description Framework (RDF) Schema
Specification 1.0. Specification, 1999. (http://www.w3.org/TR/2000/CR-rdf-
schema-20000327)

20. World Wide Web Consortium: Namespaces in XML. Spezification, 1999.
(http://www.w3.org/TR/1999/REC-xml-names-19990114)

21. World Wide Web Consortium: XML Path Language (XPath) Version 1.0. Spezifi-
cation, 1999. (http://www.w3.org/TR/xpath)

22. World Wide Web Consortium: SOAP Version 1.2 Part 0: Primer. 2001
(http://www.w3.org/TR/soap12-part0/)

23. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1.
2001 (http://www.w3.org/TR/wsdl)

24. Worden, R.: A Meaning Definition Language. White paper, 2001.
(http://www.charteris.com/mdl/MDLWhitePaper.pdf)

	1 Introduction
	2 Foundations
	2.1 Web Services
	2.2 Semantic Web

	3 Proposed Solution
	3.1 Meaning Definition Language
	3.2 Hook-Ups
	3.3 An Example

	4 Related Work
	5 Summary and Outlook
	References

