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Abstract. In this paper, efficient and generic tools for calibration and
3D reconstruction are presented. These tools exploit geometric con-
straints frequently present in man-made environments and allow cam-
era calibration as well as scene structure to be estimated with a small
amount of user interactions and little a priori knowledge. The proposed
approach is based on primitives that naturally characterize rigidity con-
straints: parallelepipeds. It has been shown previously that the intrinsic
metric characteristics of a parallelepiped are dual to the intrinsic charac-
teristics of a perspective camera. Here, we generalize this idea by taking
into account additional redundancies between multiple images of multiple
parallelepipeds. We propose a method for the estimation of camera and
scene parameters that bears strong similarities with some self-calibration
approaches. Taking into account prior knowledge on scene primitives or
cameras, leads to simpler equations than for standard self-calibration,
and is expected to improve results, as well as to allow structure and mo-
tion recovery in situations that are otherwise under-constrained. These
principles are illustrated by experimental calibration results and several
reconstructions from uncalibrated images.

1 Introduction

This paper is about using partial information on camera parameters and scene
structure, to simplify and enhance structure from motion and (self-) calibration.
We are especially interested in reconstructing man-made environments for which
constraints on the scene structure are usually easy to provide. Constraints such
as parallelism, orthogonality or length ratios, are often available, and we show
that they are especially powerful if they can be encapsulated in higher-level
primitives. Concretely, man-made environments are rich in elements that may
be defined as parallelepipeds or parallelograms. Encoding constraints using these,
reinforces them, simplifies the user interactions necessary to provide them, and
allows an easier analysis of issues such as the existence of solutions.

In the following, we briefly review some existing works that use constraints
on scene structure. Geometric information about the scene can be used in many
different ways. In a seminal work, Caprile and Torre [2] used cuboids, i.e. par-
allelepipeds with right angles, to estimate some camera parameters. Their ap-
proach is based on vanishing points defined by the cuboid’s projected edges. Such
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vanishing points correspond to perpendicular directions in space and therefore
impose constraints on the transformation between 3D space and the image plane.
Following this idea, several approaches making use of vanishing points and lines,
have been proposed to either partially calibrate cameras or reconstruct scenes
[4,14,5,12]. However, dealing with individual vanishing points does not allow to
fully exploit the redundancy contained in the input, i.e. that all the vanishing
points stem from the projection of a single parallelepiped. In contrast to the
above mentioned approaches, we do not compute vanishing points or lines ex-
plicitly, but projection matrices such that a parallelepiped’s projection fits the
concerned image points. In [7], different kinds of primitives, including cubes, are
used for 3D reconstruction. However, this approach, cast as a bundle adjustment,
has only a very simple initialization step. In [3], parallelepipeds are used for cal-
ibration in AR applications. The proposed approach has a limited application
domain since the camera must satisfy a strong constraint – unit aspect ratio –
and only partial knowledge on the parallelepiped – angles – is used.

In addition to using scene constraints, our approach also takes into account
any constraint on intrinsic parameters of any camera involved. There is a perfect
duality between the intrinsic parameters of a perspective camera and those of
a parallelepiped [20]. We formalize this in a generic framework, in which cam-
eras and parallelepipeds are treated in a dual manner. One of the main issues of
this paper is the use of multi-view and multi-parallelepiped constraints, as op-
posed to using knowledge on single images or parallelepipeds only. Multi-view or
multi-parallelepiped constraints arise when it is known that several entities share
properties (e.g. two views with identical aspect ratio, or two parallelepipeds with
identical shape). These constraints are incorporated in our dual framework. For
the various types of constraints, it is shown which types of equations can be ob-
tained. In many practical circumstances, (self-) calibration of intrinsic cameras
and parallelepiped parameters can be done by solving linear equation systems.

Our approach has some similarities with methods based on planar patterns
and homographies [18,21]. While more flexible than standard calibration tech-
niques, homography based approaches require either Euclidean information or,
for self-calibration, many images in general position [19]. The approach presented
in this paper works for a small number of images (a single image for example) and
can make use of any metric information on calibration primitives independently,
for example one angle between directions, or one length ratio, give additional
constraints. In this sense, our approach is a generalization of plane-based meth-
ods with metric information to three-dimensional parallelepipedic patterns.

While the main contributions of the paper concern the estimation of intrinsic
camera and parallelepiped parameters, we also propose methods for subsequent
pose estimation, as well as ways of enhancing reconstructions with primitives
other than parallelepipeds. The complete system allows calibration and 3D model
acquisition from a small number of arbitrary images, taken for instance from the
Internet, with a reasonable amount of user interaction.



3D Modelling Using Geometric Constraints 223

The paper is organized as follows. Section 2 gives definitions and some back-
ground. Calibration using parallelepipeds is studied in section 3. Sections 4 and
5 describe our approaches for pose estimation and 3D reconstruction.

2 Preliminaries

2.1 Camera Parameterization

We assume that all cameras can be described by the pinhole model. The pro-
jection from a 3D point P to the 2D image point p is expressed by: p ∼ M · P ,
where M is a 3x4 matrix, which can be decomposed as: M = K · [R t]. The
3 × 4 matrix [R t] encapsulates the relative orientation R and translation t be-
tween the camera and the world coordinate system. The matrix K is the 3 × 3
calibration matrix containing the camera’s intrinsic parameters:

K =


αu s u0

0 αv v0
0 0 1


 ,

where αu and αv stand for the focal length, expressed in horizontal and vertical
pixel dimensions, s is a skew parameter considered here as equal to zero, and
u0, v0 are the pixel coordinates of the principal point. In the following, we will
also use the IAC (image of the absolute conic) representation of the intrinsic
parameters, namely the matrix ω ∼ K−T · K−1.

2.2 Parallelepiped Parameterization

A parallelepiped is defined by twelve parameters: six extrinsic parameters de-
scribing its orientation and position, and six intrinsic parameters describing its
Euclidean shape: three dimension parameters (edge lengths l1, l2 and l3) and the
three angles between parallelepiped edges (θ12, θ23, θ13). The internal character-
istics of a parallelepiped can be expressed by a matrix Λ̃ which represents the
transformation between a canonic cube and the shape of the concerned paral-
lelepiped (see [20] for details):

Λ̃ =




l1 l2c12 l3c13 0
0 l2s12 l3

c23−c13c12
s12

0

0 0 l3

√
s2
12−c2

13s2
12−(c23−c13c12)2

s2
12

0
0 0 0 1


 ,

where sij = sin θij and cij = cos θij . This matrix encodes all Euclidean charac-
teristics of the parallelepiped. The analogous entity to a camera’s IAC ω, is the
matrix µ, defined by:

µ ∼ ΛT · Λ ∼

 l21 l1l2 cos θ12 l1l3 cos θ13

l1l2 cos θ12 l22 l2l3 cos θ23
l1l3 cos θ13 l2l3 cos θ23 l23


 ,

where Λ is the upper left 3 × 3 matrix of Λ̃.
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2.3 One Parallelepiped in a Single View

In this section, we briefly recall the duality between the intrinsic characteristics
of a camera and those of a parallelepiped, as established in [20]. Without loss
of generality, suppose that the scene coordinate system is attached to a paral-
lelepiped. The projection of the parallelepiped is then defined by the relative pose
[R t] between the parallelepiped and the camera, the camera calibration matrix
K and the parallelepiped’s intrinsic parameters, given by Λ̃. In the following, we
denote by C the matrix whose columns Ci,i∈[1..8] are the homogeneous coordi-
nates of a canonic cube’s vertices. Thus, image projections pi∈[1..8] = [ui vi 1] of
the parallelepiped’s vertices satisfy:


α1u1 . . . α8u8

α1v1 . . . α8v8
α1 . . . α8


 = X̃ · C = X̃ ·




1 . . . −1
1 . . . −1
1 . . . −1
1 . . . 1


 , (1)

where the 3 × 4 matrix X̃, is defined up to a scalar factor by:

X̃ ∼ M · Λ̃ ∼ K · [R t] · Λ̃. (2)

We call this matrix the canonic projection matrix. Five image points and one
image direction are, in general, sufficient to compute its eleven independent
entries. Additional points make the computation more stable.

For further derivations, let us also introduce the leading 3 × 3 sub-matrices
X and Λ of X̃, Λ̃ respectively, such that:

X ∼ K · R · Λ. (3)

The matrix X captures all geometric information given by the projection of a
parallelepiped. From equation (3), it is simple to derive the following relation
(using ω = K−T · K−1 and µ = ΛT · Λ):

XT · ω · X ∼ µ. (4)

This equation establishes the duality between the intrinsic characteristics of
a camera and those of a parallelepiped. The matrix X, which can be determined
from image information only, transforms one set of intrinsics into the other.
Thus, ω and µ can be seen as different representations of the IAC.

2.4 n Parallelepipeds in m Views

We now consider the more general case where n parallelepipeds are seen by m
cameras. In the scene coordinate frame (chosen arbitrarily), the coordinates Pkl

of the lth vertex (l ∈ [1..8]) of the kth parallelepiped are:

Pkl =
(

Sk vk

0T 1

)
· Λ̃k · Cl, (5)
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where Sk and vk stand for the rotation and translation of the kth parallelepiped.
In a way similar to the single view case (cf. equation (1)), the projections
pikl,l∈[1..8] of these vertices in the ith view are defined by:

pikl ∼ Ki · [Ri ti] · Pkl ∼ Ki · [Ri · Sk Ri · vk + ti] · Λ̃k · Cl. (6)

Denoting X̃ik the canonic projection matrix of the kth parallelepiped into the
ith view, we have: Xik ∼ Ki · Ri · Sk · Λk. Thus, using: Yik = X−1

ik , we obtain
the two following forms of the duality equation (4):

XT
ik · ωi · Xik ∼ µk (a) ⇔ ωi ∼ Y T

ik · µk · Yik (b). (7)

Note that we can derive similar expressions for the two-dimensional equivalents
of the parallelepipeds, parallelograms. The dimension reduction in that case does
not allow for a full duality between parallelograms and cameras, but parallelo-
grams are still useful for calibration (due to lack of space, we will not describe
this in this paper, although we use it in practice).

3 Calibration of Intrinsic Parameters

In the previous section, the duality between the intrinsic parameters of a par-
allelepiped and that of a camera was introduced. Here, we consider a generic
situation where n parallelepipeds are viewed by m cameras, and we study how
to exploit the duality relations for the calibration task. Interestingly, using paral-
lelepipeds as natural calibration objects offers several advantages over standard
self-calibration approaches [15]:

– Fewer correspondences are needed; five and a half points extracted per image
are sufficient, and even fewer inter-image correspondences are needed. For
instance, the calibration of two cameras that view a parallelepiped from
opposite viewpoints, is possible.

– The approach is based on Euclidean information about parallelepipeds or
cameras which are easy to obtain (skew parameter equal to zero, right angles,
etc.). Using such information ensures stability and robustness by limiting the
number of singularities.

– Projections of parallelepipeds naturally enclose affine information, thus re-
duce the algebraic complexity when solving the calibration problem. Indeed,
our calibration method is somewhat similar to self-calibration approaches
that consider special camera motions [11,6,1] or to approaches that first
recover the affine structure, e.g. [9,16].

In the following, we first study how to parameterize the calibration problem
in a consistent way when n parallelepipeds are viewed by m cameras. We then
explicit the constraints that can be derived from prior knowledge.
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3.1 Parameterization of the Calibration Problem

When considering n parallelepipeds and m cameras, the question that naturally
arises is how many independent unknowns are needed to represent all unknown
intrinsic parameters? In general, each camera i and each parallelepiped k has
five independent unknowns (the elements of ωi and µk, minus the scale factors).
Thus, n parallelepipeds and m cameras lead to 5n + 5m unknowns. However,
each set of unknowns ωi (resp. µk) is related to every set of unknowns of µk

(resp. ωi) via the duality equations (7). The duality between two sets of intrin-
sic parameters leads to 5 independent bilinear equations obtained by rewriting
equations (7) as:

µk ∧ (
XT

ik · ωi · Xik

)
= 0 or ωi ∧ (

Y T
ik · µk · Yik

)
= 0,

where the “cross product” operations are carried out between all possible pairs
of corresponding matrix elements. Hence, one may obtain up to 5mn different
bilinear equations in the 5n+5m unknowns, which are however not independent:
all 5n + 5m unknowns can actually be parameterized using only 5 of them, cor-
responding e.g. to the intrinsic parameters of a single camera or parallelepiped
(the parameters of the other entities can be computed by successive applications
of the appropriate duality equations). Thus, the calibration problem for m cam-
eras seeing n parallelepipeds, can be reduced to the estimation of a single set of
intrinsic parameters, belonging to one camera or parallelepiped.

Let us choose a parallelepiped to parameterize the calibration problem. We
denote µ0 the corresponding matrix of intrinsic parameters. Solving for µ0 re-
quires therefore at least five constraints coming from prior knowledge on any of
the m+n entities involved (parallelepipeds and cameras). The following section
explains how to do this.

3.2 Using Prior Knowledge

As explained before, we assume that n parallelepipeds are seen by m cameras.
The geometric information that can be computed from the projection of a par-
allelepiped k in image i is enclosed in the canonic projection matrix Xik = Y −1

ik .
From such matrices and prior information, we can derive constraints on the cal-
ibration by using the duality equations. In this section, we will consider prior
knowledge on the elements of ωi or µk, and how they constrain the elements
of µ0. Such knowledge comes from information on the intrinsic parameters of
camera i or parallelepiped k. It should be noticed here that the relations be-
tween intrinsic parameters and matrix elements are not always linear (see for
example the matrix µ given in section 2.2). In particular, a known angle of a
parallelepiped gives in general a quadratic constraint on several elements of the
associated matrix µ. However, most other types of prior information likely to be
used in practice, lead to linear constraints.
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The duality equations between µ0 and image i, respectively parallelepiped k,
are: {

ωi ∼ Y T
i0 · µ0 · Yi0,

µk ∼ XT
ik · Y T

i0 · µ0 · Yi0 · Xik i ∈ [0..m − 1]. (8)

which may be rewritten in several different forms, by nested applications of the
duality equations, e.g.:{

ωi ∼ Y T
il · XT

jl · Y T
j0 · µ0 · Yj0 · Xjl · Yil,

µk ∼ XT
jk · Y T

jl · XT
0l · Y T

00 · µ0 · Y00 · X0l · Yjl · Xjk.
j ∈ [0..m − 1], l ∈ [0..n − 1]

(9)

Such forms of the duality equations do in principle not provide additional inde-
pendent equations on the elements of µ0. However, they are useful for example in
the case where the parallelepiped associated to µ0 is occluded in view i (e.g. due
to occlusion), thus Xi0 is not available. Using extensions of the duality equations
such as (9), knowledge on camera i can still be used to estimate µ0.

We therefore derive the statements given in the following two paragraphs.
When we speak of independent equations, we mean that they are independent
in general, i.e. non-singular, situations.

Known elements of ωi or µk.

1. Knowing that an element of ωi is equal to zero (e.g. a null skew parameter)
gives 1 linear equation on the elements of µ0 (e.g. via (8)).

2. Knowing that an element of µk �=0 is equal to zero (e.g. a right angle in the
parallelepiped k) also leads to 1 linear constraint on the elements of µ0. If
k = 0, then the number of unknowns is reduced by 1.

3. Knowing a single element of ωi or µk simply cancels the scale ambiguity for
the corresponding entity.

4. Knowing p elements of ωi leads to (p − 1) independent linear constraints on
the elements of µ0. Indeed, these p known elements form (p−1) independent
pairs. The ratio of each such pair of elements gives a linear constraint on the
elements of µ0 (via the appropriate duality relation).

5. In a similar way, knowing p elements of µk �=0 leads to (p−1) independent lin-
ear constraints on the elements of µ0. If k = 0, then the number of unknowns
is reduced to (6 − p).

In [20], we describe in detail which types of prior knowledge on intrinsic pa-
rameters may be used in the above ways. As mentioned before, any of the above
constraints can be enforced using one or several redundant equations of the types
(8) and (9) for example. Note that due to the above facts, an acquisition system
with five different cameras viewing an arbitrary parallelepiped can be fully cal-
ibrated under the assumption of the skew parameters being zero. Equivalently,
a system with one camera viewing five parallelepipeds with one right angle, or
two parallelepipeds with three right angles (cuboids) can be fully calibrated.
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Constant elements of ωi or µk.

1. Knowing that an element of ωi (resp. µk) is constant for i = [0..m−1] (resp.
k = [0..n − 1]) does not give any information.

2. Knowing that two elements of ωi (resp. µk) are constant for i = [0..m − 1]
(resp. k = [0..n − 1]) gives (m − 1) (resp. n − 1) independent quadratic
constraints on the elements of µ0. They can be obtained by writing the two
element ratios using the bilinear equations (8) with any independent pair of
images (resp. any independent pair of parallelepipeds).

3. Knowing that all elements of ωi (resp. µk) are constant for i = [0..m − 1]
(resp. k = [0..n − 1]) gives 4(m − 1) (resp. 4(n − 1)) linear independent
equations on the elements of µ0. Indeed, as shown by Hartley [11], we can
turn the quadratic equations into linear ones. If all Xik and their inverses
Y ik are scaled such as to have the same determinant, then we may write
down the following matrix equation between any pair (i, j) of views, that
holds exactly, i.e. not only up to scale, as usual:

Y T
i0 · µ0 · Yi0 = Y T

j0 · µ0 · Yj0,

and respectively between any pair (k, l) of parallelepipeds:

XT
ik · Y T

i0 · µ0 · Yi0 · Xik = XT
il · Y T

i0 · µ0 · Yi0 · Xil, i ∈ [0..m − 1].

This leads to 5 linear equations for each pair of views (resp. parallelepipeds)
among which 4 are independent.

Consequently, an acquisition system where a camera views two identical par-
allelepipeds or where two identical cameras view one parallelepiped can be fully
calibrated if the cameras’ skew parameters are equal to zero. Note also the spe-
cial case where the camera parameter u0 (or equivalently v0) is constant. This
leads to quadratic equations since this parameter can be written as the ratio of
two elements of ω, corresponding to case 2 above. Again, each of the above con-
straints can be enforced using several redundant equations taken from different
versions of the duality equations.

3.3 Calibration Algorithm

Our approach consists of two stages. First, all available linear equations are used
to determine µ0 (the system is solved using SVD). If there is a unique solution,
then we are done (from µ0, all the camera and parallelepiped intrinsics can be
computed using the Xik). If however, the linear system is under-constrained,
then the quadratic equations arising from constant but unknown intrinsics can
be used to reduce the ambiguity in the solution. The decision if the system
is under-constrained, may be taken on the basis of a singular value analysis.
This also gives the degree of the ambiguity (dimension of the solution space).
In practice, this is usually two or lower. Hence, two quadratic equations are
in general sufficient to obtain a finite number of solutions (if more than the
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minimum number of equations are available, then a best initial solution might
be found using a RANSAC-type approach [8]). Once the matrices ωi and µk are
estimated, the matrices Ki and Λi can be computed via Cholesky decomposition.

Note that singular cases may exist, where calibration can not be achieved,
Singular cases for one parallelepiped seen in one image, are described in [20].

3.4 Comparison with Vanishing Point Based Approaches

A popular way to calibrate from known parallel lines is to use vanishing points
of perpendicular directions. Indeed, the perpendicularity condition gives a con-
straint on the intrinsic camera parameters. However, computing vanishing point
positions in the image appears to be a process sensitive to noise. Our approach
avoids such difficulties by computing projection matrices and hiding therefore
vanishing point computation in a well defined estimation problem1. In the fol-
lowing, we give some numerical evidence suggesting this principle.

We have applied our approach on simulated images of a cube, taken for
different orientations, and compared the calibration results with a non-linear
approach where vanishing points were computed using the MLE estimator de-
scribed in [14]. A 2 pixels Gaussian noise was added to the vertices’ projections,
prior to running the algorithms. Figure 1 shows median values for 500 tests of
the relative error on the estimated focal length for both methods. In figure 1–(a)
six vertices were used and thus one vanishing point’s position was non-linearly
optimized in the second approach. In figure 1–(b) seven vertices were used and
all vanishing point positions were optimized. The graphs show that our linear
method obtains similar results to the non-linear approach in non-singular situ-
ations, and better ones close to a singular situation (90◦ rotation of the cube).
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Fig. 1. Relative error on the estimated parameter αv as a function of the cube rotation
angle: (a) estimation using 6 cube vertices; (b) estimation using 7 cube vertices.

1 The vanishing points of a parallelepiped’s directions correspond to the columns of
matrix X.
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4 Pose Estimation

The step following the intrinsic calibration in the reconstruction process is pose
estimation. The different cameras must indeed be localized with respect to a
common coordinate frame in order to achieve consistent reconstructions. To this
purpose, we extend the plane-based method presented in [17].

4.1 The Scale Ambiguity

If the intrinsic parameters of the cameras (Ki,i∈[0..m−1]) and the parallelepipeds
(Λk,k∈[0..n−1]) are known, then from every matrix Xik (see Section 2.4), we can
compute the matrix X̃ ′

ik, which represents relative pose:

X̃ ′
ik ∼ K−1

i · X̃ik · Λ̃−1
k ∼ [RiSk Rivk + ti]. (10)

The left 3 × 3 submatrix of X̃ ′
ik will be denoted X ′

ik. Note that Λk and X̃ik

are only defined up to scale. For matrices X̃ik used in the position recovery
step, this scale factor has to be computed. It can be fixed for one parallelepiped
and computed for others, for which a priori information about the relative scale
between them and the reference one is available2. Afterwards, the matrices Λk

and X̃ik are scaled such that the X ′
ik have unit determinant. Then, X ′

ik represents
the rotation between the ith camera and the kth parallelepiped.

4.2 Rotational Part of the Pose

The matrix X ′
ik = Ri ·Sk represents the relative rotation between the ith camera

and the kth parallelepiped. In practice, X ′
ik will not be a perfect rotation matrix,

but this can easily be corrected using SVD [13].
Let us first consider the case where all parallelepipeds are seen in all views.

Then, all matrices X ′
ik can be grouped and written as:


X ′

0,0 X ′
0,1 · · · X ′

0,n−1
X ′

1,0 X ′
1,1 · · · X ′

1,n−1
...

...
. . .

...
X ′

m−1,0 X ′
m−1,1 · · · X ′

m−1,n−1




︸ ︷︷ ︸
X ′

=




R0
R1
...

Rm−1




︸ ︷︷ ︸
R

(
S0 S1 · · · Sn−1

)︸ ︷︷ ︸
S

(11)

The matrices Ri and Sk can be extracted by factorizing X ′, due to the fact
that its rank is 3. The factorization leads to solutions defined up to a global rota-
tion. One might thus attach the reference frame to any camera or parallelepiped.

Missing data. In practice, the condition that all parallelepipeds are seen in
all views can not always be satisfied and thus, some data might be missing in
2 Note that the scale factor could also be recovered for each parallelepiped seen by at
least two cameras, after estimation of the cameras’ relative positions.
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the matrix X ′. However, each missing relative orientation X ′
ik between camera

i and parallelepiped k can be deduced from others if there is one camera i′ and
one parallelepiped k′ such that the rotations X ′

i′k′ , X ′
i′k and X ′

ik′ are known.
The missing matrix can then be computed using:

X ′
ik = X ′

ik′ (X ′
i′k′)T X ′

i′k. (12)

Several equations of this type may be used simultaneously to increase accuracy.
Also, knowing that two parallelepipeds k and k′ have a common orientation can
be imposed by fixing Sk′ = Sk, and eliminating the kth column from matrix X ′.
This can be useful when dealing with missing data.

4.3 Translational Part of the Pose

We assume that the scale ambiguity mentioned in section 4.1 is solved. Denoting
wik the 4th column of matrix X̃ ′

ik, and v′
k = Rivk, then camera positions can be

determined by minimizing the sum of terms ‖ wik −Rivk − ti ‖ over all available
image-parallelepiped pairs. This can be done using linear least squares [17].

5 3D Reconstruction

The presented calibration approach is well adapted to interactive 3D reconstruc-
tion from a few images. It has a major advantage over other methods: simplicity.
Indeed, only a small amount of user interaction is needed for both calibration
and reconstruction: a few points must be picked in the image to define the prim-
itives’ image positions. It thus seems to be an efficient and intuitive way to build
models from images of any type, in particular from images taken from the In-
ternet for which no information about the camera is known. In this section, we
briefly present a linear algorithm that we have implemented to construct realistic
3D models. It can use linear constraints from single or multiple images.

5.1 Reconstruction Algorithm

The algorithm is composed of three main successive steps:

– Reconstruction of parallelepipeds used for calibration: their intrinsics are re-
covered in the calibration phase and position/orientation by pose estimation.
The 3D positions of their vertices can then be computed using (6).

– Reconstruction of points visible in several images (given correspondences):
using any method described for example in [10].

– Reconstruction of points visible in one image only: by solving systems of
linear constraints like coplanarity, collinearity, or the fact that points belong
to a parallelogram, such constraints being defined with respect to points
already reconstructed [20].
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Fig. 2. The calibration and reconstruction algorithms.

This approach is actually independent from the calibration method, although
it uses the same input in the first step. Interestingly, it allows 3D models to be
computed from non-overlapping photographs (see e.g. Fig. 5). The global scheme
of our system is shown in Figure 2.

The following section illustrates this approach with results obtained by solv-
ing linear systems only. Note that, in order to refine the results, non-linear op-
timization, taking into account prior information, might be applied.

5.2 Experimental Results

Known scene. In order to estimate the accuracy of the calibration and re-
construction methods, a scene containing several boxes with known dimensions
(see Fig. 3) was used. Three images were taken with an off-the-shelf digital cam-
era, and with varying zoom. Calibration and reconstruction of the scene were
achieved using different calibration scenarios. Table 1 gives the relative errors
on length ratios lx/lz, ly/lz of the reconstructed primitives 0, 1, 2 (see left part
of Fig.3 for notations), as well as the relative errors on the estimated aspect
ratio. We assume here that the principal point is the image center and that skew
parameters are equal to zero. The following scenarios were tested:

1. Cameras are independently calibrated: for every image i ∈ [0..2], we param-
eterize the problem in the unknown elements of ωi (i.e. αui, αvi) and we use
the information about right angles of parallelepipeds seen in that view.

2. Parallelepipeds are independently calibrated: for every parallelepiped k ∈
[0..2], we parameterize the problem in the unknown terms of µk (i.e. lxk/lzk,
lyk/lzk) and we use the information that the skew parameter is equal to zero
and that the principal point is the image center.

3. We parameterize the problem in terms of µ0, and use the known principal
points, but no prior knowledge on the parallelepipeds.

4. Same as scenario 3, but also using known values of the camera aspect ratios.

These results confirm the intuition that, on average, errors do not depend
on the entity chosen for parameterization. However, using a fundamental entity
with respect to which all the constraints are expressed, results in a more uniform
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Fig. 3. Images and parallelepipeds used for calibration.

distribution of the errors, and naturally, adding known information on the aspect
ratio, reduces the errors.

To visually evaluate the quality of the reconstruction, we show screenshots
of the reconstructed scene. Figure 4–(a) shows the orientation of boxes, which
was recovered without any assumption about their relative rotation. To solve
the scale ambiguity between boxes 0 and 2, we used only a coplanarity con-
straint between one of the points of box 2 and the base-plane of box 0. Figure
4–(b) shows the roof of the house, which was reconstructed as an arbitrary par-
allelepiped having several vertices in common with the cubic base of the house.
These figures show that the reconstructed scene is qualitatively correct.

(a) (b)

Fig. 4. Reconstructed boxes.

Table 1. Average relative errors on the estimated camera aspect ratios and the esti-
mated length ratios of the parallelepipeds.

Scenario av. rel. err. τ [%] av. rel. err. length ratio [%]
K1 K2 K3 lx0/lz0 ly0/lz0 lx1/lz1 ly1/lz1 lx2/lz2 ly2/lz2

1 3.41 4.13 0.10 3.21 5.14 5.43 14.47 5.41 2.08
2 3.57 3.15 9.55 0.45 6.97 0.74 5.13 13.20 3.32
3 5.23 6.12 6.24 2.67 7.82 3.91 0.49 7.57 0.31
4 3.76 4.60 4.57 2.35 6.01 3.24 0.97 5.77 0.64
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Outdoor scene. Figure 5 shows the reconstruction of an entire building from
just two images taken from opposite viewpoints. The parallelepiped used for
calibration and the estimated camera positions are shown in the two original
images 5–(a),(b). In the first image, intersections of lines were computed to
obtain the six points required to define a parallelepiped (see Fig. 5–(a)). The
reconstruction was then done according to the two following steps. First, vertices
of the reference parallelepiped were reconstructed during the calibration step.
Second, the rest of the scene was modeled using primitives depicted by the user.

(a) (b)

(c) (d)

Fig. 5. Building reconstruction: (a) Original photos used for the reconstruction; (b)
the reconstruction scenario with the computed model and camera positions; circles
correspond to parallelepiped vertices, crosses and rectangles to points reconstructed
from the first and second image respectively; (c),(d) Details of the model.
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6 Conclusion

We have presented a framework for calibration and 3D model acquisition from
several arbitrary images based on projections of parallelepipeds. Our system uses
geometric constraints, provided interactively by the user, for camera calibration,
pose estimation, and modeling of 3D scene structure. It combines available in-
formation on the scene structure (angles and length ratios in parallelepipeds)
and on the intrinsic camera parameters with multi-view constraints.

In practice, our method leads to calibration and reconstruction which can be
obtained by solving only linear equations. Future work on this topic concerns:
the automatization of the process and thus the reduction of interaction needed
to define primitives in several images; refinement of an approximate model; au-
tomatic surface generation from reconstructed points.

References

1. Armstrong, M., Zisserman, A., Beardsley, P.: Euclidean Structure from Uncali-
brated Images. BMVC (1994) 509–518

2. Caprile, B., Torre, V.: Using Vanishing Points for Camera Calibration. IJCV 4
(1990) 127–140

3. Chen, C.-S., Yu, C.-K., Hung, Y.-P.: New Calibration-free Approach for Aug-
mented Reality Based on Parametrized Cuboid Structure. ICCV (1999) 30–37

4. Cipolla, R., Boyer, E.: 3D model acquisition from uncalibrated images. IAPR
Workshop on Machine Vision Applications, Chiba, Japan (1998) 559–568

5. Criminisi, A., Reid, I., Zisserman, A.: Single View Metrology. ICCV (1999) 434–442
6. de Agapito, L., Hartley, R., Hayman, E.: Linear selfcalibration of a rotating and

zooming camera. CVPR (1999) 15–21
7. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and Rendering Architecture from

Photographs: a Hybrid Geometry-and Image-Based Approach. SIGGRAPH (1996)
11–20

8. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Graph-
ics and Image Processing 24(6) (1981) 381–395

9. Hartley, R.I.: Euclidean Reconstruction from Uncalibrated Views. darpa–esprit
Workshop on Applications of Invariants in Computer Vision, Azores, Portugal
(1993) 187–202

10. Hartley, R.I., Sturm, P.: Triangulation. CVIU 68(2) (1997) 146–157
11. Hartley, R.I.: Self-calibration of Stationary Cameras. IJCV 22(1) (1997) 5–23
12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press (2000)
13. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and

Practice. Elsevier Science (1996)
14. Liebowitz, D., Zisserman, A.: Metric Rectification for Perspective Images of Planes.

CVPR (1998) 482–488
15. Maybank, S.J., Faugeras, O.D.: A Theory of Self Calibration of a Moving Camera.

IJCV 8(2) (1992) 123–151
16. Pollefeys, M., Van Gool, L.: A Stratified Approach to Metric Self-Calibration.

CVPR (1998) 407–412



236 M. Wilczkowiak, E. Boyer, and P. Sturm

17. Sturm, P.: Algorithms for Plane-Based Pose Estimation. CVPR (2000) 1010–1017
18. Sturm, P., Maybank, S.: On Plane-Based Camera Calibration: A General Algo-

rithm, Singularities, Applications. CVPR (1999) 432–437
19. Triggs, B.: Autocalibration and the Absolute Quadric. CVPR (1997) 609–614
20. Wilczkowiak, M., Boyer, E., Sturm, P.: Camera Calibration and 3D Reconstruction

from Single Images Using Parallelepipeds. ICCV (2001) 142–148
21. Zhang, Z.: Flexible Camera Calibration By Viewing a Plane From Unknown Ori-

entations. ICCV (1999) 666–673


	Introduction
	Preliminaries
	Camera Parameterization
	Parallelepiped Parameterization
	One Parallelepiped in a Single View
	$n$ Parallelepipeds in $m$ Views

	Calibration of Intrinsic Parameters
	Parameterization of the Calibration Problem
	Using Prior Knowledge
	Calibration Algorithm
	Comparison with Vanishing Point Based Approaches

	Pose Estimation
	The Scale Ambiguity
	Rotational Part of the Pose
	Translational Part of the Pose

	3D Reconstruction
	Reconstruction Algorithm
	Experimental Results

	Conclusion

