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Abstract. The problem of establishing image-to-image correspondences
is fundamental in computer vision. Recently, several wide baseline match-
ing algorithms capable of handling large changes of viewpoint have ap-
peared. By computing feature values from image data, these algorithms
mainly use appearance as a cue for matching. Topological information,
i.e. spatial relations between features, has also been used, but not nearly
to the same extent as appearance. In this paper, we incorporate topolog-
ical constraints into an existing matching algorithm [1] which matches
image intensity proÿles between interest points. We show that the algo-
rithm can be improved by exploiting the constraint that the intensity
proÿles around each interest point should be cyclically ordered. String
matching techniques allows for an eÆcient implementation of the order-
ing constraint. Experiments with real data indicate that the modiÿed
algorithm indeed gives superior results to the original one. The method
of enforcing the spatial constraints is not limited to the presented case,
but can be used on any algorithm where interest point correspondences
are sought.

1 Introduction

Recently, wide baseline image matching has received increased attention in com-
puter vision. Unlike classical correlation based matching techniques, wide base-
line matching algorithms can tolerate a large change in viewpoint between the
images. The terms \wide baseline" and \large change" are quite vague, and
available matching algorithms diÿer somewhat in the deþnition of these, but
generally speaking, wide baseline algorithms are capable of handling more com-
plicated transformations than image translations.

In applications such as 3D reconstruction or object recognition, better match-
ing algorithms could potentially provide good results using only a few images to
represent a scene or an object, as opposed to the 3D reconstruction algorithms of
today [2] [3] which use image sequences, where the inter-frame diÿerence between
images is quite small. However, in cases where video sequences are not available,
or diÆcult to record due to practical reasons, an algorithm capable of matching a
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few, quite disparate, images is needed. Another area where wide baseline match-
ing could boost performance is content-based image retrieval. Fewer images to
represent objects means smaller databases and shorter search times.

Existing matching algorithms can mainly tolerate two classes of transforma-
tions, similarity and aÆne. The work of Schmid and Mohr [4] as well as that of
Gouet et al [5] and Baumberg [6], both using diÿerential invariants, belong to the
former class. These types of algorithms are adequate for image plane translations
and rotations, but for general camera movement the image transformations will
be more complex. Hence, methods capable of handling more general transforma-
tions have been developed. Torr and Davidson [7] used a coarse to þne approach
in conjunction with cross correlation to handle larger baselines. Tuytelaars et al
[8] developed an algorithm in which small image regions were found in an aÆne
invariant way. Features were then computed from those regions. The þrst step of
this method is quite complicated and there is no way to guarantee that the same
regions are found in both images. The authors solve this problem by selecting
several overlapping regions of diÿerent sizes and shapes.

All these algorithms use interest points, most often Harris corners, and the
textured neighborhoods to discriminate among possible corner correspondences.
However, the spatial relationships between corners is also a source of valuable
information for matching. This was recognised by Zhang et al. [9] in a short
baseline setting where matches were disambiguated using a relaxation tech-
nique where local consistency of matches was enforced. Schmid and Mohr [4]
used what they called semi-local constraints to aid matching. Given a possi-
ble point correspondence, these constraints required that neighboring points be
good correspondences as well. As Schmid and Mohrs algorithm dealt with simi-
larity transformations, they also required that angles in the triangles formed by
triplets of points be consistent across the images. Since we are dealing with aÆne
or even projective transformations here, it is not necessarily true that angles are
preserved in any way.

A more general, although heuristic apprach was taken by Belongie et al. in
[10]. In their method, images were sampled sparsly along edges and for each
sample point, a histogram was formed, in which each bin represented the den-
sity of sample points of the rest of the shape in a particular direction and at
a particular distance from the point. Essentially, this histogram captured the
appearance of the image as \seen" from every sampled point. By aligning the
histogram with the direction of the image gradient, rotational invariance was
achieved. Although the histogram was quite coarse, this method does not seem
likely to be succesful if signiþcant aÆne or projective transformations relate the
images. Also, the method of Belongie et al. does not use texture in any way,
which has proved to be a very good cue for matching considering the numerous
references on texture based matching in the computer vision literature.

The property that each point of interest has an attached descriptor, which
encodes a large portion of the image \as seen" from that point, is appealing, but
a less heuristic method of enforcing topological constraints would be desirable.
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So what we want is a method combining the idea of spatial relations between
points of interest and local and global texture information.

We will use the work introduced in [1] as a starting point for our algorithm.
In [1], Tell and Carlsson introduce a matching method using aÆne invariants in
which the complicated search for invariant image regions needed in [8] is avoided.
The method is based on a comparison of the intensity proÿles between pairs of
Harris corners across the images (see ÿg. 1).
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Fig. 1. The same intensity proÿle extracted from two diþerent images. If the surface

is planar along the proÿle, and if the images are related by an aÆne transformation,

the texture of the proÿles can be compared using any scale-invariant method.

The key idea is the observation that if an intensity proÿle lies along a planar
surface, and if the viewing conditions are aÆne or if the images are related by an
aÆne transformation, then corresponding intensity proÿles are related by only
one parameter - a scale change. This is because the proÿles are related by a 1D
aÆne transformation, which has 3 parameters. These parameters are completely
speciÿed by the known endpoints. Any scale-invariant way of comparing the
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texture along the proÿles can be used for matching. In [1], fourier features are
used, since they exhibit good information packing properties and are easy to
compute. The distance between fourier feature vectors is then used to compare
intensity proÿles.

Since the goal of the algorithm is to ÿnd corner correspondences, and each
corner can form many diþerent intensity proÿles with neighboring corners, Tell
and Carlsson use a voting strategy. For each intensity proÿle in the ÿrst image,
the second image is searched for proÿles with similar feature vectors. One can
either ÿnd all feature vectors within a given distance, or simply select the K

closest ones. For each of these proÿles, votes are cast for the correspondences of
the endpoints of the proÿles. The result of this process is a table V of votes,
where the entryV(i; j) is the number of times corner i was associated with corner
j. Fig. 2 shows a simple example where the proÿle in the left image matches the
three proÿles shown in the right image, which gives rise to a small voting table.
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Fig. 2. Illustration of voting. The proÿle in the left image matches the three proÿles in

the right image. Hence votes are cast for the correspondences of the endpoints of the

proÿles. This table also illustrates the idea of voting; using only the displayed proÿles,

the voting table is highly ambiguous. However, if the voting procedure is performed

for all proÿles in the images, many ambiguities are resolved.

When the voting process is done, a set of candidate matches can be extracted
from the voting table. Several methods are available for this step, for instance the
greedy algorithm of iteratively selecting the largest entry and then eliminating
that column and row. If one wishes to maximise the sum of the selected entries,
graph matching algorithms such as maximum weight matching are applicable.
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To see why this method can be improved upon, consider one single corner in
each image. These two corners are characterised by all their outgoing intensity
proÿles, as shown in ÿg. 3, where a few of the proÿles around corner i in the left
image and corner j in the right image are displayed. This collection of proÿles
serves as a signature which uniquely identiÿes the corner. This is basically the
same idea as in the \shape contexts" of Belongie et al. [10], i.e. that every point
of interest has an attached descriptor which represents the rest of the image as
seen from that point.

Typically, every corner is allowed to form intensity proÿles with its K closest
neighboring corners. Formulated this way, it becomes clear that the voting matrix
entry V(i; j) for these two corners, is the number of times a proÿle from corner
i in the left image matches a proÿle from corner j in the right image.

Fig. 3. Each corner is characterised by its outgoing intensity proÿles. A few of the

proÿles for two corners are shown in the ÿgure.

There are two problems with this measure of corner similarity. First, one
of the proÿles of the left image in ÿg. 3 may actually match several of the
proÿles in the right image, thereby voting for the same corner correspondence
several times. This introduces a bias in the voting matrix. Second, the fact that
intensity proÿles should be cyclically ordered around the corners is not taken into
account in any way. Again, considering ÿg. 3, given a subset of corresponding
intensity proÿles around the two corners, cyclic order should be preserved across
the images. This is always true if the intensity proÿles lie along planar surfaces,
which is one of the basic assumptions of the method anyway.

To put this line of reasoning in a more formal context, ÿrst consider ÿg. 4,
where the same proÿles as in ÿg. 3 are shown with labels pm, m 2 (0;M), for
the proÿles around corner i in the left image, and qn, n 2 (0; N), for proÿles
around corner j in the right image.
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Fig. 4. The proÿles extracted around corner i in the left image and corner j in the

right image

Then, deÿne a vote function v between two proÿles, pm and qn as vmn =
v(pm;qn). The form of the function v is deÿned by the voting strategy. For
instance, by introducing the feature vectors of proÿles as pfm and q

f
n, and the

covariance matrix C, the following vote function could be used:

v(pm;qn) =

ÿ
1 if pfm

>Cqfn < R2

0 otherwise
(1)

given some suitable distance threshold R. This method might give diþerent num-
bers of matches depending on how \common" a particular proÿle is, so another
possibility without this bias is the following:

v(pm;qn) =

ÿ
1 if qn 2 fthe K proÿles closest to pmg
0 otherwise

(2)

In this deÿnition of the vote function, \closest to" means closest in the sense of
Mahalanobis distance between feature vectors, as in eq. 1.

With these deÿnitions, the vote matrix entry V(i; j) can be written as

V(i; j) =

MX
m=0

NX
n=0

vmn (3)

This equation makes it quite clear that one proÿle may vote several times in
V(i; j), and that the angular order of proÿles is not taken into account.

It seems reasonable that the algorithm would be improved if cyclic order and
one-to-one matching of intensity proÿles were enforced somehow. However, since
the method is already computationally quite expensive, it would be desirable to

73Combining Appearance and Topology for Wide Baseline Matching

4    Suggested Solution - String Matching



do this without increasing the time complexity too much. We believe that this
is indeed possible.

Both the problem of one-to-one matching and that of preservation of cyclic
order can be solved in the same way { by applying string matching methods to
the algorithm. String matching, or the string to string correction problem, is in
its simplest form the problem of ÿnding the longest common subsequence of two
strings. For instance, given the string \EABBCD" and \BCED", the longest
common subsequence is \BCD". This problem is well known [11] and can be
solved by dynamic programming in O(mn) time where m and n are the lengths
of the two strings. In the string matching formulation, two letters either match
or don't match, but the dynamic programming algorithm can also handle the
case of arbitrary similarities of letters. Each possible letter correspondence is
simply assigned a weight which expresses the similarity of the letters. In this
case, the algorithm still ÿnds a one-to-one sequentially preserved solution, but
now one of maximum sum weight instead of one of maximum length.

In our case, each corner is represented by a \string". These \strings" are the
collection of outgoing intensity proÿles from the corner. The \letters" are the
individual proÿles, sorted by their angle, and the weights can for instance be the
normalized cross correlation between feature vectors.

A complicating property of our problem is that we don't know the starting
points of the \strings". One image may well be rotated in relation to the other.
The brute-force solution would be to try all possible starting points, resulting in
a O(mn2) algorithm, but better solutions exist for this so-called \cyclic string-
to-string correction problem". In [12], an O(mn logn) algorithm is proposed,
and in [13] an O(mn) algorithm is presented, but the latter one requires unit
weights, which means that either letters match, or they don't. In the current
implementation, the algorithm in [12] was used, since it allows arbitrary weights.

Using cyclic string matching, eq. 3 is changed to

V(i; j) = max
S

X

(m;n)2S

vmn: (4)

The maximum in equation 4 is taken over all sequences S which are of the form
S = f(m1; n1) ÿ ÿ ÿ (mp; np)g, p þ min(M;N), such that the following holds:

mk > mkÿ1 0 þ mk þ M

nk > nkÿ1 0 þ nk þ 2N
ni 6= nj mod N if i 6= j .

The indexes nk are used as nk mod N when accessing the intensity proÿles. This
complication is due to the fact that eq. 4 should be rotationally invariant.

This is a much more sensible measure of corner similarity than eq. 3. For
instance, given the two strings \CDABBAA" and \ABCD", the original algo-
rithm would ÿnd that the vote value is 7, whereas the one using cyclic string
matching would ÿnd the correct value, which is 4. If ordinary string matching,
and not cyclic string matching, was used, the result would be 2, which is not
correct either, since rotational invariance is desired.
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The next problem is how to apply the dynamic programming algorithm for
string matching to the original matching algorithm. This is the topic of the next
section. But before going into details about how the string matching methods
were applied, an illustrative example might help to appreciate the results. Con-
sider ÿg. 5, which shows the same row of a voting matrix both using the new
approach and not using it. String matching clearly decreases the noise level in
the vote matrix, and the correct match is more easily identiÿed.
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Fig. 5. Illustration of how the improved algorithm decreases noise in the votematrix.

The graphs show an entire row of a voting matrix. The left image shows the results

using the new approach, the right image shows the results using the original algorithm.

The circles indicate the correctly matching column for the given row.

We see two possibilities of applying the string matching method. The ÿrst is
the brute-force approach. Such an algorithm would consist of two steps. First,
intensity proÿles are extracted and features computed for each corner in order to
ÿnd the \signature" (see ÿg. 4) of the corner. Second, the cyclic string matching
problem is solved for every possible corner correspondence. Suppose that N
corners are detected in each image, and that every corner will participate in
K intensity proÿles. Since there are N2 possible corner correspondences, and
each such candidate correspondence is evaluated using string matching with
signatures of lengthK, the computational complexity of such an algorithm would
be O(N2K2 logK). If we allow a complete set of proÿles to be formed, i.e. every
corner may form proÿles with every other corner, the time complexity becomes
O(N4 logN). Typical running times in our C++ implementation of the brute
force algorithm with N = 500 is in the order of 10 hours on a Sun Blade 100
workstation.
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Clearly, this is not practical with todays computers, so as an alternative,
one might apply the string matching methods after the original algorithm. To
do this, one must keep track of which intensity proÿles that contributed to the
voting matrix entry V(i; j) (eq. 3). To do this, a list is kept for each entry in the
voting matrix. Each time a vote is put in an entry, the list is appended with the
identities of the two intensity proÿles which gave rise to the vote.

Then for each voting matrix entry, the cyclic string matching problem is
solved only for the contributing intensity proÿles. With this approach, there
are still N2 string matching problems to solve, but each such problem is smaller
than in the brute-force algorithm. If the voting process is such that each intensity
proÿle may only put Q votes in the voting matrix, the time needed to solve each
string matching problem is on average Q2 logQ, as opposed the the brute-force
approach where each such problem took K2 logK time. In our experiments,
typical values of N , K and Q was N = 500, K = 200 and Q = 40, which
reduced the running time from 10 hours to a few minutes. The trade-oþ is that
more memory is used to keep the lists of contributing intensity proÿles for each
vote matrix entry.

6 Results

We have conducted a series of experiments designed to compare the performance
of our extended algorithm using string matching to the original one. The ÿrst
experiment compared the two algorithms by matching images of a piecwwise
planar object using increasing diþerences in viewing angle. Both algorithms were
run to ÿnd a candidate set of point correspondences, after which RANSAC was
run to ÿnd a homography and a set of consistent matches. Fig. 6 shows the
results and the number of consistent matches for the original algorithm, and
ÿg. 7 shows the results using our string matching approach. Clearly, our method
gives far more matches, and in the last image pair, where there is a very large
diþerence in viewing angle, the original algorithm breaks down while the new
approach still ÿnds a reasonable solution.

The second experiment was made using a cylindrical object. Fig. 8(a) shows
the results of the original algorithm and ÿg. 8(b) those of the new method.
Here, the baseline can't be as wide as in the previous experiment for any of the
algorithms, simply because the same part of the object can't be seen in both
images if the diþerence in viewing angle is too large. Still, the method using
string matching to enforce one-to-one matching and preservation of cyclic order
of intensity proÿles gives better results. It ÿnds a solution in all three image
pairs, while the original method only ÿnds one in the ÿrst image pair.

The last experiment (ÿg. 6) shows a result on estimating a fundamental
matrix instead of a homography. Again, the improved algorithm ÿnds about 50%
more matches. These may still contain outliers, since the epipolar constraint is
quite weak, but that problem is present in both methods.
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7 Conclusion

We have presented a general method of enforcing topological constraints such
as one-to-one matching and cyclic order in matching algorithms. The method
is based on applying cyclic string matching for every possible corner correspon-
dence. Experiments have shown that the new method improved an existing wide
baseline algorithm signiÿcantly, both by providing larger sets of correspondences,
and by ÿnding solutions in cases where the original algorithm failed completely.

However, the method is not limited to this matching algorithm. It can in
principle be applied to other correspondence algorithms where interest points
are used in the matching process, particularly those using the more traditional
approach of computing features from small neighborhoods around corners [4] [5]
[6]. Investigating this could be the topic of future work.
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Fig. 6. Using the original matching method. Results on matching using increasing

diÿerence in viewing angle

78 D. Tell and S. Carlsson



149 matches

135 matches

157 matches

151 matches

125 matches

47 matches

Fig. 7. Using string matching. Results on matching using increasing diÿerence in view-

ing angle
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(a) Original method
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(b) String matching

Fig. 8. Results on matching using increasing diÿerence in viewing angle.
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(a) Original method, 66 matches

(b) String matching, 105 matches

Fig. 9. Results on matching using fundamental matrix estimation in RANSAC.
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