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Abstract. What does it mean for a deforming object to be “moving”
(see Fig. 1)? How can we separate the overall motion (a finite-dimensional
group action) from the more general deformation (a diffeomorphism)? In
this paper we propose a definition of motion for a deforming object and
introduce a notion of “shape average” as the entity that separates the
motion from the deformation. Our definition allows us to derive novel and
efficient algorithms to register non-equivalent shapes using region-based
methods, and to simultaneously approximate and register structures in
grey-scale images. We also extend the notion of shape average to that
of a “moving average” in order to track moving and deforming objects
through time.

Fig. 1. A jellyfish is “moving while deforming.” What exactly does this mean? How
can we separate its “global” motion from its “local” deformation?

1 Introduction

Consider a sheet of paper falling. If it were a rigid object, one could describe
its motion by providing the coordinates of one particle and the orientation of
an orthonormal reference frame attached to that particle. That is, 6 numbers
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would be sufficient to describe the object at any instant of time. However, being a
non-rigid object, in order to describe it at any instant of time one should really
specify the trajectory of each individual particle on the sheet. That is, if γ0
represents the initial collection of particles, one could provide a function f that
describes how the entire set of particles evolves in time: γt = f(γ0, t). Indeed,
if each particle can move independently, there may be no notion of “overall
motion,” and a more appropriate description of f is that of a “deformation” of
the sheet. That includes as a special case a rigid motion, described collectively
by a rotation matrix1 R(t) ∈ SO(3) and a translation vector T (t) ∈ R3, so that
γt = f(γ0, t) = R(t)γ0 + T (t) with R(t) and T (t) independent of the particle
in γ0. In practice, however, that is not how one usually describes a sheet of
paper falling. Instead, one may say that the sheet is “moving” downwards along
the vertical direction while “locally deforming.” The jellyfish in Fig. 1 is just
another example to illustrate the same issue.

But what does it even mean for a deforming object to be “moving”? From a
mathematical standpoint, rigorously defining a notion of motion for deforming
objects presents a challenge. In fact, if we describe the deformation f as the
composition of a rigid motion (R(t), T (t)) and a “local deformation” function
h(·, t), so that γt = h(R(t)γ0 + T (t), t), we can always find infinitely many
different choices h̃(·, t), R̃(t), T̃ (t) that give rise to the same overall deformation
f : γt = f(γ0, t) = h(R(t)γ0 + T (t), t) = h̃(R̃γ0 + T̃ (t), t) by simply choosing
h̃(γ, t) .= h(RR̃T (γ − T̃ ) + T, t) for any rigid motion (R̃, T̃ ). Therefore, we could
describe the motion of our sheet with (R, T ) as well as with (R̃, T̃ ), which is
arbitrary, and in the end we would have failed in defining a notion of “motion”
that is unique to the event observed. So, how can we define a notion of motion
for a deforming object in a mathematically sound way that reflects our intuition?
For instance, in Fig. 6, how do we describe the “motion” of a jellyfish? Or in Fig.
5 the “motion” of a storm? In neuroanatomy, how can we “register” a database
of images of a given structure, say the corpus callosum (Fig. 9), by “moving”
them to a common reference frame?

All these questions ultimately boil down to an attempt to separate the overall
motion from the more general deformation. Before proceeding, note that this is
not always possible or even meaningful. In order to talk about the “motion”
of an object, one must assume that “something” of the object is preserved as it
deforms. For instance, it may not make sense to try to capture the “motion” of a
swarm of bees, or of a collection of particles that indeed all move independently.
What we want to capture mathematically is the notion of overall motion when
indeed there is one that corresponds to our intuition! The key to this paper
is the observation that the notion of motion and the notion of shape are very
tightly coupled. Indeed, we will see that the shape average is exactly what allows
separating the motion from the deformation.

1 SO(3) denotes the set of 3 × 3 orthogonal matrices with unit determinant.
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1.1 Prior Related Work

The study of shape spans at least a hundred years of research in different com-
munities from mathematical morphology to statistics, geology, neuroanatomy,
paleontology, astronomy etc. In statistics, the study of “Shape Spaces” was
championed by Kendall, Mardia and Carne among others [15,20,8,24,9]. Shapes
are defined as the equivalence classes of N points in RM under the similarity
group2, RMN/{SE(M) × R}. Although the framework clearly distinguishes
the notion of “motion” (along the fibers) from the “deformation” (across fibers),
the analytical tools are essentially tied to the point-wise representation. One of
our goals in this paper is to extend the theory to smooth curves, surfaces and
other geometric objects that do not have distinct “landmarks.”

In computer vision, a wide literature exists for the problem of “matching” or
“aligning” objects based on their images, and space limitations do not allow us
to do justice to the many valuable contributions. We refer the reader to [32] for
a recent survey. A common approach consists of matching collections of points
organized in graphs or trees (e.g. [19,11]). Belongie et al. [4] propose comparing
planar contours based on their “shape context.” The resulting match is based
on “features” rather than on image intensity directly, similar to [10].

“Deformable Templates,” pioneered by Grenander [12], do not rely on “fea-
tures” or “landmarks;” rather, images are directly deformed by a (possibly
infinite-dimensional) group action and compared for the best match in an
“image-based” approach [34]. There, the notion of “motion” (or “alignment”
or “registration”) coincides with that of deformation, and there is no clear dis-
tinction between the two [5].

Another line of work uses variational methods and the solution of partial
differential equations (PDEs) to model shape and to compute distances and
similarity. In this framework, not only can the notion of alignment or distance
be made precise [3,33,25,28], but quite sophisticated theories that encompass
perceptually relevant aspects can be formalized in terms of the properties of the
evolution of PDEs (e.g. [18,16]). Kimia et al. [16] describes a scale-space that cor-
responds to various stages of evolution of a diffusing PDE, and a “reacting” PDE
that splits “salient parts” of planar contours by generating singularities. The
variational framework has also proven very effective in the analysis of medical
images [23,30,22]. Although most of these ideas are developed in a deterministic
setting, many can be transposed to a probabilistic context [35,7,31]. Scale-
space is a very active research area, and some of the key contributions as they
relate to the material of this paper can be found in [14,29,17,1,2] and references
therein.

The “alignment,” or “registration,” of curves has also been used to define a
notion of “shape average” by several authors (see [21] and references therein).
The shape average, or “prototype,” can then be used for recognition in a nearest-
neighbor classification framework, or to initialize image-based segmentation by
providing a “prior.” Leventon et al. [21] perform principal component analysis

2 SE(M) indicates the Euclidean group of dimension M .
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in the aligned frames to regularize the segmentation of regions with low contrast
in brain images.

Also related to this paper is the recent work of Paragios and Deriche, where
active regions are tracked as they “move.” In [27] the notion of motion is not
made distinct from the general deformation, and therefore what is being tracked
is a general (infinite-dimensional) deformation. Our aim is to define tracking as
a trajectory on a finite-dimensional group, despite infinite-dimensional deforma-
tions. Substantially different in methods, but related in the intent, is the work on
stochastic filters for contour tracking and snakes (see [6] and references therein).

Our framework is designed for objects that undergo a distinct overall
“global” motion while “locally” deforming. Under these assumptions, our con-
tribution consists of a novel definition of motion for a deforming object and a
corresponding definition of shape average (Sect. 2). Our definition allows us to
derive novel and efficient algorithms to register non-identical (or non-equivalent)
shapes using region-based methods (Sect. 5). We use our algorithms to simul-
taneously approximate and register structures in images, or to simultaneously
segment and calibrate images (Sect. 6). In the context of tracking, we extend
our definition to a novel notion of “moving average” of shape, and use it to
perform tracking for deforming objects (Sect. 4). Our definitions do not rely on
a particular representation of objects (e.g. explicit vs. implicit, parametric vs.
non-parametric), nor on the particular choice of group (e.g. affine, Euclidean),
nor are they restricted to a particular modeling framework (e.g. determinis-
tic, energy-based vs. probabilistic). For the implementation of our algorithms
on deforming contours, we have chosen an implicit non-parametric representa-
tion in terms of level sets, and we have implemented numerical algorithms for
integrating partial differential equations to converge to the steady-state of an
energy-based functional. However, these choices can be easily changed without
altering the nature of the contribution of this paper. Naturally, since shape and
motion are computed as the solution of a nonlinear optimization problem, the
algorithms we propose are only guaranteed to converge to local minima and, in
general, no conclusions can be drawn on uniqueness. Indeed, it is quite simple
to generate pathological examples where the setup we have proposed fails. In
the experimental section we will highlight the limitations of the approach when
used beyond the assumptions for which it is designed.

2 Defining Motion and Shape Average

The key idea underlying our framework is that the notion of motion throughout
a deformation is very tightly coupled with the notion of shape average. In partic-
ular, if a deforming object is recognized as moving, there must be an underlying
object (which will turn out to be the shape average) moving with the same mo-
tion, from which the original object can be obtained with minimal deformations.
Therefore, we will model a general deformation as the composition of a group
action g on a particular object, on top of which a local deformation is applied.
The shape average is defined as the one that minimizes such deformations.
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Fig. 2. A model (commutative diagram) of a deforming contour.

Let γ1, γ2, . . . , γn be n “shapes” (we will soon make the notion precise in Def.
1). Let the map between each pair of shapes be Tij

γi = Tijγj , i, j = 1 . . . n. (1)

It comprises the action of a group g ∈ G (e.g. the Euclidean group on the plane
G = SE(2)) and a more general transformation h that belongs to a pre-defined
class H (for instance diffeomorphisms). The deformation h is not arbitrary, but
depends upon another “shape” µ, defined in such a way that

γi = hi ◦ gi(µ), i = 1 . . . n. (2)

Therefore, in general, following the commutative diagram of Fig. 2, we have that

Tij
.= hi ◦ gi ◦ g−1

j (µ) ◦ h−1
j (3)

so that g = gig
−1
j and h is a transformation that depends on hi, hj and µ.

Given two or more “shapes” and a cost functional E : H → R+ defined on the
set of diffeomorphisms, the motion gt and the shape average are defined as the
minimizers of

∑n
t=1 E(ht) subject to γt = ht ◦ gt(µ). Note that the only factors

which determine the cost of ht are the “shapes” before and after the transfor-
mation, µi

.= gi(µ) and γi, so that we can write, with an abuse of notation,
E(h(µi, γi))

.= E(µi, γi). We are therefore ready to define our notion of motion
during a deformation.

Definition 1 Let γ1, . . . , γn be smooth boundaries of closed subsets of a differ-
entiable manifold embedded in RN , which we call pre-shapes. Let H be a class
of diffeomorphisms acting on γi, and let E : H → R+ be a positive, real-valued
functional. Consider now a group G acting on γi via g(γi). We say that ĝ1, . . . , ĝn
is a motion undergone by γi, i = 1 . . . n if there exists a pre-shape µ̂ such that

ĝ1, . . . , ĝn, µ̂ = argmin
gt,µ

n∑
i=1

E(hi) subject to γi = hi ◦ gi(µ) i = 1 . . . n (4)
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The pre-shape µ̂ is called the shape average relative to the group G, or G-
average, and the quantity ĝ−1

i (γi) is called the shape of γi.

Remark 1 (Invariance) In the definition above, one will notice that the shape
average is actually a pre-shape, and that there is an arbitrary choice of group
action g0 that, if applied to γi and µ, leaves the definition unchanged (the func-
tional E is invariant with respect to g0 because T (g ◦ g0, h ◦ g0) = T (g, h) ∀ g0).
For the case of the Euclidean group SE(N), a way to see this is to notice that
the reference frame where µ is described is arbitrary. Therefore, one may choose,
for instance, µ = h−1

1 (γ1).

Remark 2 (Symmetries) In Def. 1 we have purposefully avoided to use the
article “the” for the minimizing value of the group action ĝt. It is in fact possible
that the minimum of (4) not be unique. A particular case when this occurs is
when the pre-shape γ is (symmetric, or) invariant with respect to a particular
element of the group G, or to an entire subgroup. Notice, however, that the
notion of shape average is still well-defined even when the notion of motion is
not unique. This is because any element in the symmetry group suffices to register
the pre-shapes, and therefore compute the shape average (Fig. 3).

3 Shape and Deformation of a Planar Contour

In this section we consider the implementation of the program above for a simple
case: two closed planar contours, γ1 and γ2, where we choose as cost functional
for the deformations h1, h2 either the set-symmetric difference ∆ of their interior
(the union minus the intersection), or what we call the signed distance score3 ψ

ψ(µ, γ) .=
∫
µ̄

ζ(γ)dx (5)

where µ̄ denotes the interior of the contour µ and ζ is the signed distance function
of the contour γ; dx is the area form on the plane. In either case, since we have
an arbitrary choice of the global reference frame, we can choose g1 = e, the
group identity. We also call g .= g2, so that µ2 = g(µ). The problem of defining
the motion and shape average can then be written as

ĝ, µ̂ = argmin
g,µ

2∑
i=1

E(hi) subject to γ1 = h1(µ); γ2 = h2 ◦ g(µ). (6)

3 The rationale behind this score is that one wants to make the signed distance function
as positive as possible outside the contour to be matched, and as negative as possible
inside. This score can be interpreted as a weighted Monge-Kantorovic functional
where the mass of a curve is weighted by its distance from the boundary.
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As we have anticipated, we choose either E(hi) = ∆(gi(µ), γi) or E(hi)
.=

ψ(gi(µ), γi). Therefore, abusing the notation as anticipated before Def. 1, we
can write the problem above as an unconstrained minimization

ĝ, µ̂ = argmin
g,µ

φ(γ1, γ2) where φ(γ1, γ2)
.= E(µ, γ1) + E(g(µ), γ2) (7)

and E is either ∆ or ψ. The estimate ĝ defines the motion between γ1 and γ2,
and the estimate µ̂ defines the average of the two contours.

If one thinks of contours and their interior, represented by a characteristic
function χ, as a binary image, then the cost functional above is just a particular
case of a more general cost functional where each term is obtained by integrating
a function inside and a function outside the contours

φ =
2∑
i=1

∫
µ̄in

fin(x, γi)dx+
∫
µ̄out

fout(x, γi)dx (8)

where the bar in µ̄ indicates that the integral is computed on a region inside or
outside µ and we have emphasized the fact that the function f depends upon
the contour γi. For instance, for the case of the set symmetric difference we
have fin = (χγ − 1) and fout = χγ . To solve the problem, therefore, we need to
minimize the following functional∫

µ̄in

fin(x, γ1) + fin(g(x), γ2)|Jg|dx+
∫
µ̄out

fout(x, γ1) + fout(g(x), γ2)|Jg|dx
(9)

where |Jg| is the determinant of the Jacobian of the group action g. This makes
it easy to compute the component of the first variation of φ along the normal
direction to the contour µ, so that we can impose

∇µφ · N = 0 (10)

to derive the first-order necessary condition. If we choose G = SE(2), an isom-
etry, it can be easily shown that

∇µφ = fin(x, γ1)− fout(x, γ1) + fin(g(x), γ2)− fout(g(x), γ2) (11)

3.1 Representation of Motions and Their Variation

For the specific case of matrix Lie groups (e.g. G = SE(2)), there exist twist
coordinates ξ that can be represented as a skew-symmetric matrix ξ̂ so that4

g = eξ̂ and
∂g

∂ξi
=

∂ξ̂

∂ξi
g (12)

4 The “widehat” notation ,̂ which indicates a lifting to the Lie algebra, should not be
confused with the “hat” ,̂ which indicates an estimated quantity.
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where the matrix ∂ξ̂
∂ξi

is composed of zeros and ones and the matrix exponential
can be computed in closed form using Rodrigues’ formula.

To compute the variation of the functional φ with respect to the group action
g, we notice that the first two terms in φ do not contribute since they are inde-
pendent of g. The second two terms are of the generic form A(g) .=

∫
g(µ̄) f(x)dx.

Therefore, we consider the variation of A with respect to the components of
the twist ξi, ∂A

∂ξi
, which we will eventually use to compute the gradient with

respect to the natural connection ∇Gφ =
(̂
∂φ
∂ξ

)
g. We first rewrite A(g) us-

ing the change of measure
∫
g(µ̄) f(x)dx =

∫
µ̄
f ◦ g(x)|Jg|dx which leads to

∂A(g)
∂ξi

=
∫
µ̄

∂
∂ξi
(f ◦ g(x))|Jg|dx +

∫
µ̄
(f ◦ g(x)) ∂

∂ξi
|Jg|dx and note that the Eu-

clidean group is an isometry and therefore the determinant of the Jacobian is
one and the second integral is zero. The last equation can be re-written, using
Green’s theorem, as

∫
g(µ)

〈
f(x) ∂g∂ξi

◦ g−1(x), N
〉
ds =

∫
µ

〈
f ◦ g(x) ∂g∂ξi

, g∗N
〉
ds

where g∗ indicates the push-forward. Notice that g is an isometry and therefore
it does not affect the arc length; we then have

∂A(g)
∂ξi

=
∫
µ

f(g(x))

〈
∂ξ̂

∂ξi
g, g∗N

〉
ds (13)

After collecting all the partial derivatives into an operator ∂φ∂ξ , we can write the
evolution of the group action.

3.2 Evolution

The algorithm for evolving the contour and the group action consists of a two-
step process where an initial estimate of the contour µ̂ = γ1 is provided, along
with an initial estimate of the motion ĝ = e. The contour and motion are then
updated in an alternating minimization where motion is updated according to

dĝ

dt
=

(̂
∂φ

∂ξ

)
ĝ (14)

Notice that this is valid not just for SE(2), but for any (finite-dimensional)
matrix Lie group, although there may not be a closed-form solution for the ex-
ponential map like in the case of SE(3) and its subgroups. In practice, the group
evolution (14) can be implemented in local (exponential) coordinates by evolv-
ing ξ defined by g = eξ̂ via dξ

dt =
∂φ
∂ξ . In the level set framework, the derivative

of the cost function φ with respect to the coordinates of the group action ξi
can be computed as the collection of two terms, one for fin, one for fout where
∂φ
∂ξi

=
∫
g(γ1,2)

〈
∂g(x)
∂ξi

, f{in,out}(g(x), γ1,2)J(g∗T )
〉
ds. As we have anticipated in

Eq. (11), the contour µ̂ evolves according to

dµ̂

dt
= (fin(x, γ1)− fout(x, γ1) + fin(g(x), γ2)− fout(g(x), γ2))N (15)
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As we have already pointed out, the derivation can be readily extended to sur-
faces in space and to multiple objects, as we show in Sect. 6.

3.3 Distance between Shapes

The definition of motion ĝ and shape average µ̂ as a minimizer of (6) suggests
defining the distance5 between two shapes as the “energy” necessary to deform
one into the other via the average shape:

d(γi, γj)
.= E(γi, T (ĝ, ĥ)γj). (16)

For instance, for the case of the set-symmetric difference of two contours, we
have

d∆(γ1, γ2)
.=

∫
χµ̂χγ1 + χĝ(µ̂)χγ2dx (17)

and for the signed distance transform we have

dψ(γ1, γ2)
.=

∫
ˆ̄µ
ζ(γ1)dx+

∫
ĝ(ˆ̄µ)

ζ(γ2)dx. (18)

In either case, a gradient flow algorithm based on Eq. (14) and (15), when it
converges to a global minimum, returns an average shape and a set of group
elements gi which minimize the sums of the distances between the contours γi
and any other common contour modulo the chosen group.

4 Moving Average and Tracking

The discussion above assumes that an unsorted collection of shapes is available,
where the deformation between any two shapes is “small” (modulo G), so that
the whole collection can be described by a single average shape. Consider however
the situation where an object is evolving in time, for instance Fig. 5. While the
deformation between adjacent time instants could be captured by a group action
and a small deformation, as time goes by the object may change so drastically
that talking about a global time average may not make sense.

One way to approach this issue is by defining a notion of “moving average”,
similarly to what is done in time series analysis. In classical linear time se-
ries, however, the uncertainty is modeled via additive noise. In our case, the
uncertainty is an infinite-dimensional deformation h that acts on the measured
contour. So the model becomes{

µ(t+ 1) = g(t)µ(t)
γ(t) = h(µ(t))

(19)

5 Here we use the term distance informally, since we do not require that it satisfies
the triangular inequality. The term pseudo-distance would be more appropriate.
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where µ(t) represents the moving average of order k = 1. A similar model can be
used to define moving averages of higher-order k > 1. The procedure described
in Sect. 3, initialized with µ(0) = γ1, provides an estimate of the moving average
of order 1, as well as the tracking of the trajectory g(t) in the group G, which in
(19) is represented as the model parameter. Note that the procedure in Sect. 3
simultaneously estimates the state µ(t) and identifies the parameters g(t) of the
model (19). It does so, however, without imposing restrictions on the evolution
of g(t). If one wants to impose additional constraints on the motion parameters,
one can augment the state of the model to include the parameters g, for instance
g(t+ 1) = eξ̂(t)g(t). This, however, is beyond the scope of this paper. In Fig. 5
we show the results of tracking a storm with a moving average of order one.

5 Simultaneous Approximation and Registration of
Non-equivalent Shapes

So far we have assumed that the given shapes are obtained by moving and
deforming a common underlying “template” (the average shape). Even though
the given shapes are not equivalent (i.e. there is no group action g that maps
one exactly onto the other), g is found as the one that minimizes the cost of the
deviation from such an equivalence. In the algorithm proposed in Eq. (14)-(15),
however, there is no explicit requirement that the deformation between the given
shapes be small. Therefore, the procedure outlined can be seen as an algorithm
to register shapes that are not equivalent under the group action. A registration
is a group element ĝ that minimizes the cost functional (4).

To illustrate this fact, consider the two considerably different shapes shown
in Fig. 7, γ1, γ2. The simultaneous estimation of their average µ, for instance
relative to the affine group, and of the affine motions that best matches the
shape average onto the original ones, g1, g2, provides a registration that maps
γ1 onto γ2 and vice-versa: g = g2g

−1
1 .

If instead of considering the images in Fig. 7 as binary images that represent
the contours, we consider them as gray-scale images, then the procedure outlined,
for the case where the score is computed using the set-symmetric difference,
provides a way to simultaneously jointly segment the two images and register
them. This idea is illustrated in Fig. 9 for true gray-scale (magnetic resonance)
images of brain sections.

6 Experiments

Fig. 3 illustrates the difference between the motion and shape average computed
under the Euclidean group, and the affine group. The three examples show the
two given shapes γi, the mean shape registered to the original shapes, gi(µ)
and the mean shape µ. Notice that affine registration allows to simultaneously
capture the square and the rectangle, whereas the Euclidean average cannot be
registered to either one, and is therefore only an approximation.
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Fig. 3. Euclidean (top) vs. affine (bottom) registration and average. For each
pair of objects γ1, γ2, the registration g1(µ), g2(µ) relative to the Euclidean motion and
affine motion is shown, together with the Euclidean average and affine average µ. Note
that the affine average can simultaneously “explain” a square and a rectangle, whereas
the Euclidean average cannot.

Fig. 4 compares the effect of choosing the signed distance score (left) and the
set-symmetric difference (right) in the computation of the motion and average
shape. The first choice results in an average that captures the common features
of the original shapes, whereas the second captures more of the features in each
one. Depending on the application, one may prefer one or the other.

Fig. 4. Signed distance score (left) vs. set-symmetric difference (right). Orig-
inal contours (γ1 on the top, γ2 on the bottom), registered shape gi(µ) and shape av-
erage µ. Note that the original objects are not connected, but are composed by a circle
and a square. The choice of pseudo-distance between contours influences the resulting
average. The signed distance captures more of the features that are common to the
two shapes, whereas the symmetric difference captures the features of both.
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Fig. 5. Storm (first row) a collection of images from EUMETSAT c©2001, (second
row) affine motion of the storm based on two adjacent time instances, superimposed
to the original images, (bottom) moving average of order 1.

Fig. 6. Jellyfish. Affine registration (top), moving average and affine motion (bottom)
for the jellyfish in Fig. 1. (Bottom right) trajectory of the jellyfish (affine component
of the group).

Fig. 5 shows the results of tracking a storm. The affine moving average is
computed, and the resulting affine motion is displayed. The same is done for the
jellyfish in Fig. 6.

Fig. 7 and 8 are meant to challenge the assumptions underlying our method.
The pairs of objects chosen, in fact, are not simply local deformations of one
another. Therefore, the notion of shape average is not meaningful per se in this
context, but serves to compute the change of (affine) pose between the two
shapes (Fig. 7). Nevertheless, it is interesting to observe how the shape average
allows registering even apparently disparate shapes. Fig. 8 shows a representative
example from an extensive set of experiments. In some cases, the shape average
contains disconnected components, in some other it includes small parts that are
shared by the original dataset, whereas in others it removes parts that are not
consistent among the initial shapes (e.g. the tails). Notice that our framework
is not meant to capture such a wide range of variations. In particular, it does



44 S. Soatto and A.J. Yezzi

Fig. 7. Registering non-equivalent shapes. Left to right: two binary images rep-
resenting two different shapes; affine registration; corresponding affine shape; approxi-
mation of the original shapes using the registration of the shape average based on the
set-symmetric difference. Results for the signed distance score are shown in Fig. 8. This
example is shown to highlight the limitations of our method.

Fig. 8. Biological shapes. For the signed distance score, we show the original shape
with the affine shape average registered and superimposed. It is interesting to notice
that different “parts” are captured in the average only if they are consistent in the two
shapes being matched and, in some cases, the average shape is disconnected.

not possess a notion of “parts” and it is neither hierarchical nor compositional.
In the context of non-equivalent shapes (shapes for which there is no group
action mapping one exactly onto the other), the average shape serves purely as
a support to define and compute motion in a collection of images of a given
deforming shape.

Fig. 9 shows the results of simultaneously segmenting and computing the
average motion and registration for 4 images from a database of magnetic reso-
nance images of the corpus callosum.
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Fig. 9. Corpus Callosum (top row) a collection of (MR) images from different pa-
tients (courtesy of J. Dutta), further translated, rotated and distorted to emphasize
their misalignment (second row). Aligned contour (second row, dark gray, superimposed
to original regions) and shape average (bottom) corresponding to the affine group.

Finally, Fig. 10 shows an application of the same technique to simultaneously
register and average two 3D surfaces. In particular, two 3D models in different

Fig. 10. 3D Averaging and registration (left) two images of 3D models in differ-
ent poses (center) registered average (right) affine average. Note that the original 3D
surfaces are not equivalent. The technique presented allows “stitching” and registering
different 3D models in a natural way.
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poses are shown. Our algorithm can be used to register the surfaces and average
them, thus providing a natural framework to integrate surface and volume data.

We wish to thank S. Belongie and B. Kimia for test data and suggestions.
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