
Learning a Sparse Representation for Object Detection

Shivani Agarwal and Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{sagarwal,danr}@cs.uiuc.edu

Abstract. We present an approach for learning to detect objects in still gray
images, that is based on a sparse, part-based representation of objects.A vocabulary
of information-rich object parts is automatically constructed from a set of sample
images of the object class of interest. Images are then represented using parts
from this vocabulary, along with spatial relations observed among them. Based
on this representation, a feature-efficient learning algorithm is used to learn to
detect instances of the object class. The framework developed can be applied to
any object with distinguishable parts in a relatively fixed spatial configuration. We
report experiments on images of side views of cars. Our experiments show that
the method achieves high detection accuracy on a difficult test set of real-world
images, and is highly robust to partial occlusion and background variation.
In addition, we discuss and offer solutions to several methodological issues that
are significant for the research community to be able to evaluate object detection
approaches.

1 Introduction

This paper describes an approach for learning to detect instances of object classes in
images. The development of reliable object detection systems is important for a wide
variety of problems, such as image classification, content-based image retrieval, tracking
and surveillance. Much research has been done in this direction. However, the problem
remains a largely unsolved one.

The approach presented is based on the belief that the key to finding a solution
to this problem lies in finding the right representation. Specifically, we suggest that in
order to extract high-level, conceptual information such as the presence of an object
in an image, it is essential to transform the raw, low-level input (in this case, the pixel
grayscale values) to a higher-level, more “meaningful” representation that can support
the detection process.

One theory of biological vision explains object detection on the basis of decomposi-
tion of objects into constituent parts [1,2,3]. According to this theory, the representation
used by humans for identifying an object consists of the parts that constitute the object,
together with structural relations over these parts that define the global geometry of the
object. Such a representation also forms the basis of some computational theories of
object detection [4].

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, pp. 113–127, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

114 S. Agarwal and D. Roth

In this paper, we describe an approach that uses an automatically acquired, sparse,
part-based representation of objects to learn a classifier that can be used to accurately de-
tect occurrences of a category of objects in natural scenes. As shown in our experiments,
the method is highly robust to cluttered backgrounds and partial occlusion.

1.1 Related Work

Most work that has used learning in object detection has been done at the pixel level
(e.g., [5,6,7]). Here we mention a small number of recent studies that have deviated from
this, and relate them to our work.

Several approaches represent objects using low-level features. For example, in [8,9],
the object parts are local groupings of common primitive features such as edge fragments,
while in [10], rectangle features are used to capture the presence of edges, bars and other
simple structures. We believe that the expressivity of a part-based representation can
be enhanced by considering distinctive, higher-level parts that are rich in information
content and more specific to the object class of interest. Such an approach has been
followed in [11], in which separate classifiers are used to detect heads, arms and legs of
people in an image, and a final classifier is then used to decide whether or not a person
is present. However, the work in [11] requires the object parts to be manually defined
and separated for training the individual part classifiers. In order to build a system that
is easily extensible to deal with different objects, it is important that the part selection
procedure be automated. Our method for automatically selecting information-rich parts
builds on a technique described in [12], in which interest points are used to collect
distinctive parts. In [12], a generative probabilistic model is learned over these parts.
Our method, on the other hand, does not need to assume any probabilistic model; we
simply collect parts that could be of interest and then directly learn a classifier over them.
In addition, the model learned in [12] relies on a very small number of fixed parts, making
it potentially sensitive to large variations across images. By learning over a large feature
space, we are able to learn a more expressive model that is robust to such variations.

We use a feature-efficient learning algorithm that has been used in a similar task in
[13]. However, [13] uses a pixel-based representation, whereas in our approach, images
are first transformed (automatically) and represented using a higher-level and more sparse
representation. This has implications both in terms of detection accuracy and robustness,
and in terms of computational efficiency: the sparse representation of the image allows
us to perform operations (e.g., computing relations) that would be prohibitive in a pixel-
based representation.

1.2 Problem Specification

We assume some object class of interest. Our goal is to develop a system which, given an
image, can detect instances of this object class in the image, and return their locations.
In the process of finding the locations of these object instances, we also require the
system to be able to output the number of object instances it finds in the image. This
may appear to be a trivial requirement for an object detection system, but as we discuss
later in Section 2.4, it imposes a non-trivial condition that the system must satisfy.

Learning a Sparse Representation for Object Detection 115

1.3 Overview of the Approach

This section outlines our conceptual approach, which consists broadly of four stages.

1. Vocabulary Construction
The first stage consists of building a “vocabulary” of parts that can be used to rep-
resent objects in the target class. This is done automatically by using an interest
operator to extract information-rich parts from sample images of the object of in-
terest. Similar parts thus obtained are grouped together and treated as a single part.

2. Image Representation
Each input image is transformed and represented in terms of parts from the vocab-
ulary obtained in the first stage. This requires determining which parts from the
vocabulary are present in the image; a similarity-based measure is used for this
purpose. Each image is then represented as a binary feature vector based on the
vocabulary parts present in it and the spatial relations among them.

3. Learning a Classifier
Given a set of training images labeled as positive (object) or negative (non-object),
each image is re-represented as a binary feature vector as described above. These
feature vectors are then fed as input to a supervised learning algorithm that learns
to classify an image as a member or non-member of the object class, with some
associated confidence. As shown in our experiments, the part-based representation
captured by the feature vectors enables a relatively simple learning algorithm to
learn a good classifier.

4. Detection Hypothesis using the Learned Classifier
The final stage consists of using the learned classifier to form a reliable detector. We
introduce the notion of a classifier activation map, which is generated by applying
the classifier to various windows in a test image. We then present a method for
producing a good detection hypothesis using this activation map.

This framework can be applied to any object that consists of distinguishable parts
arranged in a relatively fixed spatial configuration. Our experiments are performed on
images of side views of cars; therefore, we will use this object class as a running example
throughout the paper to illustrate the ideas and techniques we introduce.

We describe each stage of our approach in detail in Section 2. Section 3 presents an
evaluation of our method. In this section, we first discuss several methodological issues,
including evaluation and performance measurement techniques, that are important for
the research community to be able to evaluate object detection approaches. We then
present our experimental results. Section 4 concludes with a summary and possible
future directions.

2 Approach

This section describes each stage of our approach in detail.

2.1 Vocabulary Construction

To obtain an expressive representation for the object class of interest, we require dis-
tinctive parts that are specific to the object class but can also capture the variation across

116 S. Agarwal and D. Roth

Fig. 1. Left: A sample object image used in the vocabulary construction stage. Center: Interest
points detected by the Förstner operator. Crosses denote intersection points; circles denote centers
of circular patterns. Right: Patches extracted around the interest points.

different instances of the object class. Our method for automatically selecting such parts
is based on the extraction of interest points from a set of representative images of the
target object. A similar method has been used in [12].

Interest points in an image are points that have high information content in terms of
the local change in signal. They have been used in a variety of problems in computer
vision, including stereo matching [14], object recognition and image retrieval [15]. In-
terest points have typically been designed and used for properties such as rotation and
viewpoint invariance, which are useful in recognizing different views of the same object,
and not for the “perceptual” or “conceptual” quality that is required for reliably detecting
different instances of an object class. However, by using interest points in conjunction
with a redundant representation that is described below, we are able to capture a degree
of conceptual invariance that turns out to be sufficient for this task.

We apply the Förstner interest operator [16,12] to a set of representative images of the
object class. This detects intersection points of lines and centers of circular patterns. A
vocabulary of representative parts is then constructed by extracting small image patches
around the interest points obtained. The goal of extracting a large vocabulary from
different instances of the object class is to be able to “cover” new object instances, i.e.
to be able to represent new instances using a subset of this vocabulary.

In our experiments, the Förstner operator was applied to a set of 50 representative
images of cars, each 100 × 40 pixels in size. Figure 1 shows an example of this process.
Patches of size 13×13 pixels were extracted around each such interest point, producing
a vocabulary of 400 parts from the 50 images. This vocabulary is shown in Figure 2.

As seen in Figure 2, several of the parts extracted by this procedure are visually very
similar to each other. To facilitate learning, it is important to abstract over these parts by
mapping similar parts to the same feature id (and distinct parts to different feature ids).
This is achieved via a bottom-up clustering procedure. Initially, each part is assigned to
a separate cluster. Similar clusters are then successively merged together until no similar
clusters remain. In merging clusters, the similarity between two clusters C1 and C2 is
measured by the average similarity between their respective parts:

similarity(C1, C2) =

∑
p1∈C1

∑
p2∈C2

similarity(p1, p2)
|C1| × |C2|

where the similarity between two parts is measured by normalized correlation, allowing
for small shifts of upto 2 pixels. Using this technique, the 400 parts were grouped into
270 clusters. While several clusters contained just one element, parts with high similarity
were grouped together. Figure 3 shows some of the larger clusters that were formed. Parts
belonging to the same cluster are treated as a single “conceptual” part by giving them
the same feature id; in this way, by using a deliberately redundant representation that

Learning a Sparse Representation for Object Detection 117

Fig. 2. The vocabulary of 400 parts extracted by the Förstner interest operator.

Fig. 3. Examples of the clusters formed after grouping similar parts together.

uses several similar parts to represent a single conceptual part, we are able to extract a
higher-level, conceptual representation from the interest points. Experiments described
in Section 3.3 show the role of the clustering procedure.

2.2 Image Representation

Having constructed the part vocabulary above, images are now represented using this
vocabulary. This is done by determining which of the vocabulary parts are present in
an image, and representing the image as a binary feature vector based on these detected
parts and the spatial relations that are observed among them.

Part Detection. Searching a whole image for the presence of vocabulary parts is com-
putationally expensive. To focus our attention on the interesting regions in the image,
the Förstner operator is first applied to the image, and patches around the interest points
found in the image are highlighted. For each highlighted patch, we perform a similarity-
based indexing into the part vocabulary. Each patch is compared to the vocabulary parts
using the same similarity measure used earlier for clustering similar parts when con-
structing the vocabulary. If a sufficiently similar vocabulary part is found, the patch in
the image is represented by the feature id corresponding to that vocabulary part. Figure 4
shows examples of the part detection process.

Relations over Detected Parts. Spatial relations among the parts detected in an image
are defined in terms of the distance and direction between each pair of parts. Several
earlier approaches to recognition have relied on geometric constraints based on the
distances and angles between object elements. For example, [17] models objects as
polyhedra and, given input data from wich object patches can be inferred, performs
recognition by searching for interpretations of the surface patches whose inter-patch
distances and angles are consistent with those between corresponding model faces. In
our approach, we do not assume a known model for the target object class, but attempt
to use the object parts observed in object examples, together with the relations observed
among them, to learn a model or representation for the object class. The distances and

118 S. Agarwal and D. Roth

Fig. 4. Examples of the part detection process applied to a positive and a negative image during
training. Center images show the patches highlighted by the interest operator; notice how this
successfully captures the interesting regions in the image. These highlighted interest patches are
then matched with vocabulary parts. In the right images, the highlighted patches are replaced by
an arbitrary member of the part cluster (if any) matched by this detection process. These parts,
together with the spatial relations among them, form our representation of the image.

directions between parts in our approach are discretized into bins: in our implementation,
the distances are defined relative to the part size and are discretized into 5 bins, while
the directionss are discretized into 8 different ranges, each covering an angle of 45◦.
However, by considering the parts in a fixed order across the image, the number of
direction bins that need to be represented is reduced to 4. This gives 20 possible relations
(i.e. distance-direction combinations) between any two parts.

The 100 × 40 training images (and later, 100 × 40 windows in test images) that are
converted to feature vectors have a very small number of parts actually present in them:
on average, a positive window contains 6-8 parts, while a negative one contains around
2-4. Therefore, the cost of computing relations between all pairs of detected parts is
negligible once the parts have been detected.

Feature Vector. Each 100 × 40 training image (and later, each 100 × 40 window in the
test images) is represented as a feature vector containing feature elements of two types:

(i) P
(i)
n , denoting the ith occurrence of a part of type n in the image (1 ≤ n ≤ 270 in

our experiments; each n corresponds to a particular part cluster)
(ii) R

(j)
m (Pn1 , Pn2)

1, denoting the jth occurrence of relation Rm between a part of type
n1 and a part of type n2 in the image (1 ≤ m ≤ 20 in our implementation; each
Rm corresponds to a particular distance-direction combination)

These are binary features (each indicating whether or not a part or relation occurs in the
image), each represented by a unique identifier. The re-representation of the image is a
list of the identifiers corresponding to the features that are active (present) in the image.

2.3 Learning a Classifier

Using the above feature vector representation, a classifier is trained to classify a 100×40
image as car or non-car. We used a training set of 1000 labeled images (500 positive and

1 In the implementation, a part feature of the form P
(i)
n is represented by a unique feature id,

which is an integer determined as a function of n and i. Similarly, a relation feature of the form
R

(j)
m (Pn1 , Pn2) is assigned a unique feature id that is a function of m, n1, n2 and j.

Learning a Sparse Representation for Object Detection 119

500 negative), each 100 × 40 pixels in size. The images were acquired from different
sources: partly from theWorldWideWeb, partly with a camera, and partly by taking video
sequences of cars in motion and processing the digitized video with a frame grabber.
After cropping and scaling to the required size, histogram equalization was performed
on all images to reduce sensitivity to changes in illumination conditions. The positive
examples contain images of different kinds of cars against a variety of backgrounds,
and include images of partially occluded cars. The negative examples include images of
natural scenes, buildings and road views. Note that our training set is relatively small and
all images in our data set are natural; no synthetic training images are used to simplify
the learning problem, as has been done, for example, in [13,18].

Each of these training images is converted into a feature vector as described in
Section 2.2. Note that the potential number of features in any vector is very large, since
there are 270 different types of parts that may be present, 20 possible relations between
each possible pair of parts, and several of the parts and relations may potentially be
repeated. However, in any single image, only a very small number of these possible
features is actually active. Taking advantage of this sparseness property, we train our
classifier using the Sparse Network of Winnows (SNoW) learning architecture [19,20],
which is especially well-suited for such sparse feature representations.2 SNoW learns a
linear function over the feature space using a feature-efficient variation of the Winnow
learning algorithm; it allows input vectors to specify only active features, and its sample
complexity grows linearly with the number of relevant features and only logarithmically
with the total number of potential features.A separate function is learnt over this common
feature space for each target class in the classification task. In our task, feature vectors
obtained from object training images are taken as positive examples for the object class
and negative examples for the non-object class, and vice-versa. Given a new input vector,
the learned function corresponding to each class outputs an activation value, which is the
dot product of the input vector with the learned weight vector, passed through a sigmoid
function to lie between 0 and 1. Classification then takes place via a winner-take-all
decision based on these activations (i.e. the class with the highest activation wins). The
activation levels have also been shown to provide a robust measure of confidence; we
use this property in the final stage as described in Section 2.4 below. Using this learning
algorithm, the representation learned for an object class is a linear threshold function
over the feature space, i.e. over the part and relation features.

2.4 Detection Hypothesis Using the Learned Classifier

Having learned a classifier3 that can classify 100 × 40 images as positive or negative,
cars can be detected in an image by moving a 100 × 40 window over the image and
classifying each such window as positive or negative. However there is one issue that
needs to be resolved in doing this.

It is clear that in the vicinity of an object in the image, several windows will be
classified as positive, giving rise to multiple detections corresponding to a single object
in the scene. The question that arises is how the system should be evaluated in the

2 Software for SNoW is freely available at http://L2R.cs.uiuc.edu/˜cogcomp/
3 The SNoW parameters we used to train the classifier were 1.25, 0.8, 4.0 and 1.0 respectively

for the promotion and demotion rates, the threshold and the default weight.

http://L2R.cs.uiuc.edu/~cogcomp/

120 S. Agarwal and D. Roth

presence of these multiple detections. In much previous work in object detection, multiple
detections output by the system are all considered to be correct detections (provided they
satisfy the criteria for a correct detection; this is discussed later in Section 3.1). However,
going back to the requirements specified in Section 1.2, such a system fails not only to
locate the objects in the image, but also to form a correct hypothesis about the number of
object instances present in the image. Therefore in using a classifier to perform detection,
it is necessary to have another processing step, above the level of the classifier output,
to produce a coherent detection hypothesis.

A few studies have attempted to develop such a processing step. [10] uses a simple
strategy: detected windows are partitioned into disjoint (non-overlapping) groups, and
each group gives a single detection. While this may be suitable for the face detection
database used there, in general, imposing a zero-overlap constraint on detected windows
may be too strong a condition.

As a more general solution to this problem, we introduce the notion of a classifier
activation map (CAM), which can be generated from any classifier that can produce an
activation or confidence value in addition to a binary classification output. Given a test
image, a 100 × 40 window is moved over the image and the learned classifier is applied
to each such window (represented as a feature vector) in the image. However, instead of
using the binary classification output of the classifier, we take advantage of the activation
values it produces. Negatively classified windows are mapped to a zero activation value.
Windows classified as positive are mapped to the activation value produced by the clas-
sifier. This produces a map with high activation values at points where the classifier has a
high confidence in its positive classification. Our algorithm analyzes this map and finds
the peaks at which the activation is highest in some neighbourhood, giving the desired
locations of the target object. Different neighbourhoods can be used for this purpose.
Our algorithm searches for activation peaks in a rectangular neighbourhood, defined by
two parameters hNbhd and wNbhd, so that a point (i0, j0) is considered to be an object
location if

(i) activation(i0, j0) ≥ activation(i, j) for all (i, j) ∈ N , where
N = {(i, j) : |i − i0| ≤ hNbhd, |j − j0| ≤ wNbhd}, and

(ii) no other point in N has already been declared an object location (the map is analyzed
in row-wise order).

The neighbourhood size determines the extent of overlap that is allowed between detected
windows, and can be chosen appropriately depending on the object class and window
size. In our experiments, we used hNbhd = 40 pixels, wNbhd = 35 pixels.

There is a trade-off between the number of correct detections and number of false
detections. An activation threshold is introduced in the algorithm to determine where to
lie on this trade-off curve. All activations in the CAM that fall below the threshold are
set to zero. Lowering the threshold increases the correct detections but also increases the
false positives; raising the threshold has the opposite effect. Figure 5 shows a thresholded
CAM generated from a sample test image, and the associated detection result.

3 Evaluation

To evaluate the performance of the system, we collected a set of 170 test images contain-
ing 200 cars in all. These are all distinct from the training set. The images were acquired

Learning a Sparse Representation for Object Detection 121

Fig. 5. The center image shows the classifier activation map (CAM) generated from the test image
on the left using an activation threshold of 0.85: all activations below 0.85 have been set to zero.
The activations in the map have been scaled by 255 to produce the image; the bright white peak
corresponds to the highest activation, producing the detection result shown in the right image. The
method prevents the system from producing multiple detections for a single object.

in the same way as the training images. They are of different resolutions and include
instances of partially occluded cars, cars that have low contrast with the background,
and images with highly textured backgrounds.

Before presenting our results, we discuss some important methodological issues
related to evaluation and performance measurement methods in object detection.

3.1 Evaluation Scheme

Past work on object detection has often emphasized the need for standardized data sets
to allow a fair comparison of different methods. Although several studies have reported
results on common data sets, it is often not clear how the performance of the different
methods has been evaluated on these data sets. Problems such as image classification
have a naturally defined evaluation criterion associated with them. However, in object
detection, there is no such natural criterion: correct detections and false detections can
be defined in different ways which may give rise to different results. To ensure that the
comparison between different methods is truly fair, it is essential that the same evaluation
scheme be used. Therefore in addition to standard data sets for object detection, we also
need appropriate standardized evaluation schemes to be associated with them.

We describe in detail here the scheme used to evaluate the accuracy of our system.4

For each car in the test images, we manually determined the location (itrue, jtrue)
of the best 100 × 40 window containing the car. For a location (idet, jdet) output by the
detector to be considered a correct detection, we require three conditions to be satisfied:

(i) |itrue − idet| ≤ δheight,
(ii) |jtrue − jdet| ≤ δwidth, and
(iii) the windows at the detected and true locations have an overlap of at least θarea.

The parameters δheight, δwidth and θarea are chosen appropriately depending on the target
object class and window size, such that these conditions together ensure that no false
detection is counted as a correct detection. In our experiments, we used δheight = 14
pixels, δwidth = 28 pixels and θarea = 50%.

4 Both the data set we have used and the evaluation routine are available at
http://L2R.cs.uiuc.edu/˜cogcomp/.

http://L2R.cs.uiuc.edu/~cogcomp/

122 S. Agarwal and D. Roth

In addition, if two or more detected windows satisfy these conditions for the same
object location, only one is considered a correct detection; the others are counted as false
positives. (See Section 2.4 for discussion.)

3.2 Measuring Performance

In measuring the accuracy of a detection system, the two quantities of interest are clearly
the correct detections which we wish to maximize, and the false detections that we wish
to minimize. Different methods for reporting and interpreting results present this trade-
off in different ways, and again it is necessary to identify a suitable method that captures
the trade-off correctly in the context of the object detection problem.

One method for expressing this trade-off is the Receiver Operating Characteristics
(ROC) curve. This plots the positive detection rate vs. the false detection rate, where

Positive Detection Rate =
Number of correct positives

Total number of positives in data set
(1)

False Detection Rate =
Number of false positives

Total number of negatives in data set
(2)

However, note that in the problem of object detection, the number of negatives in the
data set (required in (2) above) is not well-defined. The number of negative windows
evaluated by the detection system has commonly been used for this purpose. However,
there are two problems with this approach. The first is that this measures the accuracy
of the system as a classifier, not as a detector. Since the number of negative windows
is typically very large compared to the number of positive windows, this allows a large
one-sided error: a large absolute number of false detections appears to be small under
this measure. The second and more fundamental problem is that the number of negative
windows evaluated is not a property of the input to the problem, but rather a property
internal to the implementation of the detection system.

When a detection system is put into practice, we are interested in knowing how many
of the objects it detects, and how often the detections it makes are false. This trade-off
is captured more accurately by a variation of the recall-precision curve, where

Recall =
Number of correct positives

Total number of positives in data set
(= Positive Detection Rate above) (3)

Precision =
Number of correct positives

Number of correct positives + Number of false positives
(4)

The first quantity of interest, namely the proportion of objects that are detected, is given
by the recall. The second quantity of interest, namely the number of false detections
relative to the total number of detections made by the system, is given by

1 − Precision =
Number of false positives

Number of correct positives + Number of false positives
(5)

Plotting recall vs. (1 − precision) therefore expresses the desired trade-off.

Learning a Sparse Representation for Object Detection 123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results: Recall−Precision

1 − Precision

R
ec

al
l

0 0.0002 0.0004 0.0006 0.0008 0.001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Results: ROC

False Detection Rate

P
os

iti
ve

 D
et

ec
tio

n
R

at
e

Fig. 6. Left: Recall-precision curve showing the performance of our car detection system. Right:
ROC curve showing the same results. (Important: note that the X-axis scales in the two curves
are different; the X-axis values in the ROC curve are much smaller than in the recall-precision
curve.) See Section 3.2 for definitions of the different parameters and a discussion of why the
recall-precision curve is a more appropriate method for expressing object detection results.

3.3 Results

We applied our detector to the test set (described earlier) of 170 images containing 200
cars. To reduce computational costs, the 100×40 window was moved in steps of size 5%
of the window size in each dimension, i.e. steps of 5 pixels and 2 pixels respectively in
the horizontal and vertical directions in our experiments. In all, 147,802 windows were
evaluated by the system, of which approximately 112,000 were negative.

Following the discussion in Section 3.2, we present our results as recall vs. (1 −
precision) in Figure 6. The different points on the curve are obtained by varying the
activation threshold parameter as described in Section 2.4. We also calculate the ROC
curve as has been done before (using the number of negative windows evaluated by the
system as the total number of negatives) for comparison; this is also shown in Figure 6.

Table 1 shows some sample points from the recall-precision curve of Figure 6.Again,
for comparison, we also show the false detection rate at each point as determined by the
ROC curve. Training over 1000 images takes less than half an hour in our implementation.
The average time to test a 200 × 150 image is 8 seconds.

Table 1. Accuracy of our car detection system on the test set containing 200 cars.

Activation No. of correct Recall No. of false Precision False detection
threshold detections, N N

200 detections, M N
N+M

rate, M
112000

0.55 181 90.5% 98 64.9% 0.09%
0.65 178 89.0% 92 65.9% 0.08%
0.75 171 85.5% 76 69.2% 0.07%
0.85 162 81.0% 48 77.1% 0.04%
0.90 154 77.0% 36 81.1% 0.03%
0.95 140 70.0% 29 82.8% 0.03%

124 S. Agarwal and D. Roth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Comparison with Baseline Methods

1 − Precision

R
ec

al
l

SNoW (part−based)
SNoW (pixel−based)
Nearest Neighbour

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Contributions of Different Factors

1 − Precision

R
ec

al
l

Our method (with clustering and relations)
Without clustering (but with relations)
Without relations (but with clustering)
Without clustering and without relations

Fig. 7. (a) Comparison with baseline methods. The poor performance of the baseline methods is
an indicator of the difficulty level of our test set. In addition, the poor performance of the pixel-
based detector that uses the same learning procedure as ours, and differs only in the representation
scheme, shows the importance of choosing a good representation. (b) Contributions of different
elements of our method to the overall performance. Both the part clustering step and the relation
features have significant contributions to the effectiveness of our representation. (Important: note
that the X-axis range in this graph is [0,0.5] for clarity.)

As baselines for comparison, we implemented a SNoW-based detector using simply
pixel intensities as features, and a nearest-neighbour based detector that uses the nor-
malized correlation between test windows and training images as the similarity measure.
The CAM for the SNoW-based method was computed as before, using SNoW activa-
tions. In the case of nearest-neighbour, the classifier activation for a test window was
taken to be the correlation of the window with the nearest training image. The results are
shown in Figure 7(a).5 The poor performance of the baseline detectors is an indicator
of the difficulty level of our test set: for the COIL object database, nearest-neighbour
gives above 95% recognition accuracy, while on the face image database in [13], the
pixel-based SNoW method achieves above 94% detection accuracy.

To gain a better understanding of the different factors contributing to the success
of our approach, we conducted experiments in which we eliminated certain steps of
our method. The results of these experiments are shown in Figure 7(b). In the first
experiment, we eliminated the part clustering step when constructing the part vocabulary,
assigning a different feature id to each of the 400 parts. This resulted in a significant
decrease in performance, confirming our intuition that representing similar parts as a
single conceptual-level part is important for the learning algorithm to generalize well.
In the second experiment, we retained the clustering step, but did not use the relation
features, representing the images simply by the parts present in them. Again, this showed
a decrease in performance, suggesting that important information is captured by the
relations. Finally, in the third experiment, we eliminated both the clustering step and the
relation features. In this case the decrease in performance was not significant relative to

5 The pixel-based method has extremely high computational and space costs. Therefore in all
experiments shown in Figure 7(a), the 100 × 40 window was shifted over the images in larger
steps of 10 and 4 pixels respectively in the horizontal and vertical directions, with hNbhd =
wNbhd = 40 pixels (see Section 2.4).

Learning a Sparse Representation for Object Detection 125

Fig. 8. Examples of test images on which our system achieved perfect detection results. An acti-
vation threshold of 0.9 was used. The windows are drawn by a separate evaluator program at the
exact locations output by the system (see Section 2.4). Also see Figure 9.

the first experiment, in which only clusters were eliminated. This can be explained on
the basis that, when the parts are all considered to be distinct, the algorithm sees many
different parts in the training set, and therefore the relation features defined over them
are also different; as a result, in this case the relations do not help in generalizing.

We also tested the intuition that a small number of parts should suffice for successful
detection by ignoring all one-part clusters in the vocabulary. However, this decreased
the performance, suggesting that the small clusters also play an important role.

Figures 8 and 9 show the output of our detector on some sample test images.

4 Conclusions and Future Work

We have presented an approach for learning a sparse, part-based representation for object
detection. Expressive features are acquired automatically and capture information about
the parts in an image and the spatial relations among them.An efficient learning algorithm
over this feature space then learns a good classifier from a small training set. The notion

126 S. Agarwal and D. Roth

Fig. 9. Examples of test images on which our system missed some of the objects or produced false
detections (using the same activation threshold as in Figure 8). The evaluator program draws a
window at each location output by the detector; fully drawn windows represent correct detections,
while broken windows represent false positives.

of a classifier activation map is introduced to form a good detector from this learned
classifier.

We have shown that our method works successfully on a difficult test set of images
containing side views of cars. We achieve high detection rates on real-world images
with a high degree of clutter and occlusion. Our framework is easily extensible to other
objects that have distinguishable parts in a relatively fixed spatial configuration.

We addressed several methodological issues that are important in evaluating ob-
ject detection approaches. First, the distinction between classification and detection was
highlighted, and a general method for producing a good detector from a classifier was
developed. Second, we discussed the importance of specifying and standardizing evalu-
ation schemes in object detection experiments. Finally, we argued that object detection
approaches should be compared using recall-precision curves rather than measures such
as ROC curves that are biased in ways that depend on the system implementation. Several
of these issues have been addressed in (different) ad-hoc ways in earlier works, which
may mask important differences that exist among approaches, and we believe that it is
necessary to include them as an integral part of the evaluation process.

Our work can be extended in several directions. The computational costs of the
current approach are relatively high; one way to make it appropriate for real-time ap-
plications can be to develop a fast filter with one-sided error that can quickly filter out
regions unlikely to contain an object, following which our detector can be applied to
more promising regions. The system can be made scale invariant by processing test
images at multiple scales, and extending the classifier activation map to incorporate ac-
tivation information from different scales. Orientation invariance can also be achieved
via an exhaustive approach as in [18]. To avoid increasing computational costs, these
multiple steps can be parallelized. At the learning level, a natural extension is to learn to
detect several object classes at the same time. Learning multiple classifiers over different
features and combining information from them may lead to improved performance. It
would also be interesting to formulate a learning problem that directly addresses the
problem of detection rather than classification.

Learning a Sparse Representation for Object Detection 127

Acknowledgements. We would like to thank Ashutosh Garg, David Kriegman and
Cordelia Schmid for several helpful discussions and comments on an earlier version of
the paper. This work was supported by NSF grants ITR IIS 00-85980 and ITR IIS 00-
85836.

References

1. Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Ann. Rev. Neurosci. 19 (1996)
577–621

2. Palmer, S.E.: Hierarchical structure in perceptual representation. Cognitive Psychology 9
(1977) 441–474

3. Wachsmuth, E., Oram, M.W., Perrett, D.I.: Recognition of objects and their component parts:
responses of single units in the temporal cortex of the macaque. Cerebral Cortex 4 (1994)

4. Biederman, I.: Recognition by components: a theory of human image understanding. Psychol.
Review 94 (1987) 115–147

5. Colmenarez, A.J., Huang, T.S.: Face detection with information-based maximum discrimina-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(1997) 782–787

6. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 20 (1998) 23–38

7. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face de-
tection. In: Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition.
(1997) 130–136

8. Amit, Y., Geman, D.: A computational model for visual selection. Neural Computation 11
(1999) 1691–1715

9. Roth, D., Yang, M.H., Ahuja, N.: Learning to recognize 3d objects. Neural Computation 14
(2002) To appear

10. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2001)

11. Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by com-
ponents. IEEE Trans. on Pattern Analysis and Machine Intelligence 23 (2001) 349–361

12. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In:
Proceedings of the Sixth European Conference on Computer Vision. (2000) 18–32

13. Yang, M.H., Roth, D., Ahuja, N.: A SNoW-based face detector. In Solla, S.A., Leen, T.K.,
Müller, K.R., eds.: Advances in Neural Information Processing Systems 12. (2000) 855–861

14. Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proceedings of the Fifth
International Joint Conference on Artificial Intelligence. (1977)

15. Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Trans. on Pattern
Analysis and Machine Intelligence 19 (1997) 530–535

16. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision II. Addison-Wesley (1993)
17. Grimson, W.E.L., Lozano-Perez, T.: Recognition and localization of overlapping parts from

sparse data in two and three dimensions. In: Proceedings of the IEEE International Conference
on Robotics and Automation. (1985) 61–66

18. Schneiderman, H., Kanade, T.:A statistical method for 3D object detection applied to faces and
cars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Volume 1. (2000) 746–751

19. Carlson, A.J., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Technical
Report UIUCDCS-R-99-2101, UIUC Computer Science Department (1999)

20. Roth, D.: Learning to resolve natural language ambiguities: A unified approach. In: Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence. (1998) 806–813

	Introduction
	Related Work
	Problem Specification
	Overview of the Approach

	Approach
	Vocabulary Construction
	Image Representation
	Learning a Classifier
	Detection Hypothesis Using the Learned Classifier

	Evaluation
	Evaluation Scheme
	Measuring Performance
	Results

	Conclusions and Future Work

