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Abstract. Numerous statistical learning methods have been developed
for visual recognition tasks. Few attempts, however, have been made
to address theoretical issues, and in particular, study the suitability of
different learning algorithms for visual recognition. Large margin classi-
fiers, such as SNoW and SVM, have recently demonstrated their success
in object detection and recognition. In this paper, we present a theo-
retical account of these two learning approaches, and their suitability
to visual recognition. Using tools from computational learning theory,
we show that the main difference between the generalization bounds of
SVM and SNoW depends on the properties of the data. We argue that
learning problems in the visual domain have sparseness characteristics
and exhibit them by analyzing data taken from face detection experi-
ments. Experimental results exhibit good generalization and robustness
properties of the SNoW-based method, and conform to the theoretical
analysis.

1 Introduction

Statistical learning methods have become popular as a tool for addressing a va-
riety of computer vision problems, ranging from object recognition [22J23/1]],
hand-written digit recognition [14], pedestrian detection [20], to face detection
[B128[30]. There are, however, very few attempts to address theoretical issues
and, in particular, study the suitability of different learning algorithms to dif-
ferent vision problems.

The goal of this paper is to present a theoretical account of two learning
approaches and their suitability to visual recognition. We use tools from compu-
tational learning theory [35J36] to study the properties of two successful learning
approaches. The algorithms are evaluated on a visual recognition problems, face
detection, and the theoretical generalization properties, along with our analysis
of the data are used to explain the prediction performance and discuss the suit-
ability of the approaches to visual learning problems. The learning approaches
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we study are Support Vector Machines (SVMs) [36] and the SNoW learning ar-
chitecture [26/6]. Both have been studied extensively recently and have shown
good empirical performance on several visual learning problems [23[20I38/37].
We study both generalization and computational efficiency issues and derive
conclusions that are relevant to further use of these learning methods in visual
recognition tasks.

The learning paradigm applied to most visual recognition problems is that
of supervised learning. In this case, each image example is represented as a fea-
ture vector and a label, typically a binary one, is added to represent whether
this example represents an image in the target class (e.g., contains a face) or
not. A variety of feature representations have been used in recent works that
apply learning methods to visual recognition tasks. Examples include [14] which
applied convolutional network with simple local features to hand-written digit
recognition, [30] which utilized naive Bayes classifiers over local features in a face
detection task, Viola et al. that generated a very large set of selective features
use them in texture recognition, object recognition and hand-written digit recog-
nition [824183], and Geman and Amit [2] that used edges and conjunction of
edges as local features of images and use those for object recognition. Local fea-
ture analysis using Principal Component Analysis and Independent Component
Analysis have been applied to face recognition [21] and facial expression recogni-
tion with success [9]. Recently, Poggio et al. [20] [18] utilized wavelets and local
features (which they call components) with SVMs for object detection. Their
experiments on face, car, and pedestrian detection demonstrated good results.

In visual learning situations, the number of features that could potentially
affect each decision is very large but, typically, only a small number of them is
actually relevant to a decision. Beyond correctness, a realistic learning approach
needs therefore to be feature-efficient [T15] in that its learning complexity (number
of examples required for convergence) depends on the number of relevant features
and not the global number of features in the domain. Equivalently, this can
be phrased as the dependence of the generalization quality on the number of
examples observed. A features efficient algorithm would be able to generalize
well already after observing a relatively small number of examples [13].

This paper argues and exhibits, in a limited context, that the SNoW learning
architecture, which is based on a feature efficient algorithm, is a suitable archi-
tecture for learning in the visual domain. Motivated by the recent success of this
approach on several visual recognition tasks we suggest that recent advances in
computational learning theory can be used to explain these results; moreover,
we show that a careful analysis of the data may help to determine the suitability
of a given learning algorithm to a task, and suggest ways for using a learning
approach so that its advantages can be exploited.

To make things concrete we choose a specific data set for the face detection
task, and use it for a detailed study of SNoW, as compared to SVM. SNoW
and SVM, presented in Section [Z] are representatives of two different classes
of linear classifiers; the first is based on Winnow, a multiplicative update rule
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algorithm [15], and the second on perceptron, an additive update rule (see [10
7] for the representation of SVM as a batch version of perceptron).

Several theoretical results have suggested that these two approaches have
incomparable generalization performance that depend on well defined properties
of the domain and the target concept. We study these properties and conclude,
within a limited context, that the face detection data suggests that the SNoW
based approach should have advantages in terms of generalization in Section Bl

In addition to generalization, the two learning approaches can also be mea-
sured in terms of efficiency for feature representation. This is important espe-
cially when one wants to “blow” up the feature space in order to increase the
expressivity of the features and allow a linear classifier to discriminate faces
from non-faces, or to discriminate between objects. In this case, we argue that
the SVM approach is advantageous. We argue that in order to fully exploit the
nice generalization properties of SNoW, images should be represented using fea-
tures that give rise to a fairly small number of active features in each image. That
is an attempt should be made to use representations that are not pixel based,
but rather based on sparser phenomenon in the image, such as edges, conjunc-
tions of those or other types of features. We show some preliminary results that
support this and suggest several directions for future work.

The paper is organized as follows. We discuss the task of visual recognition as
a classification problem and present the two learning approaches studied here in
Section Bl In Section Blwe present generalization bounds for the algorithms and
study them in the context of a specific data set. We then move on to comment
on efficiency issues, and conclude with future work in Section [l

2 Visual Learning Framework

Most efficient learning methods known today, including many probabilistic clas-
sifiers, make use of a linear decision surface over the feature space. Among these
methods we focus here on SVMs and SNoW which have demonstrated good
empirical results in vision and natural language processing problems [23][20/26]
27]. SNoW and SVM, are representatives of two different classes of linear clas-
sifiers/regressors. SNoW is based on Winnow, a multiplicative update rule al-
gorithm [THT3]; SVMs are based on perceptron [25], an additive update rule.
Although SVMs can also be developed independently of the relation to percep-
tron, for the sake of our theoretical analysis viewing them as a large margin
perceptron [I0J7] is important. Moreover, recent results [I1] have shown that
the generalization properties of SVMs are dominated by those of large margin
perceptron, and therefore it is sufficient here to study those.

2.1 The SNoW Learning Architecture

The SNoW (Sparse Network of Winnows) learning architecture is a sparse net-
work of linear units over a common pre-defined or incrementally learned feature
space [6]. Nodes in the input layer of the network typically represent relations
over the input instance and are being used as the input features. Each linear
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unit is called a target node and represents a concept of interest over the in-
put. In the application described here, target nodes could represent an object
in terms features extracted from the 2D image input, a face, or a non-face. In
the current presentation we assume that all features are binary (in {0,1}), al-
though SNoW can take real numbers as input. An input instance is mapped into
a set of features which are active (with feature value 1) in it; this variable size
representation is presented to the input layer of SNoW and propagates to the
target nodes. Target nodes are linked via weighted edges to (some of) the input
features.

Let Ay = {i1,... ,im} be the set of features that are active in an example
and are linked to the target node ¢t. Then the linear unit corresponding to ¢ is

active iff
Z U)f > 9t,
i€ A

where w! is the weight on the edge connecting the ith feature to the target node
t, and 6; is the threshold for the target node ¢.

Each SNoW wunit may include a collection of subnetworks, one for each of
the target relations but all using the same feature space. A given example is
treated autonomously by each target unit; an example labeled ¢ may be treated
as a positive example by the ¢ unit and as a negative example by the rest of the
target nodes in its subnetwork. At decision time, a prediction for each subnetwork
is derived using a winner-take-all policy. In this way, SNoW may be viewed as
a multi-class predictor. In the application described here, we may have one unit
with target subnetworks for all the target objects or we may define different
units, each with two competing target objects.

SNoW’s learning policy is on-line and mistake-driven; several update rules
can be used within SNoW, but here we concentrate on the one which is a variant
of Littlestone’s Winnow update rule [15], a multiplicative update rule that we
tailored to the situation in which the set of input features is not known a priori,
as in the infinite attribute model [4]. This mechanism is implemented via the
sparse architecture of SNoW. That is, (1) input features are allocated in a data
driven way — an input node for the feature ¢ is allocated only if the feature i
was active in any input sentence and (2) a link (i.e., a non-zero weight) exists
between a target node t and a feature ¢ if and only if 4 was active in an example
labeled ¢.

One of the important properties of the sparse architecture is that the com-
plexity of processing an example depends only on the number of features active
in it, ng, and is independent of the total number of features, n;, observed over
the life time of the system. This is important in domains in which the total
number of features is very large, but only a small number of them is active in
each example.

The Winnow update rule has, in addition to the threshold 8; at the target ¢,
two update parameters: a promotion parameter o > 1 and a demotion parameter
0 < B < 1. These are being used to update the current representation of the
target ¢ (the set of weights w!) only when a mistake in prediction is made. Let
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A = {i1,... ,im} be the set of active features that are linked to the target node
t. If the algorithm predicts 0 (that is, 3°,c 4, wi < 6;) and the received label
is 1, the active weights in the current example are promoted in a multiplicative

fashion:
t

Vi € A, wh + - wk.
If the algorithm predicts 1 (37, 4, w} > ;) and the received label is 0, the active

weights in the current example are demoted:
Vi € Ay, wh < - wk.

All other weights are unchanged.

As will be clear below, the key feature of the Winnow update rule is that
the number of examples required to learn a linear function grows linearly with
the number n,. of relevant features and only logarithmically with the total num-
ber of features. This property seems crucial in domains in which the number
of potential features is vast, but a relatively small number of them is relevant.
Moreover, in the sparse model, the number of examples required before con-
verging to a linear separator that separates the data (provided it exists) scales
with O(n, logn,). Winnow is known to learn efficiently any linear function (in
general cases efficiency scales with the margin) and to be robust in the pres-
ence of various kinds of noise and in cases where no linear function can make
perfect classifications, while still maintaining its abovementioned dependence on
the number of total and relevant attributes [16/13].

2.2 Large Margin Perceptron and SVMs

In this section we briefly present perceptron and SVM; the presentation concen-
trates on the linearly separable case, although it can be extended to the more
general case [36].

The perceptron also maintains a weight vector w and, given an input vector
2*, predicts that z? is a positive example iff w - 2* > . Like Winnow, the
perceptron’s update rule is also an on-line and mistake driven, and the only
difference between them is that the weight update rule of perceptron is additive.
That is, if the linear function misclassified an input training vector ¢ with true
label 4 (here we assume for notational convenience that y* € {—1,+1}) then
we update each component i of the weight vector w by:

w; — w; +nz'y’,

where 7 is the learning rate parameter.

Like Winnow, the Perceptron is also known to learn every linear function,
and in the general case, the number of mistakes required before it converge to
a hyperplane that separates the data depends also on the margin in the data,
that is, on maxx® -y, where y* € {—1,+1} is the true label of the example .

Linear separability is a rather strict condition. One way to make methods
more powerful is to add dimensions of features to the input space. Usually, if
we add enough new features, we can make the data linearly separable; if the
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separation is sufficiently good, then the expected generalization error will be
small, provided that we do not increase the complexity of instances too much
by this transformation. In other words, we need to find a nonlinear function to
map the training examples from the input space to a higher dimensional feature
space, i.e.,

¢:xeRY = ¢(z) € R (1)

where F' > N. The decision surface of a Perceptron in the feature space becomes:

M
f(@) = (w-¢(x)) +b="> n'y'd(a) - d(x) +b (2)

i=1

However, from a computational point of view this could be prohibitively
hard. This problem can sometimes be solved by the kernel trick. Aizerman,
Braverman and Rozonoer suggested this method and showed that it can be
combined with Perceptron [1]. Boser, Guyon and Vapnik applied the same trick
to extend nonlinear SVMs [3].

A kernel function, K(x, z), is a function of two variables which can be rep-
resented as an inner product, i.e., ¢() - ¢(z), for some function ¢ : RY — R¥
and F' > N. In other words, we can compute K (x,z) if we can compute ¢(z)
and ¢(z). Thus, we can rewrite the Perceptron in a feature space as:

M M
f@) =3 0’y (6a') - 6@) +b =3 n'y K w) +b. (3)

i=1

Consequently with kernel functions, we can find a linear decision surface in
a high dimensional space without explicitly projecting the training examples.
Furthermore, the constructed linear decision surface in the projected high di-
mensional space is equivalent to a nonlinear decision surface in the input space,
which is particularly useful for the case where the patterns are not linearly sep-
arable in the input space. As will be clear later, the kernel trick serves to aid
efficiency, in case there is a need to work in a higher dimensional space; however,
the generalization properties, in general, depend on the effective, high dimen-
sional, feature space in which the linear classifier is determined.

SVMs, or batch large margin classifiers can be derived directly from a large
margin version of perceptron (which we do not describe here; see e.g., [39]) us-
ing a standard way to convert the on-line algorithm to a batch algorithm. This
is done in order to convert the mistake bounds that are typically derived for
on-line algorithms to generalization bounds that are of more interest (e.g., [I0]).
However, for completeness, we briefly explain the original, direct derivation of
SVMs. SVMs can be derived directly from the following inductive inference.
Given a labeled set of training samples, an SVM finds the optimal hyperplane
that correctly separates the data points while maximizing the distance of ei-
ther class from the hyperplane (maximizing the margin). Vapnik showed that
maximizing the margin is equivalent to minimizing the VC dimension and thus
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yields best generalization results [36]. Computing the best hyperplane is posed
as a constrained optimization problem and solved using quadratic programming
techniques. The optimal hyperplane is defined by

1 ) .
min §w2, subject to  yi(wTzi+b)>1 Vi=1,..., M

where b is a bias term computed from the margin.

Finally we note that although large margin perceptron and SVMs are very
related, it turns out that the generalization bounds of the large margin percep-
tron are slightly better than those of SVMs [IT3]. Therefore, we will use those
in our analysis in Section [Bl

Although these are worst case bounds, they have already be shown to be
quite representative in some experiments using synthetic data [I3], so we can
use them to guide our understanding.

3 Generalization and Efficiency

There are two issues that we need to consider when we compare two learning
algorithms: generalization and efficiency. Generalization bounds are derived in
order to estimate, given the performance on the training data, what will be
the performance on previously unseen examples. Beyond correctness, a realistic
learning approach needs therefore to be feature-efficient [I5] in that its learn-
ing complexity (number of examples required for convergence) depends on the
number of relevant features and not the global number of features in the domain.

The efficiency issues (for feature representation) have been discussed in Sec-
tion 2 We compare SNoW and SVM in terms of generalization error bounds in
this section.

3.1 Generalization Error Bounds

Learning systems use training data in order to generate a hypothesis, but the key
performance measure one cares about is actually how well they will perform on
previously unseen examples. Generalization bounds are derived in order to esti-
mate, given the performance on the training data, what will be the performance
on previously unseen examples. The assumption underlying the derivation of
generalization bounds is the basic assumption of the PAC learning theory [35],
that the test data is sampled from the same (unknown) distribution from which
the training data was sampled.

In the following we preset two theorems, one describing the generalization
error bound of large margin classifiers (e.g., SVMs) and the other for the multi-
plicative update algorithm (e.g., Winnow). The first one is a variant of Theorem
4.19 in [7)39]:

Theorem 1. If the data is Ly norm bounded as ||x||l2 < b, then consider the
family I’ of hyperplanes w such that ||w||a < a. Denote by E,(w) the misclas-
sification error of w with the true distribution. Then there is a constant C' such
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that for any v > 0, with probability 1 — n over n random samples, any w € I’
satisfies:

Ea(w) < & ¢ \/(ja%? (" 49y 41t
n o\ yn v 7

where ky = |{i : wTx'y’ < y}| is the number of samples with margin less than .

Similarly we present a generalization bound for Winnow family of algorithms
(e.g., SNoW). See also [T3/39] for some more detail.

Theorem 2. If the data is Lo, norm bounded as ||x||oc < b, then consider the
family I of hyperplanes w such that ||w|[x < a and ) ; w; ln(w) < ¢. Denote

wjl|wl]1
by E,,(w) the misclassification error of w with the true distribution. Then there
is a constant C' such that for any v > 0, with probability 1 — n over n random

samples, any w € I' satisfies:

k C b 1
Em(w) < = + | 5-b%(a? 4 ac) ln(% +2)+In—
n n v n

where p denotes an initial weight vector and k., = |{i : wTaly® < y}| is the
number of samples with margin less than ~y.

In order to understand the relative merits of the algorithms, a closer look at
the above bounds shows that, modulo some unimportant terms, the error bounds
FE, and E,, for the additive algorithms and the multiplicative algorithms scale
with:

2 112
Eo(w) = [[w[[z max ||z°]]3,

and _
Ep(w) ~ 21In 2n|w|[} max ||z°[|%,
K3

where w is the target hyperplane.

From the theorems, the main difference between the error bounds of SVM
and SNoW is the properties of data. If the data is Ly norm bounded and there is
a small Ls norm hyperplane, then SVM is suitable for the problem. On the other
hand, Winnow is suitable for a problem where the data is L., norm bounded
and there is a small L; norm hyperplane. In visual recognition tasks with pixel-
based feature representation, the hyperplane function is usually sparse since the
image dimensionality is usually high and most pixels do not contribute to the
construction of the hyperplane (i.e., irrelevant to the learning task and has zero
weight term in the hyperplane). Consequently, the hyperplane usually has small
L, and Ly norms. Theoretical analysis indicates that the advantage of the Win-
now family of algorithms (e.g., SNoW) over Perceptron family of algorithms
(e.g., SVM) requires the data to have small Lo, norm but large Ly norm. Nu-
merical experiments in [13] have confirmed the above claims and demonstrated
the generalization bounds are quite tight.
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4 Empirical Study

For concreteness, we choose a specific data set for the face detection task, and
use it for a detailed study of SNoW, as compared to SVM. The empirical results
are discussed in this section.

4.1 Experiment I: Generalization

Our experiments on object recognition and face detection demonstrate that
SNoW performs well or outperforms SVM in object recognition and face de-
tection [38)37]. To better understand why and when SNoW achieves such per-
formance, and compare the empirical results with the theorems, we perform more
experiments on face detection. The training set consists of 6,977 images (2,429
faces and 4,548 non-faces), and the test set consists of 24,045 images (472 faces
and 23,573 non-faces). Our training and test sets are similar to the one used in
which also shows that SVMs with the feature representation of normalized
intensity values perform better than the ones with Harr wavelet and gradient
representations. In our experiment, each image is normalized to 20 x 20 pixels
and processed with histogram equalization and quantization (50 rather than 256
scales). Figure [[]shows some face images in the training and test sets.

[ LSO O gy
o iR S S A
e RO WAL

Fig. 1. Sample face images: each image is normalized to 20 x 20 pixels with histogram
equalization.

We use the the quantized intensity values as image features to train SVMs
with linear kernel. For SNoW, we also use quantized intensity values as features
of images, which we call linear features. Let the pixel at (z,y) of an image
with width w and height h have intensity value I(z,y) (0 < I(z,y) < 49).
This information is encoded as a feature whose index is 50 X (y X w + x) +
I(x,y). This representation ensures that different points in the {position x
intensity} space are mapped to different features. (That is, the feature indexed
50 X (y X w+ z) + I(x,y) is active if and only if the intensity in position (z,y)
is I(z,y).) In [32], a similar binary representation scheme is adopted to train
restricted Boltzmann machines for face recognition which achieves good results.
Note that although the number of potential features in our representation is
20,000 (400 x 50), only 400 of those are active (present) in each example, and
it is plausible that many features will never be active. Since the algorithm’s
complexity depends on the number of active features in an example, rather than
the total number of features, the sparseness also ensures efficiency. Figure
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shows the linear features learned by the SNoW where the features associated
with larger weights are represented with brighter intensity values. Note that the
most salient features in faces are around the eye, nose, and the face contour
areas, which correspond well to several psychological studies on face recognition.

L=

Fig. 2. (Left): Linear features learned by the SNoW: Features associated with larger
weights are represented by brighter intensities. (Right): A sample face in the training
set.

For the baseline study where SNoW and SVM have the same feature repre-
sentation, i.e., quantized intensity values, SNoW outperforms linear SVM (which
is often used in real time applications) as shown by the ROC curves (the lower
two curves) in Figure ] (we will discuss the upper two curves in Section B.2)).

ROC Curve: SNoW vs. SVM
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’ 3. SNoW: linear features ««------
. z‘l SVM.Imgar keme\‘
0
0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1

False Positive

Fig. 3. ROC curves: SNoW vs. SVM.

At first glance of the learning curves, the performance of SNoW and SVM
may seem to be inferior to other reported results in the literature [3TJ28/T9J29]
38]. However, note that Figure Bl shows only the raw output from a classifier
while most face detection methods use various heuristics (such as thresholding,
overlap elimination, and arbitration among multiple classifiers, as discussed in
[28]) to increase the final detection rates. Furthermore, the training set size used
in the reported literature is much larger than the one in this paper. Here we use
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a specific image set to evaluate the performance of the raw outputs of SNoW
and SVM in details, and the results are incomparable to the ones reported in
the literature.

Table 1. L2 and Lo norms of data in the experiments

Linear Features|Conjunctive Features
SNoW 563 2.55 x 107
SVM 55 1.16 x 107

For visual pattern recognition, most data dimensions are not useful as demon-
strated in the Eigenface [34] approach and others. Many studies have also shown
that the target hyperplane function in visual pattern recognition is usually
sparse. Consequently, the target hyperplane has a relatively small Ly norm and
relatively small L; norm. Under such situations, the Perceptron does not have
any theoretical advantage over Winnow. Thus it is not surprising to see that the
Winnow family and the Perceptron family of algorithms perform equally well in
several applications [38/37].

For the experiments with linear features (i.e., quantized intensity values),
the Ly norm is on the average 10.2 times larger than the L., norm as shown in
Table [l The number of active features in the final hyperplane of SNoW is very
sparse, i.e., only 1.6% of all possible features. The number of support vectors is
also sparse, i.e., only 5% of all the training examples. The empirical results show
that SNoW outperforms SVM (shown in ROC curves in Figure [B) and match
the predictions of the theorems well.

SNoW Learning Curve

VY SN T
MY

A Y
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o
o |

0.2
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0.1

SNoW: linear features

0 1000 2000 3000 4000 5000 6000 7000
Number of Training Examples

Fig. 4. Learning curves: SNoW vs. SVM.

Figure [4 shows the on-line performance of SNoW (with linear features) and
SVM (with linear kernel) in which we evaluate the system with the test set after
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we train a classifier with p examples (100 < p < 6,900). The results, averaged
over 20 runs with random sampling of examples, demonstrate that SNoW is
able to learn the decision hyperplane rather efficiently. On the other hand, a
SVM usually needs to go though all the training examples in order to extract
a minimum set of support vectors which maximizes the margins of an optimal
decision hyperplane.

Although SNoW is an on-line mistake-bound algorithm, it is possible that one
can improve SNoW’s performance by presenting the same example several times.
Nevertheless, SNoW usually converges fast. Figure Bl show the performance of
SNoW (with linear features) after only one iteration is close to the best results
achieved by only two iterations.

ROC Curve: SNoW with linear features

/_—_/-_/_—
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive

Fig. 5. SNoW convergence rate.

4.2 Experiment II: Efficiency

Since the features in the SVM with polynomial (or Gaussian) kernels are more
expressive than the linear features, we choose to use conjunctive features to
capture local information of image patterns. The idea is, in spirit, similar to n-
gram used in natural language understanding. For each pixel, we represent the
conjunction of intensity values of m pixels within a window of w x w pixels as a
new feature value and use them as feature vectors. Let I(p, q) and I(r, s) denote
the intensity values of pixels at (p, ¢) and (r, s) (p < r and ¢ < s), we use a feature
value to encode the occurrence of the I(p,q), I(r, s) at distance of (r —p) X w +
(s —q). Each feature value is then mapped to a binary feature using the method
discussed in Section BTl See also [27] for more detail. A recent study also shows
that low order conjunctive features support unambiguous perception in object
representation (i.e., conjunctive feature representation is expressive enough to
encode the objects) and lead to excellent empirical results for recognition tasks
7).
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To make sure that the combined computational requirement of SNoW (com-
putational loads of features in training) does not outweigh the one of SVM, we
choose to use a window of 4 x 4 pixels and conjunctions of 2 pixels. Figure B]
shows the ROC curves of SVM with second order polynomial kernel and SNoW
with conjunctive features. Although SVM performs slightly better than SNoW,
we think that SNoW can perform as well as SVM if the feature representation is
as expressive as the one in SVM with polynomial kernel. We will discuss these
issues in Section [l

The Ly norm of the local conjunctive features (generated by 4 x 4 window)
is only 2.2 times larger than the L., norm as shown in Table [ In this case,
SVM performs slightly better than SNoW. The results conform to predictions of
the theoretical analysis which indicates that the advantage of SNoW over SVM
requires the data to have large Lo norm but small L., norm.

5 Concluding Remarks

This paper proposes theoretical arguments that suggests that the SNoW-based
learning framework has important advantages for visual recognition tasks. Given
good experimental results with SNoW on several visual recognition tasks such
as face detection and object recognition, the main contribution of this work is in
providing an explanation for this phenomena - by giving a theoretical analysis
and validating it with real world data - and providing ways for constructing good
feature representations for visual learning tasks.

We have shown that SNoW, being based on a multiplicative update algo-
rithm, has nice generalization properties compared to other learning algorithms.
On the other hand, algorithms that are based on additive update algorithms,
like perceptrons and SVM, have nice computational properties, stemming from
the ability to use the kernel trick to avoid computation with data of very high
dimensionality. We then argue that SNoW, with its ability to handle variable size
examples, does not suffer from the dimensionality of the data but only depends
on the presence of few active features in each example. Moving to a sparse repre-
sentation of images, (e.g., edges, conjunctions of more than two linear features or
others local features) would allow one to enjoy the best of both worlds - a good
generalization performance along with computational efficiency. We believe this
is an important direction for future research.
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