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Abstract. Analyzing fluid motion is essential in number of domains
and can rarely be handled using generic computer vision techniques. In
this particular application context, we address two distinct problems.
First we describe a dedicated dense motion estimator. The approach
relies on constraints issuing from fluid motion properties and allows us
to recover dense motion fields of good quality. Secondly, we address the
problem of analyzing such velocity fields. We present a kind of motion-
based segmentation relying on an analytic representation of the motion
field that permits to extract important quantities such as singularities,
stream-functions or velocity potentials. The proposed method has the
advantage to be robust, simple, and fast.

1 Introduction

Since several years, the analysis of video sequences showing the evolution of fluid
phenomenon gave rise to a great attention from the computer vision community
[4,11,15,23,24]. The applications concern domains such as experimental visual-
ization in fluid mechanics, environmental sciences (oceanography, meteorology,
...), or medical imagery.

In all these application domains, it is of primary interest to measure the in-
stantaneous velocity of fluid particles. In oceanography one is interested to track
sea streams and to observe the drift of some passive entities [9]. In meteorology,
both operational and experimental, the task under consideration is the recon-
struction of wind fields from the displacements of clouds as observed in various
satellite images [19]. In medical imaging the issue is to visualize and analyze
blood flow inside the heart, or inside blood vessels [21]. The images involved in
each domain have their own characteristics and are provided by very different
sensors. The huge amount of data of different kinds available, the range of ap-
plicative domains involved, and the technical difficulties in the processing of all
these peculiar image sequences explain the interest of researchers of the image
analysis community.

Extracting dense velocity fields from fluid images can rarely be done with
the standard computer vision tools, which are originally designed for quasi-rigid
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motions with stable salient features. These generic approaches are based on a
brightness constancy assumption and a spatial smoothness of the motion field.
In contrast, fluid images usually exhibit high spatial and temporal distortions
of luminance patterns. The design of alternate approaches dedicated to fluid
motion thus constitutes a widely open domain of research. The first part of this
paper is a contribution in that direction.

Once given a reliable description of the fluid motion, an other problem of
interest consists in the extraction and the characterization of the critical – or
singular – points of the flow. These points are the centers of kinematical events
such as swirl, vortices, or sinks/sources. The knowledge of all these points is
precious to understand and predict the flows of interest, but it also provides
compact and hierarchical representations of the flow [11]. We propose, in the
second part of this paper, a method to obtain such characteristics from a dense
velocity field. This method is based on an analytic representation of the motion
field, using the Rankine model.

This paper is organized as follows. In Section 2, we describe the dedicated
technique to estimate a dense motion field for fluid phenomenon. The aim of
Section 3 is first to present some properties of 2D motion fields, and then to show
how quantities such as singularities, stream-function or velocity potential can be
extracted analytically. Then, Section 4 presents a method to extract singular
points and their associated parameters from dense motion fields. In section 5,
we finally present some experimental results on meteorological sequences.

2 Fluid Optical Flow Estimator

Optical flow estimation aims at recovering the apparent displacement field be-
tween two consecutive frames in an image sequence. Let w denote the unknown
displacement field defined over the continuous plane domain s ∈ Ω and f(s, t)
the luminance function at point s assumed to be continuous in space and time.
The most accurate optical flow estimators used in computer vision are issued
from Horn and Schunck method [13]. They are defined as the minimizer of an
energy function H = H1 + H2 composed of two terms. The first one assumes
the constancy of the luminance of a point along its trajectory (dfdt = 0). This
so-called optical flow constraint (ofc) is captured by letting:

H1(w, f) =
∫
Ω

ρ[∇f(s) · w(s) +
∂f(s)
∂t

]ds. (1)

The penalty function ρ is usually the L2 norm but it may be changed to a robust
function attenuating the effect of data that deviate significantly from the ofc-
based data-model [5,17]. The second term H2 of the energy function is usually
a standard first-order spatial smoothness term:

H2(w) = α

∫
Ω

ρ(‖∇w‖)ds, (2)

where α > 0 is a parameter controlling the balance between the smoothness and
the global adequacy to the brightness constancy assumption. Function ρ may be
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the quadratic penalty if the searched solution is smooth everywhere or a robust
norm function if one wants to handle implicitly the spatial discontinuities of the
field [5,14,16].

The standard dense estimator defined as the minimizer of H is generic. It
is only based on the assumption of luminance conservation and of first-order
spatial smoothness of the motion. Our aim is to devise a similar estimator that
captures some specificities of image sequences with fluid motion.

2.1 Continuity Equation

As mentioned above, local deviations from the data-model as those occurring
in small occlusion areas, can be handled with a robust cost function. In fluid
imagery, the problem is much more complex. Image sequences representing fluid
phenomena exhibit areas where the luminance function undergoes high temporal
variations along the motion. These areas are often the center of tridimensional
motions that cause the appearance or the disappearance of fluid matter within
the bidimensional visualization plane. These regions are associated to divergent
motions which influence greatly the shape of the velocity field in large surround-
ing areas. An accurate estimation of the 2D apparent motion in such regions is
therefore of the highest importance and is hardly possible with the optical-flow
constraint.

Instead of sticking to the intensity conservation assumption, we propose here
to rely on the fluid law of mass conservation, also known as continuity equation:

∂χ

∂t
+ div(χv) = 0, (3)

where χ denotes the density of the fluid, v its 3D velocity and divv = ∂u
∂x+

∂v
∂y+

∂w
∂z

stands for the divergence of the vector field v = (u, v, w). Simple manipulations
yield the alternative rewriting:

dχ

dt
+ χdivv = 0. (4)

When the divergence of the 3D apparent flow vanishes, this equation is of
the same form as the 2D optical flow constraint on luminance. The continuity
equation originally introduced in [20] as a data model for motion estimation of
intensity time varying images has been since incorporated in several works. It
has been considered in the context of fluid imagery either for satellite meteoro-
logical images [4,7,24] or for experimental fluid mechanics [23]. It has also been
introduced in medical imaging domain to recover 3D deformation fields of the
heart [21] or to analyze blood flow [1]. In all these cases, this model has been
proved appealing an alternative to standard luminance constancy assumption.

The use of continuity equation for image sequences analysis relies on two
hypotheses. First, the luminance function is assumed to be directly related to
a passive quantity transported by the fluid. Secondly, the continuity equation
which holds in 3D, is assumed to hold as well for the bidimensional motion field
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captured by the image sequence. This latter assumption has been theoretically
established in the case of transmittance imaging by Fitzpatrick [10] and extended
by Wildes et al in [23]. The first assumption is difficult to validate, especially in
meteorological images due to the complexity and the heterogeneity of the un-
derlying physical processes. Nevertheless, as shown by several works, the use of
the continuity equation in the case of meteorological data is appealing [4,24]. As
the brightness consistancy is obviously not verified in that type of images, the
equation of continuity provides us with an interesting alternative data-model.
Instead of expressing a point-wise conservation of the luminance along the mo-
tion, this alternative model assumes the conservation of the total luminance of
any moving elements of the image. This constraint reads:

df

dt
+ fdivw = 0. (5)

However, as ofc-based data models, a data-model based on the continuity
equation is highly sensitive to the presence of noise and is very likely not to hold
everywhere. Also, due to its differential nature, the continuity equation is not
valid in case of large displacements. In fact, this equation concerns velocity and
not displacement [18]. Unlike the brightness constancy expressed as f(s+d(s), t+
∆t) − f(s, t) = 0, which is explicitly based on displacement, the continuity
equation (5), as it stands, cannot serve as the basis of an incremental data-
model embedded in hierarchical estimation schemes. To cope with this problem,
let us assume that the velocities are constant between the instants t and t+∆t.
In that case, equation (5) constitutes a simple first-order differential equation
which can be integrated from time t to time t+∆t along trajectories [7]. Setting
∆t = 1 for notational convenience, and incorporating the integral constraint
thus obtained in a robust penalty function yields a new data-term:

H1(w) =
∫
Ω

ρ
{
f (s +w(s), t+ 1) exp (divw(s))− f(s, t)

}
ds. (6)

We now turn to the definition of the smoothness prior to be used in conjunc-
tion with this new data energy term.

2.2 Adapted Div-Curl Regularization

By using Euler-Lagrange conditions of optimality, it is readily demonstrated that
the standard first-order regularization functional α

∫
Ω

‖∇w(s)‖2ds is equivalent
from the minimization point of view, to the so-called div-curl regularization
functional [22]:

α

∫
Ω

([divw(s)]2 + [curlw(s)]2)ds, (7)

where divw = ∂u
∂x +

∂v
∂y and curlw = ∂v

∂x − ∂u
∂y are respectively the divergence

and the vorticity of the vector field w = (u, v).
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A first-order regularization therefore penalizes the amplitude of both the
divergence and the vorticity of the vector field. For fluid motion estimation,
this does not seem appropriate since the apparent velocity field usually exhibits
“concentrations” of vorticity and/or divergence. In addition, an under-estimation
of the divergence would be all the more problematic in our case, because the data
model includes an explicit use of this quantity. For these reasons, it would seem
more appropriate to rely on second-order div-curl regularization [12,22]:∫

Ω

(
‖∇divw(s)‖2 + ‖∇curlw(s)‖2

)
ds. (8)

This regularization is nevertheless more difficult to implement. As a matter
of fact, associated Euler-Lagrange equation is composed with two fourth-order
coupled pde’s, which are tricky to solve numerically. We propose to simplify
the problem by introducing auxiliary functions, and defining the alternative
functional:

H2(w, ξ, ζ) = α

∫
Ω

|divw − ξ|2 + λρ(‖∇ξ‖) + α

∫
Ω

|curlw − ζ|2 + λρ(‖∇ζ‖).
(9)

The new auxiliary scalar functions ξ and ζ can be respectively seen as estimates
of the divergence and the curl of the unknown motion field, and λ is a posi-
tive parameter. The first part of each integral encourages the displacement to
comply with the current divergence and vorticity estimates ξ and ζ, through
a quadratic goodness-of-fit enforcement. The second part equips the divergence
and the vorticity estimates with a robust first-order regularization favoring piece-
wise smooth configurations. Getting rid of the auxiliary scalar fields ξ and ζ in
(9) (by setting ξ = divw and ζ = curlw) would amount to the original second-
order div-curl regularization (8), if ρ is the quadratic penalty function.

From a computational point of view, regularizing functional (9) only implies
the numerical resolution of first-order pde’s. It is shown in the appendix that,
at least for the L2 norm, the regularization we propose is a smoothed version of
the original second order div-curl regularization.

2.3 Minimization Issue

We now turn to the minimization issue of the whole energy function H =
H1 + H2. Two main sets of variables have to be estimated. The first one is
the motion field w, and the second one consists in the two scalar fields ξ and ζ.
The estimation is conducted alternatively by minimizing H1 +H2 with respect
to w, ξ and ζ respectively. For the motion field, considering the div and curl
estimates ξ and ζ as being fixed, the robust minimization with respect to w is
solved with an iteratively reweighted least squares technique. This optimization
is embedded in an efficient multi-parametric adaptive multigrid framework. In
turn, w being fixed, the minimization of H with respect to ξ and ζ is in fact
equivalent to the minimization of H2 and is again conducted using an iteratively
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reweighted least squares technique. More details of the minimization issues can
be seen in [7].

Dense displacements fields obtained by minimizing the proposed energy func-
tional, with its data-term based on the integrated continuity equation and its
compound div-curl regularization, will be presented in section 5. Before we ad-
dress in the two next sections the issue of analyzing resulting motion fields in
terms of potential functions and singularities.

3 Planar Vector Fields

In this section, we present known analytic results on planar vector fields. We
shall rely on them to develop an original method to extract singularities, stream-
functions and velocity-potentials, and parametric descriptions from the motion
fields extracted with the method presented in previous section.

A planar vector field w is a R
2-valued map defined on a bounded set Ω of

R
2. We note w(s) �= (u(s), v(s)) and we assume that each component of the

vector field is twice continuous and differentiable: u and v ∈ C2(Ω,R).
A vector field whose divergence is null everywhere is called solenoidal, and

a vector field whose curl vanishes identically is called irrotational. A classical
result, coming from the application of Green theorem shows that for irrotational
fields there exists a scalar function φ, called the velocity potential, such that
w = ∇φ. Similarly, for solenoidal fields there exists a scalar function ψ called
the stream function such that w⊥ = ∇ψ, with w⊥ = (−v, u)T is the orthogonal
field of w. The equipotential curves, {ψ(x, y) = c}, are the streamlines of the
flow. For a flow both irrotational and solenoidal, it is interesting to note that
level curves of φ and ψ form an orthogonal network.

Irrotational and solenoidal fields play an important role in vector field anal-
ysis. As a matter of fact these two types of field can be combined to represent
uniquely any arbitrary continuous vector field which vanishes at infinity. This is
the Helmholtz representation of vector fields: w = wso + wir (with wir = ∇φ
and w⊥

so = ∇ψ), where φ and ψ are respectively the velocity potential of the
irrotational component, and the stream function of the solenoidal part. When
the null border condition at infinity can not be imposed, the representation is
extended by the introduction of a third laminar component. A laminar field is
a vector field that is both irrotational and solenoidal. The extended Helmholtz
representation is then: w = wlam + wso + wir. In our applications, the lami-
nar component accounts for a global transportation flow and for the effect of
sources/sinks or vortices outside of the image plane. In the following we assume
that this very smooth component is known. In practice, a sensible estimate of the
laminar component can be obtained with standard motion estimation techniques
under strong regularization. From now we will always refer to motion fields van-
ishing at infinity, and consequently to the original Helmholtz representation.
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3.1 Irrotational and Solenoidal Field Separation

Taking the divergence of wir and w⊥
so leads to ∇2φ = div(w) and ∇2ψ =

curl(w). Both potential functions are therefore the solution of Poisson equations.
Assuming that the curl and divergence vanish at infinity, one has to face a well
known Dirichlet problem whose solution may be obtained through convolution
with 2D Green kernel. This direct solving is numerically tricky to implement
since Green kernel lies on infinite support. Instead of that, using a spectral
Fourier representation of the flow ŵ = (F [u],F [v]) (such that F [f ] = f̂(k) =
1
2π

∫∫
f(s)e−i<k,s>dxdy, with k = (α, β) and s = (x, y)) we have:

F [curl(wir)] = < k⊥, ω̂ir(k) >= 0,
F [div(wso)] = < k, ŵso(k) >= 0, (10)

where < ·, · > is the scalar product. Therefore, assuming the vector field w
is known, the irrotational and the solenoidal components can be respectively
obtained through:

ŵir(k) =< k, ŵ(k) >
k

‖k‖2 , and ŵso(k) =< k⊥, ŵ(k) >
k⊥

‖k‖2 , (11)

and the inverse Fourier transform.

3.2 Potential Functions Estimation

As we saw in the previous section, the knowledge of functions φ and ψ might
be very useful as it allows a complete description of the velocity field. In turn,
if the velocity field and its irrotational and solenoidal components are known,
they can be easily estimated (as wir = ∇φ and w⊥

so = ∇ψ). Noting that, if g
is a C2 function, g(x, y) = g(0, 0) +

∫
γ

∇g(x, y) · dγ, where γ is any path from
(0, 0) to (x, y). Averaging this relation over the two paths joining (0, 0) to (x, y)
along the sides of a rectangle, we get, taking φ(0, 0) = ψ(0, 0) = 0:

φ(x, y)= 1

2

( x∫
0
uir(t, y)dt+

y∫
0
vir(x, t)dt+

x∫
0
uir(t, 0)dt+

y∫
0
vir(0, t)dt

)
, and

ψ(x, y)= 1
2

( y∫
0
uso(x, t)dt −

x∫
0
vso(t, y)dt+

y∫
0
uso(0, t)dt −

x∫
0
vso(t, 0)dt

)
.

(12)

All terms of relation (12) may be numerically computed. They consist in inte-
grations along the rows and the columns of the image.

3.3 Extrema of the Potential Function

It can be observed that characteristic points of the irrotational flow component
(i.e., points s for which wir(s) = ∇φ(s) = 0) corresponds to local extrema of the
velocity potential φ. Of course the same relation links extrema of the stream func-
tion and characteristic points of the solenoidal component. In addition, around
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a singular point s, the velocity distribution of a fluid flow can be accurately ap-
proximated (and characterized) by a so-called linear phase portrait [2]. Within
some neighborhood around s, one can fit a parametric velocity model of the form
w = As where A is a 2×2 matrix. The qualitative characterization of the motion
field in the neighborhood of this singular point s relies on the structure of matrix
A. Six typical motion configurations can be identified from its canonical Jor-
dan form [2,11]. A second-order approximation of the velocity potential and the
stream function around a singular point, wir = ∇φ(s+ ε) = Hφ(s)ε+ o(ε) and

w⊥
so = ∇ψ(s+ ε) = Hψ(s)ε+ o(ε), provides phase portraits Aφ =

[
∂2φ
∂x2

∂2φ
∂x∂y

∂2φ
∂x∂y

∂2φ
∂y2

]

and Aψ =

[
∂2ψ
∂x∂y

∂2ψ
∂y2

−∂2ψ
∂x2 − ∂2φ

∂x∂y

]
. Matrix Aφ is symmetric (it has real eigenvalues) and

positive definite or negative definite around local extrema (the eigenvalues have
all the same sign). The corresponding singular point is therefore a node or a star
node (cf. [2]) which depicts well the behavior of sources or sinks. Concerning the
solenoidal field, trace of Aψ is null: the local extremum then corresponds to the
singular point at the center of a rotating motion. This is the characterization of
a vortex.

3.4 Rankine Model of Flows

One of the simplest models of velocity field for fluid flows at singularities is
provided by the Rankine model of vortex [6]. It consists in approximating the
velocity field as a vector field of constant curl inside a disk and null curl beyond
this circular domain. The complex function f(z) = u(x, y) + iv(x, y) associated
to this velocity field reads:

fı(z)
�=




gı(z) = − iβı(z − zı)
|z − zı|2 if |z − zı| ≥ rı

hı(z) = − iβı(z − zı)
r2ı

if |z − zı| < rı, (13)

where rı is the singularity radius, zı
�= xı+ iyı denotes the complex vortex loca-

tion, and βı its strength. Based on a similar model, the velocity field associated
to a source/sink in the plane can modeled as:

f(z)
�=




g(z) =
α(z − z)
|z − z|2 if |z − z| ≥ r

h(z) =
α(z − z)

r2
if |z − z| < r (14)

where α denotes the sink/source’s strength. If α > 0, this constitutes a source
model, whereas if α < 0 we are in presence of a sink. It is easy to verify that i)
function fı in (13) defines a solenoidal field, and function f in (14) defines an
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irrotational field; ii) functions gı is such that curlgı = divg = 0 and function hı
is such that curlhı = 2βı

r2ı
,divh =

2α

r2
.

These two types of fields can be composed to model a fluid flow with P

vortices and N sources/sinks within f(z) =
P∑
ı=1

fı(z) +
N∑
=1

f(z).

4 Motion-Based Segmentation Based on Rankine Model
Around Singularities

A global description of the flow based on the Rankine model allows to define a
main characteristics of the flow in terms of interacting singularities and influence
circular domains. Let us show how all the ingredients of such a motion-based
segmentation may be identify from a dense motion field.

4.1 Localisation of Singular Points

Given a motion field w obtained by means of the technique introduced in sec-
tion 2, the spectral technique described in section 3.1 enables to recover the
associated stream-function φ and velocity potential ψ. We saw also that the
knowledge of both potential functions gives a practical way to identify all the
vortices and sinks/sources of the flow by extracting their respective extrema. In
practice, these extrema are obtained through a simple morphological processing
of the potential functions. Both are derived from dense motion field Helmholtz
components wir = ∇φ and w⊥

so = ∇ψ, using (12). Note that the laminar part
of the motion field is assumed to be well approximated by the smooth motion
field estimate obtained at the coarsest level of our multigrid setting.

4.2 Extraction of Rankine Parameters

Assuming that all singularities of the flow are known, a complete parametric rep-
resentation of the flow as a superposition of individual rotational and divergent
Rankine models can be sought. To this end, we need to estimate the strength
and the circular linearity domain associated to each singular point.

Assuming that the solenoidal and irrotational components of the flow differ
from the two corresponding components of the compound Rankine model by a
white Gaussian noise of variance σ2, we get:

fso(z) =
P∑
ı=1

(
fı(z) + a(z) + ib(z)

)
and fir(z) =

N∑
=1

(
f(z) + a(z) + ib(z)

)

with a(z) and b(z) ∼ N (0, σ2). Function fso
�= uso + ivso (resp. fir

�= uir +
ivir) is the complex representation of wso (resp. of wir), and P and N denote
respectively the number of vortices and sources/sinks of the flow.
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A maximum likelihood estimation of the Rankine model parameters leads
to maximize with respect to the unknown parameters vector Θ

�= (rı, βı)Pı=1 ×
(r, α)N=1 the following log-likelihood defined on the whole image domain Ω:

L(Θ) =
∫∫
Ω

|fir(z)−
∑
ı

fı(z)|2dz
︸ ︷︷ ︸

Lso

+
∫∫
Ω

|fso(z)−
∑


f(z)|2dz
︸ ︷︷ ︸

Lir

. (15)

With the assumption that two circular linearity domains of the same nature do
not intersect each other, the two parts of this expression can be expressed as:

Lso(Θ) =
P∑

ı=1

∫∫

Dı

|fso(z)− hı(rı, z)−
∑
k �=ı

gk(z)|2dz +
∫∫

D

|fso(z)−
P∑

ı=1

gp(z)|2dz,

(16)

and similarly for Lir, where Dı denotes the disk associated to the ıth vortex
singularity and Dı �= Ω − ⋃P

ı=1 Dı. It is important to remark that the non-
overlapping assumption only apply to domains associated to singularities of the
same type. Likelihood (16) is still valid for a vortex and a source combined in a
swirl.

Expanding expression (16) in the solenoidal case (the same computations
may be carried out in the irrotational case) one gets:

Lso(Θ) =
∑
ı

∫∫
Dı

∥∥∥∥∥∥wso(s) + (s − sı)⊥

r2i
βı +

∑
k �=ı

(s − sk)⊥

‖s − sk‖2 βk

∥∥∥∥∥∥
2

ds

+
∫∫
D

∥∥∥∥∥wso(s) +∑
k

(s − sk)⊥

‖s − sk‖2 βk
∥∥∥∥∥
2

ds. (17)

A maximizer of this likelihood is given by solving ∇Lso = 0, where ∇ =
( ∂∂r1 , ...,

∂
∂rN

, ∂
∂β1

, ..., ∂
∂βN

)T . The cancellation of the partial derivative w.r.t. the

rı’s leads to (remarking with some efforts that ∂
∂R

(∫∫
D

f +
∫∫
D

g

)
=
∫∫
D

∂f(R)
∂R +∫∫

D

∂g(R)
∂R ):

π

2
r2ı = − 1

βı

∫∫
Dı

[(wso(s) +
∑
k �=ı

(s − sk)⊥

‖s − sk‖2 βk) · (s − sı)⊥]ds. (18)
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Concerning the βı’s we get:

βı =
B + C

A
,with

A =
∫∫
Ω−Dı

1
‖s − sı‖2 ds, B =

∫∫
D


wso(s) +

∑
k �=ı

(s − sk)⊥

‖s − sk‖2 βk

 · (s − sı)⊥

‖s − sı‖2 ds,

C =
∑
k �=ı

∫∫
Dk


wso(s) +

(s − sk)⊥

r2k
βk +

∑
p�∈{k,ı}

(s − sp)⊥

‖s − sp‖2 βp

 · (s − sı)⊥

‖s − sı‖2 . (19)

Equations 18 and 19 are solved alternatively. For fixed radius, 19 defines
a linear system of equations w.r.t. the βı’s. In turn, the strength parameters
βı’s being fixed, the independent non-linear equations (18) are solved with a
kind of fixed point method: the integral is computed using the previous estimate
of radius rı (the initial radius is fixed to a small value (3 pixels in practice).
The resolution of both systems is iterated until convergence (see [8] for details
explanations). Let us note that an additional constraint which guaranty non-
overlapping domains must be included to ensure an admissible solution.

4.3 Elimination of Noisy Singularities

In order to keep only the most significant singularities to describe the motion
field, we consider the Bhattacharyya distance between two multidimensional
Gaussian laws [3]:

dB [N1(µ1, Σ1),N2(µ2, Σ2)] =
1
4
(µ)T (Σ1 +Σ2)−1(µ) +

1
2
ln(
det(Σ2 +Σ1)
2
√
det(Σ1Σ2)

), (20)

with µ = µ2−µ1. For each component (i.e., the irrotational one or the solenoidal
one) we compute this distance for the two Gaussian distributions correspond-
ing to the error between the considered Rankine model and the dense motion
field for two consecutive numbers of singularities. For example for the solenoidal
component we compute: dB [N1(µn, Σn),N2(µn+1, Σn+1)] where, µk and Σk are
the mean and the variance of the difference field (wso− wkΘso

). Parametric field
wkΘso

correspond to a maximum likelihood estimate of Rankine model with k
vortices. Starting with no singularities, we increase the number of singularities
by considering the largest local maxima of its corresponding squared potential
function. When the Bhattacharyya distance between two consecutive models is
small enough (i.e., when the introduction of a new singularity does not bring
additional information) the process is stopped.

5 Experimental Results

In this section we present some experimental results. Presented examples corre-
spond to the motion between two consecutive images of the infra-red channel of
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Meteosat, shot the 21st of January 1998 (Figs. 1a-b), and between two consecu-
tive images of the water-vapor channel of Meteosat, shot the 4th of August 1995
(Figs. 1c-d). Both examples images exhibit a large through of low pressure. In
addition, the two first images exhibit a set of moving cloud structures (top-right
part of the image) and the two others an exploding convective cell. Correspond-
ing estimated vector fields with their laminar component removed are visible
in Figs. 2a and 2g. These motion fields seem visually plausible: both the main
structures of the motion (counter-clockwise spiral of depressions, downward mo-
tion of cold clouds for the infrared image, the convective cell for the water vapor
image) are captured.

(a) (b) (c) (d)

Fig. 1. Two consecutive images of each sequence treated: (a,b) Infrared images; (c,d)
Water vapor images

The solenoidal and the irrotational components of these velocity fields are
shown in the second column of Fig. 2. In the third column, we present for the first
example the squared potential functions from which we extract the singularities
by localizing their extrema. For the second example, we present the stream lines
and the level curves of the velocity potential. The estimated singularity domains
are superimposed to their corresponding motion fields. The parametric fields
associated to estimated compound Rankine models are shown in Figs. 2d and
2j.

This method captures the main visible structures of the flow (seven vortices
and four sources, for the first example, four vortices and one source for the second
example). The associated parametric motion fields constitute fair “summaries”
of the structure of the flows.

5.1 Comparison with Winding Number Technique

A popular method to extract singular points is based on the use of Poincaré
indices also called winding numbers. The winding number of a closed curve
in a vector field amounts to the number of turns, 1

2π

∫
d(tan−1 u/v), that the

field undergoes along the curve. Its value is +1 if the considered Jordan curve
surrounds a vortex/sink/source. In practice, due to the image discretization, a
small blob (whose size depends on the size of used curve) of +1 index pixels is
obtained in the neighborhood of a singular point.

This method as the advantage to be fast. Nevertheless, it remains based on a
local criterion which is not robust to noise. Furthermore, only blobs containing a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. (a-f) results for the IR images presented in Fig. 1a and (g-l) results for the WV
images presented in Fig. 1b – (a,g): dense motion fields obtained with the proposed tech-
nique; (d,j): corresponding parametric Rankine flows; (b,h): estimated sources/sinks su-
perimposed to the irrotational part of the flow; (e,k): estimated vortices superimposed
to the solenoidal part of the flow; (c,f): squared velocity potential and squared stream
function; (i,l): stream lines (ψ = constant) and level curves of the velocity potential
(φ = constant).

potential singular point may be detected with such technique. The exact location
of the singularity has then to be extracted from such blobs with other adhoc
techniques.

In order to illustrate the difference between such an approach and the one we
propose, we present in Fig. 3, the different blobs detected via winding indices,
from to dense motion fields estimated with the dedicated approach. Figure 3a
corresponds to the singularities detected for the infrared sequence, whereas Fig.
3b corresponds to the ones obtained for the water-vapor example.
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We can note that the correct singular points are also detected at least within
the few pixel location accuracy associated to each blob. Nevertheless, the re-
sults are cluttered by a large number of false positives due to the sensitivity
of the technique. These spurious points have then to be removed with some
post-processing treatments.

(a) (b)

Fig. 3. Blobs of singularities estimated with winding number technique; (a) blobs cor-
responding to the infrared example and (b) blobs corresponding to the water vapor
example .

6 Conclusion

In this paper, we have presented a complete method to analyze fluid flows from
image sequences. We first presented a dedicated technique to estimate dense mo-
tion fields. This method modifies generic energy-based robust techniques through
a new data term based on the continuity equation, and an original smooth-
ness prior which preserves high concentrations of divergence and curl. We then
have proposed an original technique to detect singular points and their asso-
ciated domain of linearity from a dense motion field. This technique is based
on the numerical decomposition of the motion field in terms of its irrotational
and solenoidal components. From these components, we extract by integration
the associated stream function and the velocity potential, whose local extrema
provide the location of vortices and sinks/sources. The strength and linearity
domain associated to each of these detected singular points are then obtained
from a maximum likelihood estimation of a parametric Rankine model.

The whole approach has been demonstrated on two real meteorological exam-
ples. In [7], we shows that the fluid motion estimator provide better results than
generic motion estimators based on brightness constancy assumption and a first-
order smoothness. The singularities extraction method described here allows to
extract the main structures of a motion field. Compared to an usual winding
number technique, our approach is more robust to various sources of noise. As
a by product, our approach provides a simple way to extract streamlines, veloc-
ity potential, solenoidal or irrotational components, which are central to many
studies of fluids. As a final remark let us outline that the method described here
requires no tuning of parameters.
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Appendix

In this appendix, we demonstrate (for the L2 norm) that the regularization we
propose in (9) corresponds to a smoothed form of the initial second-order regu-
larization (8). To show that, let us consider only the div part of both functionals
(the same deviations can be obtained for the curl part). Because of the Parseval
theorem, the Fourrier transform of the first term of (8) verifies:

F
( ∫

Ω

‖∇divw‖2ds
)
=

∫
|F(∇divw)|2dk =

∫
‖k‖2|k · ŵ(k)|2dk (21)

Similarly, the Fourier transform of the corresponding term in (9) verifies
(with µ = 1

λ ):

F
( ∫

Ω

µ2(divw − ξ)2 + ‖∇ξ‖2ds
)
=

∫ (
µ2|k · ŵ(k)− ξ̂|2 + ‖k‖2|ξ̂|2

)
dk. (22)

For a fixed w, a minimizer of (22) is given by the resolution of the Euler-
Lagrange equation (µ2(divw − ξ) +∆ξ = 0). In the Fourrier domain, the mini-
mizer is:

ξ̂opt =
µ2|k · ŵ(k)|
‖k‖2 + µ2 . (23)

Introducing ξ̂opt in (22), after few manipulations leads to:

F
( ∫

Ω

µ2(divw − ξopt)2 + ‖∇ξopt‖2ds
)
=

∫
µ2‖k‖2

‖k‖2 + µ2 |k · ŵ(k)|2dk

=
∫
ĝ(k)|F(‖∇divw‖)|2dk (24)

with ĝ(k) = µ2

µ2+‖k‖2 . With µ = 1
λ (in that case, the regularization is the

same than (9)), one get ĝ(k) = 1
1+λ2‖k‖2 . For low frequencies, ĝ(k) → 1 and

the regularization functions are the same. For high frequencies, ĝ is a smoothing
function. Nevertheless, as we assume that w is C2, we have lim‖k‖→+∞ ŵ·‖k‖2 =
0 (i.e. ŵ tends to zero faster than 1

‖k‖2 when k tends to +∞).
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