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Abstract. We present techniques for improving the speed of robust motion es-
timation based on random sampling of image features. Starting from Torr and
Zisserman’s MLESAC algorithm, we address some of the problems posed from
both practical and theoretical standpoints and in doing so allow the random search
to be replaced by a guided search. Guidance of the search is based on readily-
available information which is usually discarded, but can significantly reduce the
search time. This guided-sampling algorithm is further specialised for tracking of
multiple motions, for which results are presented.

1 Introduction

Since its introduction by Fischler and Bolles in 1981 [1] and later appearance in the
statistical literature as Rousseeuw and Leroy’s Least Median of Squares [4], random
sampling and consensus (RANSAC) has been widely used in computer-vision — par-
ticularly in the areas of recovering epipolar geometry and 3D motion estimation [5,
7-10].

In [7], Torr and Zisserman describe a method of maximum likelihood estimation
by sampling consensus (MLESAC). It follows the random sampling paradigm of its
RANSAC ancestor, in that a minimal set of matches is used to estimate the scene mo-
tion and then support is sought in the remaining matches. However, whereas RANSAC
just counts the number of matches which support the current hypothesis, MLESAC
evaluates the likelihood of the hypothesis, representing the error distribution as a mix-
ture model.

In this paper we seek ways to make iterative random sampling more suitable for
use in applications where speed is of importance, by replacing random sampling with
guided sampling based on other knowledge from the images.

We begin with a detailed review of the MLESAC algorithm, and in section 3 make
observations on its performance. In section 4 we describe a scheme for resolving one
issue in MLESAC’s formulation and using this result guide the random sampling to
reduce the search time. The possibility of incorporating multiple match-hypotheses is
entertained in section 5, and section 6 shows that the search time is further reduced
in the multiple motion case when information is propagated over time. Results and
discussions appear in the sections to which they relate.

2 Maximum Likelihood Estimation by Sampling Consensus

As the basis for the remainder of this paper we will now describe Torr and Zisserman’s
MLESAC algorithm in detail. It is assumed that the feature detection and matching
stages have given rise to a set of matches where each feature is only matched once, but
some and possibly many, of the matches may be in error.
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As mentioned earlier, MLESAC evaluates the likelihood of the hypothesis, repre-
senting the error distribution as a mixture model. Several assumptions are made, the
veracity of which are discussed in section 3:

1. The probabilities of matches being valid are independent of one-another.

2. If a match is a mismatch, the error observed is uniformly distributed.

3. If amatch is valid it will be predicted by the correct motion estimate up to Gaussian
noise related to the noise in feature position estimates.

4. Every match has the same prior probability of being a mismatch.

A minimal set of matches h is chosen to estimate a motion hypothesis M}, for
which all matches ¢ = 1...n are either valid, v;, or invalid, ;. The probability that M},
is a correct estimate of the true motion is denoted p(M7},). All n features are transferred
between images using this motion and the differences between the estimated and actual
match positions give rise to residual errors r;, and hence to an overall error Rj,. These
errors may be calculated in just the second image, or more usually in both images (see
[2], sec. 3.2). The aim is to sample randomly the space of possible motions and choose
the hypothesised motion M}, that has maximum posterior probability given the data
available, p(M},|Ry,). This cannot be measured directly and Bayes’ rule is used:

Mh
Magar = masy [p(Ma Ri)] = mas | p(Rn| 1) 2L
p(Rn)

where p(Rp|Mp) is the likelihood that it is correct and p(M},), p(Ry) the prior prob-
abilities of the motion and residuals respectively. If these terms can be measured then
the maximum a posteriori (MAP) motion can be estimated.

The prior p(R},) is constant irrespective of the choice of M, and nothing is known
about the prior probability that the motion is correct, p(M, ). This means that the MAP
estimate cannot be found and the new aim is to maximise the likelihood and hope that
the motion with maximum likelihood (ML) estimate is similar to the maximum poste-
rior (MAP) estimate. The new aim is to find

Myresac = maxy, [p(Rp|Mp)]

2.1 Evaluating the Likelihood

To convert the likelihood into a usable form it is necessary to use assumption (1), that
the probability of each residual is independent

pP(Ry|Mp) HP ri|Mp)

Evaluation of the probability of each residual has two parts, according to whether it
is a valid match or not. Assumption (2) states that if the feature is mismatched the
probability of the residual is uniform, but will be related to the size of the search area w

p(ri|vi, Mp) = 1/w
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For a valid match the residual is due only to zero-mean Gaussian noise of deviation o
(related to the feature detector localisation error), and under assumption (3) the condi-
tional probability is

1 r2

e 202

p(rilvi, My) =
oV 2w

The prior probabilities that match ¢ is valid p(v;) or invalid p(7;) are by definition
mutually exclusive (p(v;, v;)=0) and exhaustive (p(v;)+p(v;)=1)so that the combined
probability of observing the residuals given the hypothesised motion is given by the
sum rule

p(ri) = (7= ) o0+ (3 ) (1= plon) m

Assumption (4) states that p(v;) is constant across all matches and all hypothesised
motions, that is p(v;) = p(v), the prior estimate of the proportion of valid matches.
This controls the relative importance of the valid and invalid probability distributions,
examples of which are shown in figure 1. Note the Gaussian curve when the residuals
are small and the non-zero tails, giving a cost function which does not over-penalise ex-
treme outliers. This shape is characteristic of the related robust method of M-estimation

[3].
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Fig. 1. (Left) the Gaussian and uniform distributions modelling valid and invalid residuals respec-
tively. (Right) three examples of the combined distribution for different values of p(v). Note the
long tails which reduce the penalty for large residuals.

However, even assuming p(v) to be the same for all features, it still must be esti-
mated somehow. Torr and Zisserman approach this problem by using an iterative max-
imisation scheme to estimate p(v) directly from each motion hypothesis and set of
residuals. The goal is to find the p(v) that maximises p(Rp|Mj}) for the current hy-
pothesis My,. As p(Rp|My) varies smoothly with p(v), any suitable ascent method
can be used to find the maximum. However, in this approach each hypothesis M j, will
generate its own estimate of p(v), meaning that the comparison between likelihoods is
based on different mixtures. We will return to this point in section 3.1.
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We now have all the information required to calculate and compare the likelihood
of each hypothesis. In practice for numerical stability the log likelihood is optimised:

MwyLesac = maxy [i: log {( 127T€§7) p(v) + (%) (1- p(v))}] 2

g

2.2 Knowing When to Stop Sampling

As in RANSAC [1] and Least Median of Squares [4], if the sampling and evaluation
steps are repeated over a large number of samples it is hoped that at least one hy-
pothesised motion will be close to the true motion. If the proportion of valid data is
p(v), and the minimum number of features required to form a hypothesis is m, then the
probability, p(M.), that a correct hypothesis has been encountered after [ iterations is
approximately

p(M) ~1—[1—-p(v)"]" . 3)

Although p(v) is not generally known in advance, a lower bound can be estimated from
the largest p(v) observed in the mixture estimation step. A stopping condition is usually
determined from a desired confidence level (eg. p(M ) > 95%).

2.3 Example Results

Figure 2 shows some results from running MLESAC on an image pair containing a
moving object, a toy locomotive. The motion is pure-translation and, as the object ex-
hibits little thickness, a planar homography can be used to model the transformation.
Thus, four point matches between the two views are used for each MLESAC sample
(shown in black) and the residual error for all other matches used to score the motion
hypothesis. Matches which are inlying to the hypothesis are shown in white. Note that
the better motion hypotheses give residual distributions which are highly peaked at low
residual error but with a significant tail. The second peak observed in the final sample
is due to the second motion present in the data-set — the stationary background.
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Fig. 2. The starting match-set for the train images (left) and several of the samples that MLE-
SAC selects, along with the distribution of resulting residuals. The samples are arranged with
increasing likelihood from left to right.
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2.4 Summary of the Basic Algorithm
Robust computation of a single motion using MLESAC involves the following steps

1. For many trials do:
(a) Choose a minimum number of matches and estimate a motion hypothesis M j,.
(b) Calculate the residual error r; for all matches when transformed by the hypoth-

esised motion.

(c) Estimate p(v) for a particular p(M},) by maximising the sum-log-likelihood.
(d) Retain the M}, which has the highest likelihood.

2. Use the estimated motion and list of valid matches as the starting point for a more
accurate motion calculation, if required.

3 MLESAC Revisited

Having described the rationale underlying MLESAC and having demonstrated it in ac-
tion, we now return to some specific points which merit closer examination.

3.1 Estimating the Mixture Parameter

In [7], Torr and Zisserman assume that the probability of a match being valid, p(v ),
is the same for all matches. Further, this constant value p(v) is re-estimated for each
hypothesised motion. There are two deficiencies here:

1. All matches are not equal. Information which is usually freely available indicates
that some matches are more likely to be valid than others (ie. we can refine the
prior).

2. The prior probability that a match is valid does not depend on the hypothesised
motion — it is a prior constant. Allowing it to vary makes the comparison of the
likelihoods of the different motion hypotheses unfair.

However, as MLESAC works, and works well, these deficiencies appear to have
little effect on the determination of which motion hypotheses are better. To reach an
understanding of this, a large number of trials were conducted on a variety of imagery
where the log-likelihood score (equation 2) was evaluated for a range of motion hy-
potheses. For each motion hypothesis the log-likelihood was found over the complete
range of 0 < p(v) < 1.

Typical results are shown in figure 3. The interesting properties are

— Better hypotheses have higher likelihoods over all values of p(v) — ie. the curves
do not cross.

— Better hypotheses have maxima at higher p(v) values.

— The maxima are always located at or below the true value of p(v).

Taken together, these observations suggest that there is little to be gained by re-
estimating p(v) for each motion hypothesis — it might as well be taken to be 0.5. This
saves a small amount of computation time and overcomes the first of the objections that
were raised above as the estimate is now constant across all hypotheses. Even if a more
accurate estimate of p(v) is desired, the estimate from the best hypothesis seen so far
should be used, rather than an estimate from the current hypothesis.

Note from figure 3 that poor motion hypotheses give curves with maximum p(v) at,
or close to, zero, making all matches appear as outliers.
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Fig. 3. The effect of varying the mixing parameter on the likelihood score of several motion
hypotheses for three different sets of matching features.
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Fig.4. MLESAC is run on the images 5000 times and the first iteration at which more than 75%
of inliers is found recorded for each run. The proportion of runs that complete at or before a given
iteration are shown.

3.2 Stopping Criterion

It is widely appreciated that the approximate stopping criterion (eqn. 3) specified for
both RANSAC [6] and MLESAC [7] is often wildly optimistic. With about 50% valid
data, equation (3) suggests that a confidence of 99% would require about 70 samples,
but on the train images of the previous section the first reasonable solution was not seen
until several hundred samples and the best solution at around 9500 samples.

To demonstrate, the MLESAC algorithm was repeatedly run on the locomotive im-
ages, stopping when a good solution was found, a “good” solution taken as one where
at least 75% of the possible inliers are found. Figure 4 shows the number of itera-
tions and the proportion of 5000 runs that had found a solution at or before this time
for two sequences. In both cases the actual number of iterations required to observe a
good motion hypothesis is significantly larger than predicted. The theoretical form of
the stopping curve matches that observed from the data, but with around an order of
magnitude shift.

The reason for this difference is that with noisy data it is not enough to have a
sample composed only of inliers, they must be inliers that span the object so that the
remaining matches are compared to an interpolated rather than an extrapolated motion.
This significantly reduces the number of sample sets that will accurately hypothesise
the motion. In cases where the motion is uniform over the image (eg. due to camera
motion) a quick fix is to force the random sampling to pick points widely spaced, but
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when the size of the object in the image is not known this approach will cause problems.
A more generally applicable alternative is desirable.

The number of iterations required before stopping is even more important when si-
multaneously estimating multiple motions. In the case of a two-motion scene, a sample
set of features is chosen for both foreground and background motions (M fp, Myy, re-
spectively) at each iteration and motion hypotheses calculated. Residuals against each
motion (r;, 1) are calculated for each feature, and the evaluation of the likelihood
becomes the mixture of three distributions:

MwuvLesac = maxy, [p(Rp|Mgn, Myp)]

= maxp H{P(THMM, Jisvi)p(filva)p(vs)
(il Mo, biy 02)p(bilvs )p(vr) + p(rimp(m)}

= maxp [Z log{ \}_efz%_;p(fjvi)p(vi)

oV 2T

+

1 Tz: 1

= Fpdep(e) + 10— pw) | @
where the extra terms p(f;|v;) and p(b;|v;) are the prior probabilities that the match
belongs to the foreground or background respectively, given that it isn’t a mismatch.
Usually p(f;|v;) and p(b;|v;) are mutually exclusive and exhaustive so that p(b;|v;) =
1 — p(fi|v:), and as p(v;), p(¥;) are also exclusive and exhaustive the parameters v;,
fi and b; are integrated out. As with the mixture parameter p(v) in the single motion
case, the background/foreground priors p(b;|v;), p(fi|vi) could be assumed uniform
over all features and estimated using expectation-maximisation at each MLESAC itera-
tion. However this has the same deficiencies as in section 3.1 and it would be preferable
to find a weighting for each feature that is constant across MLESAC trials. Such a
weighting is discussed in section 6.

A conservative estimate of the number of iterations [ that are required to find a good
pair of hypothesised motions increases dramatically over the single motion case:

L m m I
D(Me, Mic) = 1= (1= p(f[0)™ p(blo) ™ p(v) "]

Consider an example with equal numbers of foreground and background features mapped
by homographies between two images (m y = my, = 4), of which 25% are mismatched
(ie. 37.5% are valid for each motion). The correct method of estimating both foreground
and background simultaneously requires around 7660 iterations for 95% confidence and
nearly 12000 for 99%.

An alternative is to estimate the motions individually. 37.5% of the data is valid
for the first motion, requiring 150 iterations for 95% confidence or 230 for 99%. The
second motion is estimated from the remaining matches (of which 60% is now valid) in
22 iterations for 95% confidence or 34 for 99%. These are clearly huge computational
savings. However, evalutating the motions individually makes the assumption that the
outliers to the first motion form a uniform distribution — visibly not the case in figure
2. In some cases it may be desirable to make this assumption and sacrifice accuracy for
speed.
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4 Guided Sampling

In the previous sections we have raised a couple of issues with the assumptions underly-
ing MLESAC. We also noted that the number of iterations required for a good solution
may be far higher than expected. To improve MLESAC we seek improved estimates of
the following:

- p(v;), the prior probability that a feature is valid.
— p(filvi), p(b;|v;), the prior probabilities that a valid feature belongs to the fore-
ground or background motions.

Although the discussion that follows is explicitly concerned with point features, similar
arguments can be applied to estimation based on other feature types.

4.1 Using the Match Score

An obvious source of information on the validity of a feature-match is the match score.
For point features, a common measure is the zero-normalised cross-correlation between
image patches around the points in the two images being compared. The score is used
to select the best consistent set of matches over all possible combinations.

Figures 5(a-c) show the distribution of correlation score; for both mismatches and
valid matches determined over a range of image sequences whose pixel composition is
quite different. The correct match distributions are always largely the same, and, pro-
vided there is little repeated texture within the search window, so too are the mismatch
distributions. Normalising these histograms gives an approximation to the probabil-
ity density of observing a particular match score s, given the validity of the putative
match, p(s;x|vix) and p(s;k|0;) (each feature ¢ has several possible matches k).

Over the course of a tracking sequence, or when a camera repeatedly captures simi-
lar sequences (such as for a surveillance camera) then statistics for correct and incorrect
matches can be built up online. However, where these distributions are unknown, we
can approximate the distributions under the assumption of little repeated texture using
simple functions. The mismatch distribution will be taken as quadratic

_ 3
p(sik|vik) ~ 1(1 — sik)? —1<s; <1
and for correct matches
(1*5ik) 1— s 2
p(sik|vik) = a oz P —1<sip <1 (%)

where « is a “compactness” parameter and a is a normalisation constant such that the
area under the curve is unity, as in figure 5(d). These expressions are chosen for their
close fit to empirical data and their simplicity. Arguing from underlying image statistics
might suggest more meaningful and accurate expressions. (For the image sequences
used here, @ = 0.15 and a = 1.0 give a reasonable fit, although the final probabilities
turn out not to be particularly sensitive to small variations in a.)

If a feature ¢ has n,, potential matches with validity v;; (kK = 1...n,,), of which
one is correct, then reasonable priors are p(v;;) = 1/0y, and p(Tik) = (N, — 1) /1.
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Fig. 5. Frequency of matches and mismatches against correlation score over all potential matches.

The probability of putative match k being correct when its match score is taken into
account, but without considering the scores of the other matches is

o) = plsig v PR p(vik)
P(vik|six) = (s zk)p(sik) p(sikl Zk)p(sik|vik)p(vik)+p(5ik|1_)ik)p(1_)ik)
1

~ p(sik|vik)p( . (6)

sik|vik) + P(sik|Vik) (g, — 1)
It is also desirable to consider that all the putative matches might be wrong, in which
case the feature matches an extra null feature. A simple way to represent this is to
increase by one the number of putative matches in equation 6.

Furthermore we can also include the additional knowledge that only one putative
match per feature is correct (if any are). We calculate the probability that a putative
match k is valid given the scores of all the putative matches

p(vin|sir) [ 1725, P(vij]si5)
;T [p(vil|8il) 152 p(i |3ij)} + 11 p(visij)

p(vik|$in. m,,) =

where the numerator gives the probability that this putative match is correct and all the
others are wrong, and the denominator normalises by the sum of all possible match
probabilities plus the possibility that none is correct. This makes the additional assump-
tion that the probabilities p(v;;|s;;) are conditionally independent. Whichever of these
putative matches is selected by the matching algorithm to be the single correct match,
P(vik|Si.1...m., ) can be used as p(v;) in equation 1 instead of using a constant p(v).
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Consider an example feature from the locomotive images. There are ten putative
matches, and using @ = 0.15 and ¢ = 1 in equation 5 the correlation scores map to
probabilities as shown in figure 6.

Sike|P(Vik|Sik) [P(Vik|Si,1.. . )
-0.34 0.000 0.000
0.21 0.000 0.000
0.43 0.000 0.000
0.57 0.002 0.000
0.60 0.006 0.000
0.62 0.012 0.001
0.68 0.069 0.007
0.72 0.174 0.020
0.91 0.812 0.408
; e d 093] 0832 0.468

Correlation Score

Fig. 6. Converting match scores into probabilities. Left: The observed histogram and approxima-
tion to it (from fig. 5) are transformed by equation 6 with n,, = 10. Right: The ten putative
matches, their individual and combined probabilities of being valid.

4.2 Using p(v;) for Guided Sampling

We now have an estimate of the probability that a match is valid based on its match score
and the scores of the other putative matches with which it competed. Whilst useful as
a replacement for gradient descent estimation of an overall mixing parameter, we can
also use it to guide the search — if we have evidence that one match is more likely to
be valid than others, then it should be selected more often.

Each feature ¢ has a single match selected using an optimal matcher which also
delivers p(v;) for the selected match. The matches are sampled for use in the minimal
motion computation set using a Monte-Carlo method according to p(v ;). The increased
cost of guiding the selection is marginal when compared to the other computations
performed at each MLESAC iteration.

Figure 7 shows the “time to solution” test of section 3.2 repeated with guided sam-
pling and the individual mixing parameters. This indicates that the computational cost
of converting the correlation scores into validity likelihoods and performing weighted
selection is easily offset by a dramatic reduction in the number of iterations required for
a given confidence level. In real-time systems where the number of iterations may be
fixed by time constraints, the confidence level is significantly increased — for instance
in the building images 100 iterations gives 47% confidence for random sampling, but
99% when the sampling is guided by the match score.

5 Multiple Match-Hypotheses versus Rematching

Another possible change to the algorithm is that instead of choosing only the best pu-
tative match for use in the MLESAC algorithm, we include multiple matches for each
feature, weighted in importance by their probabilities. This requires two small increases
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Fig.7. The test of figure 4 is repeated with guided sampling using the match probability as in
section 4.2. The dotted lines show the time-to-solution for normal random sampling and the thick
solid line for guided.

in the amount of computation performed at each iteration of the algorithm, but makes a
computational saving in that a global optimisation of the initial match set is not neces-
sary.

At each MLESAC iteration when a match is selected to be part of the basis set all
other putative matches for the matched features must then be removed from the list. The
motions are calculated from minimal sets as before, but when evaluating the support for
the motion hypothesis each putative match for each feature is tested, and the most likely
one selected. In this way, even if the true match does not have the highest prior, it will
still eventually be found in the MLESAC algorithm.

Using this technique, the total number of inliers that can be found by the algorithm
increases by 25% for the locomotive images, and 7% for the building images. The
increase depends on how well the prior p(v;) reflects the correctness of the matches —
if p(v;) were a perfect indicator there would be no gain.

Whilst this method can significantly increase the number of matches that MLESAC
finds, it also increases the sampling space from which seed matches are drawn — the
average number of potential matches per feature was 1.4 for the locomotive images and
1.9 for the building, nearly doubling the sample space in the latter case. Furthermore,
the extra matches that are included contain a large proportion of erroneous matches
we gain a little extra “signal” at the expense of a lot of extra “noise”. Figure 8 shows
the effect on the time-to-solution test for the locomotive and building images when
all match hypotheses for ambiguous matches are included (ie. we have reduced the
number of samples by only including multiple hypotheses when two or more matches
score similarly).

We contrast this with the approach described in much of the sampling consensus
literature, that of rematching. As before only one match-hypothesis is found per feature,
but once MLESAC has been used and estimates of the motion(s) have been found, the
likelihoods of all putative matches for all features are evaluated using these motions.
For each feature, the putative match with highest likelihoods is kept in a manner similar
to the initial match optimisation based on correlation score. Using this technique the
time to solution remains as for the single hypothesis case, but again the total number of
matches found increases. The totals observed are typically within one or two matches
of the totals achieved by the multiple-hypothesis MLESAC, and there is little to choose
between them on that basis.
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The computational cost of rematching is one evaluation of the likelihood for every
putative match. If there are an average of two putative matches per feature, then this
is roughly equivalent to two iterations of MLESAC. The cost of the initial match op-
timisation is similarly between one and two iterations of MLESAC. When these costs
are compared to the increased time-to-solution of the multiple-hypothesis approach,
rematching is clearly faster in almost all cases. As each iteration of MLESAC is also
slower in the multiple-hypothesis case, when speed is the goal rematching is preferable.

There are two cases where using the multiple-hypothesis approach proves advanta-
geous. The first is in offline processing when computation time is irrelevant. The sec-
ond is when the number of true matches that get mismatched is exceedingly high and
if alternative matches are not included the correct motion may not be found. Although
correlation matching is inadequate in many respects, enough correct matches were pro-
duced in all the sequences tested for multiple-hypothesis MLESAC to perform no better
than rematching.

Locomotive Images Building Images

— Observed (single-match)
90{{ = = Observed (multi-match)
— Theoretical

o — Observed (single-match)
- 90 ==+ Observed (multi-match)
. — Theoretical

% of runs completed
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3

.

10° 10° 10 10 10° 10*
Number of iterations Number of iterations

Fig. 8. Time-to-solution for guided sampling with and without multiple match-hypotheses. In-
cluding multiple match-hypotheses increases the number of inliers found, but at great computa-
tional cost.

6 Temporal Propagation of Information

Temporal consistency is a strong cue in the assignment of features to motion hypotheses
— if a feature obeys the foreground motion in one frame it is likely to do so in the next.
The output of MLESAC can be tailored to this purpose.

Following a successful run of guided MLESAC, we have maximum-likelihood esti-
mates of the motions M ¢, M3, based on the overall residuals /2 and match scores S. As
a by-product we have also evaluated the posterior probability that each match belongs
to either motion, or is invalid. ie. although MLESAC is a maximum likelihood estimator
of the motions, it is a maximum a posteriori estimator of the segmentation.

Without extra calculation we already have maximum likelihood estimates of the
motion and the maximum a posteriori probability of each feature residual,

m}?X{P(RMth,S% P(Rn|Mny, S), p(ri| Mg, Mpp, 5i)} -
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An extra rearrangement provides a posteriori estimates of the foreground-background-
mismatch segmentation (see equation 4):

P(fi\vi, Si)p('Ui|5i)
p(rl|Mf7 Mb7 si)

p(bi|vi, si)p(vi|si)
p(ri ‘Mfa Mb7 Si)

_ _ p(i]ss)
p (% M ,Mb,T'i,Si == p T viasi T i ar AT N
(05| My ) =p(ri )p(mle,Mb,si)

p(fi,vil My, i, 85) = p(ri| My, fi,vi, s3)

p(bi, vi| My, i, 5i) = p(ri| My, bi, vi, 5;)

where all the probabilities shown are natural products of guided MLESAC and the score
i 1...n,, has been abbreviated s;. To make use of this information in subsequent frames
it is necessary to allow the following possibilities:

— Propagation. A foreground feature stays foreground, or background stays back-
ground, with probability 3.

— Cross-over. A foreground feature becomes background, or background becomes
foreground, with probability 1 — (.

— Absence. If a matched feature did not exist in the previous frame, or was previously
designated a mismatch it provides no prior information.

These relationships are summarised in the information graph of figure 9(a), where 3
measures the temporal efficacy of the information being propagated. Setting 3 = 0.5
indicates that previous assignments provide no information about current assignments,
and 8 = 1.0 that the information is perfect. 5 < 0.5 indicates that previous informa-
tion is in contradiction. Whilst 3 should be learned from observation of the extended
sequence, here we fix it at 0.9 for experimentation.

At input to the first frame of a sequence we assume that features are equally likely
to be background or foreground, from which point guided MLESAC increases or de-
creases these probabilities at each frame. (An alternative is that some heuristic initiali-
sation might be used, such as weighting the foreground probability higher for features
close to the centre of the view.) The evolution of the probabilities for a feature from the
locomotive sequence is shown in figure 9(b).

— Foreground
S 05 - - Background
- -+ Mismatch

(a) B indicates the temporal ef- (b) The evolution of the probabili-
ficacy of the data, and I'~! the ties for one feature from the loco-
“previous frame’s information”. motive sequence.

Fig. 9. Propagating the assignment of a feature to a motion.
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Fig. 10. Part of the locomotive sequence where both the locomotive and camera motions are ap-
proximated by planar homographies. Propagating the assignment of features to motions increases
speed and ensures that the two motions are not exchanged.
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Fig. 11. An example of the improvement in speed when propagation is included. (a) simultaneous
estimation of the multiple motions and (b) separate estimation of foreground then background.
These tests were performed on the second frame from figure 10.

As with the improved prior on p(v;) (section 4.1), these improved estimates of
p(filvi) and p(b;|v;) can be used to weight the selection of seed matches for the fore-
ground and background motions. However, the speed advantage this brings is harder to
quantify, depending entirely on the success of the segmentation in the previous frame.

6.1 Final Results: Multiple Motion Guided MLESAC

Figure 10 shows the first few frames from a sequence with motions tracked using guided
MLESAC with assignment propagation. Both foreground and background motions are
approximated by planar homographies, and feature matches are initialised with equal
probability of belonging to either motion. Although simultaneous estimation of the two
motions is the correct segmentation method, the results shown are for separately find-
ing foreground then background motions using just 75 and 50 iterations respectively.
Propagating the feature assignments helps to prevent the foreground and background
motions interchanging during the sequence.

To get an idea of how much difference propagating the assignments makes to the
speed, figure 11 shows the time-to-solution test performed on the second frame of the
sequence. The test is repeated with no guidance, guided by match score, and guided
by both the match score and previous assignment (as before, completion requires each
of the two motions to find at least 75% of the maximum possible number of inliers).
For simultaneous estimation of the motions (figure 11a), around 10000 iterations are
needed for 90% confidence without guidance, compared to 1000 iterations when guided
by score and previous data. When estimating the two motions sequentially (figure 11b),
90% confidence requires only 75 iterations when guided (this is the total for the two
estimations, with around two-thirds of the iterations needed by the first estimation).
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7 Conclusions

We have introduced two simple extensions to Torr and Zisserman’s MLESAC algo-
rithm which guide the selection of features, reducing the number of iterations required
for a given confidence in the solution. This has been achieved without additional image
or feature measurements, and with marginal increase in computational complexity. In-
cluding multiple match-hypotheses in the sampling is straightforward, but rarely yields
benefits over a final re-evaluation of matches.

Through extensive experimentation it is clear that in sampling and consensus meth-
ods, the number of iterations required to find a “good” motion estimate is far higher than
the number of iterations to find a sample which consists of only valid data. This must
be taken into account when calculating stopping criteria, and is a particular problem for
simultaneous estimation of multiple motions.

We have shown that solving for a global mixing parameter is unnecessary, and that
individual priors p(v;) for each feature can be estimated from the number of possible
matches and the match scores. Using p(v;) to weight the sampling gives around an
order of magnitude increase in speed, and in the multiple motion case further gains are
made by propagating assignment information.

Many other cues are available in tracking sequences, not least of which is the spa-
tial grouping of features belonging to a foreground object. Incorporating these into a
framework such has been described is simple and where the information is strong would
further speed the search.
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