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Abstract. This paper presents a theory for constructing and comput-
ing velocity-adapted scale-space filters for spatio-temporal image data.
Starting from basic criteria in terms of time-causality, time-recursivity,
locality and adaptivity with respect to motion estimates, a family of
spatio-temporal recursive filters is proposed and analysed. An impor-
tant property of the proposed family of smoothing kernels is that the
spatio-temporal covariance matrices of the discrete kernels obey similar
transformation properties under Galilean transformations as for contin-
uous smoothing kernels on continuous domains. Moreover, the proposed
theory provides an efficient way to compute and generate non-separable
scale-space representations without need for explicit external warping
mechanisms or keeping extended temporal buffers of the past. The ap-
proach can thus be seen as a natural extension of recursive scale-space
filters from pure temporal data to spatio-temporal domains.

1 Introduction

A basic property of real-world image data is that we may perceive and interpret
them in different ways depending on the scale of observation. On spatial domains,
the understanding of such multi-scale processes has grown substantially during
the last decades, and lead to multi-scale representations such as pyramids (Burt
1981, Crowley 1981) and scale-space representation (Witkin 1983, Koenderink
1984, Lindeberg 1994, Florack 1997). In particular, the linear scale-space theory
developed from these premises has close relations to biological vision (Young
1987), and has established itself as a canonical model for early visual processing.
Output from linear multi-scale receptive fields can serve as input to a large
set of visual modules, including feature detection, shape estimation, grouping,
matching, optic flow and recognition.

The world around us, however, consists of spatio-temporal data, in which
the temporal dimension plays a special role, and the future cannot be ac-
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cessed (Koenderink 1988, Lindeberg & Fagerstrom 1996). Moreover, the spatio-
temporal image data arising from a vision system that observes a coherent world
will be special in the respect that spatial structures tend to be stable over time.

For analysing spatio-temporal image data with this preferred structure,
mechanisms such as velocity adaptation are benefitial (Lindeberg 1997, Nagel
& Gehrke 1998). For example, if we compute a separable spatio-temporal scale-
space representation of a moving object, then the amount of motion blur will
increase with the temporal scale. This issue can be partly dealt with by stabiliz-
ing the retinal image by tracking. In the case of imperfect stabilization, however,
or for static cameras without tracking ability, alternatively a single camera that
observes multiple independently moving objects, a complementary approach for
reducing this effect is by adapting the shapes of the scale-space filters to the
direction of motion. Moreover, as will be shown in section [2, velocity-adaptation
is a necessary pre-requisite for defining spatio-temporal receptive field responses
that are invariant under motion.

For image data defined on spatial domains, the related notion of shape adap-
tion has proved to be highly useful for improving the accuracy in surface orienta-
tion estimates (Lindeberg & Garding 1997), for handling image deformations in
optic flow computations (Florack et al. 1998), for increasing the robustness when
computing image features (Almansa & Lindeberg 2000) and for performing affine
invariant segmentation (Ballester & Gonzalez 1998) and matching (Schaffalitzky
& Zisserman 2001).

The purpose of this article is to develop a theory for formulating such velocity-
adapted time-causal spatio-temporal filters. Specifically, it will be shown how
temporal recursive filters can be extended into spatio-temporal recursive filters
in such a way that we can control the orientation of the filter in space-time and
allow for efficient implementation of non-separable scale-space filtering. It should
be emphasized, however, that this paper is mainly concerned with the analysis
of such recursive filters. In a companion paper (Laptev & Lindeberg 2002), it is
shown how velocity-adapted spatio-temporal filters can be used for improving
the performance of spatio-temporal recognition schemes.

2 Velocity-Adapted Spatio-Temporal Scale-Space

To model a spatio-temporal scale-space representation, there are several possible
approaches. In his pioneering work, (Koenderink 1988) proposed to transform
the time axis by a logarithmic transformation that maps the present moment
to the unreachable future and applied Gaussian filtering on the transformed do-
main. Based on a classification of scale-space kernel that guarantee non-creation
of local extrema on a one-dimensional domain (Lindeberg 1994), (Lindeberg &
Fagerstrom 1996) formulated time-causal separable spatio-temporal scale-space
representations, from which temporal derivatives could be computed without
need for any other temporal buffering than the temporal multi-scale repre-
sentation, with close relations to an earlier approach for estimating optical
flow by (Fleet & Langley 1995) and the use of recursive filters on spatial do-
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mains (Deriche 1987). With regard to non-separable spatio-temporal scale-space,
(Lindeberg 1997) formulated a scale-space theory for non-separable receptive
fields, including velocity adaptation for discrete space-time. Other follow-up
works based on Koenderinks separable scale-time model have been presented
by (Florack 1997, ter Haar Romeny et al. 2001). Concerning non-linear scale-
space concepts, (Guichard 1998) has proposed a morphological scale-space model
model that commutes with Galilean transformations, and (Weickert 1998) has
studied non-linear scale-spaces that comprise spatial shape adaptation.

2.1 Transformation Properties of Spatio-Temporal Scale-Space

For continuous data, a simplified spatio-temporal receptive field model in terms
of Gaussian filtering can be used for illustrating the algebraic structure of a
spatio-temporal scale-space, if we disregard temporal causality (Lindeberg 1994,
Florack 1997). Consider the following shape- (or velocity-) adapted Gaussian
kernels

b emT e w2 (1)
(2m)P/2¢/det X ’

where the covariance matrix X' describes the shape of the kernel and the mean
vector m represents the position. This scale-space has the attractive property
that it is closed under affine transformations. If two image patterns f; and fgr
are related by an affine transformation, fr(xr) = fr(zgr) where zg = Azp + b,
and if linear scale-space representations of these images are defined by

L(; Yr,vp) =g(5 Xr,vn) * fo(-) R(5 Xr,vr) = g(5 Yr,vr) * fr(:) (2)

then L and R are related according to L(z; X'y, vr) = R(y; XYr,vr) where the
covariance matrices ¥y, and Yy satisfy Xp = AX; AT and the velocity terms
vy, and vy in the Gaussian kernels can be traded against coordinate shifts in =,
and zg as long as the relation zp — vg = A(xp — vy) + b is satisfied.

This closedness property is highly useful whenever we consider visual tasks
involving affine image deformations (see figure [), and has been explored in
various respects by (Lindeberg 1994, Lindeberg & Garding 1997, Florack 1997,
Ballester & Gonzalez 1998, Nagel & Gehrke 1998, Schaffalitzky & Zisserman
2001). Specifically, with regard to Galilean motion in the image plane

glz; X,m) =

T =x + vyt z’ 10 v, T
Y =y+ut e Yy |=101 v, Y (3)
=t t 00 1 t

the spatio-temporal covariance matrix will transform as

c.ccr, 10 v, Crz Cpt Cyy 100
c el =01 | {cye,cn| 010 (4)
C;t C;/gt Ct/t 00 1 Ca:t Cyt Ctt Vg Uy 1

while for the mean vector we have
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! 10 vy C, Cy 4 vy Ct
zl/ =101wv Cy | = Cy+uv,C (5)
f 00 1 Cy Cy

It should be noted, however, that these transformation properties are not re-
stricted to Gaussian smoothing kernels only. Rather, they hold for a rather wide
family of rapidly decreasing non-negative smoothing functions. One idea we shall
follow in this work is to define a family of discrete smoothing kernels such that a
similar algebraic structure holds for their covariance matrices and mean vectors.

rr = Axp + b
L(JS; EL,’UL) — Yr= AELAT — R(y; ER,UR)
l‘R—’UR:A(IL—UL)-i-b
) )
*g(; X'p,vL) *9(:; X'r,vR)
| |
fL(xL) — rr = Az + b — fR(mR)

Fig. 1. Commutative diagram of the Gaussian scale-space under linear transformations
of the space-time coordinates, implying that the scale-space representations of two
affinely deformed image patches can be aligned, either by adapting the shapes of the
Gaussian kernels or equivalently by deforming the image data prior to smoothing.

2.2 Time-Recursive Temporal Scale-Space for Discrete Time in
0+1-D

In (Lindeberg 1994, Lindeberg & Fagerstrom 1996) it was shown that a natural
and computationally efficient temporal scale-space concept for a one-dimensional
temporal signal (without spatial extent) can be constructed by coupling first-
order recursive filters in cascade

U S P R )
fout(t) - 1 _’_Nfout(t 1) + 1 +,U/ fzn(t) (6)

The mean of such a filter is p and the variance p?. Thus, by coupling k such
filters in cascade, we obtain a filter with mean M®*) = Zf:l w; and variance
vk = Zf:l 13+ pi

It can be shown that if we for a given total variance 72 in the temporal
domain let the time constants become successively smaller p; = 72/K while
increasing the number of filtering steps K, then with increasing K these ker-
nels approach the Poisson kernel (Lindeberg 1997), which corresponds to the
canonical temporal scale-space concept having a continuous scale parameter on
a discrete temporal domain. In practice, however, we should of course rather
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choose the time constants j; such that the variances V) are distributed ac-
cording to a geometric series, which means that the individual filter parameters
should with v = (V) /y(0)1/K i the minimal case be given by

e =3 (\/1 + 4V (y — 1) yh-1 — 1) . (7)

2.3 Time-Recursive Non-separable Scale-Space in 14+1-D

For spatial and spatio-temporal scale-space concepts in higher dimensions, it
was shown in (Lindeberg 1997) that for a discrete scale-space representation
with a continuous scale parameter, the requirement of non-enhancement of local
extremall implies that under variations of a scale parameter s the scale-space
family must satisfy a semi-discrete differential equation of the form

(O.L)(x: 8) = (AL)(ws 5) = 3 acL(z+& s), (8)

ezl
for some infinitesimal scale-space generator A, characterized by

— the locality condition a¢ = 0 if [{|oc > 1,
— the positivity constraint a¢c > 0 if £ # 0, and
— the zero sum condition dezD ag = 0.

When extending the temporal smoothing scheme () from a pure temporal do-
main to spatio-temporal image data, we propose to use the locality property
obtained in this way to include nearest-neighbour computations in space. Thus,
for a 14+1-D spatio-temporal signal with one spatial dimension and one temporal
dimension, we propose to consider a smoothing scheme of the form

1 a d
fout(zat) = 1+/14t b fout(xat_ 1) + 1+,ut ; fin(zvt) (9)

Cc

where a, b, ¢, d, e, f > 0 and the vectors within parentheses denote computational
symbols in the spatial domain, corresponding to the following explicit form of
the smoothing scheme:

1
fout(xat) = m(afout(x‘i‘ 17t_ ]-) +bfout(xut_ ]-) +Cfout(x - 17t_ ]-)
t

+dfin(x+1vt)+efin(xvt)+ffin(x_1vt)' (10)
From the generating function p(w, z) of the corresponding filter T'(x,¢; s)

e’ [e’e) dw_1+e+fw
= T(z,t; s)w"2" = 11
pw)= 3 > Tt sw's = oS (1)

Tx=—00t=—00

! Non-enhancement of local extrema implies that the intensity value at a local maxi-
mum (minimum) must not increase (decrease) when the scale parameter s increases,
ie.,, 9sL <0 (> 0) must hold at all local maxima (minima).
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where w denotes the transformation variable in the spatial domain and z the
corresponding transformation variable in the temporal domain, we get the mean
vector M and the covariance matrix V of the smoothing kernel as

M= (%) _ (%) 12)
Pz (w,2)=(1,1) 1223

V: (@ww+@w§0121; prz*@wcpz ) _ (ﬂxm QNJIt >
(w,2)=(1,1) Hat J1; 7 fe

Our next aim is to solve for the parameters a, b, ¢, d, e and f in the recursive
filter in terms of the parameters p;, tt, tize and . One additional constraint,
©(1,1) = 1, originates from the requirement that the filter should correspond
to a normalized filter. While this problem formally has six degrees of freedom
in a...f and six constraints in terms of the mass, mean and covariance of the
filter, however, one complication originates from the fact that the mean and the
variance of the kernel in the temporal domain are coupled. Thus, we expect the
problem to have 6 — 1 —2 — (3 — 1) = 1 degree of freedom, and solve for a, b, ¢,
d and f in terms of e and piy . .. pz¢. After some calculations it follows that

oy Mar TR e =1 o+ 2t

13
2 21+ ) 13)
2,”417 ,uxt
b=— 21— Zre et
Haow — Mz +1— e+ + 0+ (14)
2 -1 -2
o= Haa + iz T € Hat — 2 flat (15)
2 2(1+ 1)
—pz+1—e Pt
d= , 16
2 21+ u) (16)
tps +1—e€ Pt
= - , 17
/ 2 2+ o) an

To interpret these relations, let us first parameterize the single degree of freedom
in the solution in terms of v = 1—e. Then, by rewriting the spatial computational
molecules in terms of the spatial difference operators é, and d,, as

a ) o o\ [ 0 e
b 2<um+uilmz2) =2+ |1 7171 0
c +,U/t 1 0 +Mt _1/2
d 1/2 0 (1 . 1/2
e|l=—p | O |+{1)+=(-2]+-—"—]| O

f ~1/2 o) 2\1 (Itpe) \ 1

and by introducing mixed spatio-temporal derivatives according to
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1/2 1/2
Ozt (fins fout)(x, 1) = 0 fin(z,t) — 0 fout(z,t —1) (18)
~1/2 ~1/2
1 1
5mmt(fin7 fout)(xat) = _12 fin(x7t) - _12 fout(-rat - 1)7 (19)

we can with pg.; = v express the spatio-temporal smoothing scheme in ([@) as

fout(m>t) - fout(x7t - 1) = ( - Mzéa:fzn(mzt) + at(fina fout)(xvt)

L+
+ e+ 1 = L) 5 fo(at =)
+ 5 T b fou) 1)
S b o fo) 2. 0)(20)

Alternatively, after introducing the following notation for binomial smoothing
with variance v in the spatial domain

v/2
Bin(v) fin(z,t) = [ 1 —v | fin(x,t) (21)
v/2

the recursive updating scheme can be expressed on the form

fout(mvt) - fout(x7t_ 1) =

(= w20z fin(z,t) + Bin(v) fin(z,t) — fout(z,t — 1)

14 pe
+ l(ﬂzm + ,u’?l‘ - M - V) 6sz"Ut(’T’t - 1)
2 T4 e
+ L S (fins four) (2, 1)) (22)

1+

From this expression it is apparent how the mean and variance parameters fi,,
1, Wz and pg: influence the recursive smoothing scheme. Moreover, we see how
the free parameter v = 1 —e can be interpreted as a trade-off parameter between
the amount of binomical pre-smoothing of the input signal and the amount of
complementary spatial smoothing p,, — v in the recursive updating scheme.
Regarding the existence of non-negative values of a,b,c,d,e and f, it can be
shown that a necessary and sufficient condition is that

Mt
]. —+ ,LLt

2
max(|fy — wm+uﬂﬂu—%%ﬁgévé

QNmMmt + |Mmt|) (

23
1+ g )

< mln(lvﬂww + :U/?: -
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Parametrization of filter shapes. Given that K such spatio-temporal smoothing
filters with parameters /Lgcl), M§Z)7 /%(fg); and ,ugt) are coupled in cascade, the effective

filter parameters of the composed kernel will be of the form

SO WONEEE o
- k k

k i k i
C(k)_zﬂm» o =3, o =32+ u. (24

i=1 i=1
To parameterize these filter shapes, let us start from the transformation proper-
ties (#) and (@) of covariance matrices and mean vectors under Galilean motion.
Then, with ., and A; denoting the amount of spatial and temporal smoothing
in a frame attached to the object (with separable smoothing), we have

CI(E C:rt o )\a::r + ’U2>\t ’U)\t Cx o () Ct
<Cmt Ctt) N < VA At and Ci)  \ G (25)
where C; and Cy; are coupled according to (24]).

Permissable combinations of filter parameters. To analyse for which combina-
tions of Az, A+ and v non-negative discretization are possible, let us for simplicity
consider one level of a recursive filter. From (24)) and (25) it follows that

e = Aaz + 07N (26)

Mzt = ’U}\t (27)
1

pe=3 (Vieo-1) (28)

po = v =5 (VI+4 —1) (29)

and for these specific values of the parameters, it holds that p, = pee/(1+ ).
After some calculations it can be shown that a necessary prerequisite for the
existence of a non-negative filter coefficients is that |v| < 1. In addition, the
range of permissable spatial smoothing parameters A, is delimited by

2 2 1—?
E) (v -1) <re < 0L o)

2 2 2

If a larger amount of spatial smoothing is required than allowed by this in-
equality, a straightforward approach is to divide the smoothing step into several
layers of the recursive filters coupled in cascade. Using k such filters with iden-
tical parameters, the filter parameters for one layer will be related to the filter
parameters of the composed filter according to AL, = Az../k and X, = \;/k. To
capture motions with |v| > 1, one possible approach is to complement this recur-
sive filtering framework by an additional warping mechanism. Alternatively, we
may carry out the computations at a coarser spatial resolution. Using the fact
that the filter parameters transform as N/, = X, /h? X/ = A, and v = v'/h
under a change of spatial resolution by a factor h, we finally obtain
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T(z,t; ) 0z T (z,t; s) 1)

ET<x7 t; S)

8

’

0T (z,t; s) 0zcT(x,t; 8) 0zz:1 (z,t; )

6ttT xZ, t 5 .’L‘ttT Z, t 5) 5a_m':ttT x, t S

Fig. 2. Equivalent filter kernels corresponding to the result of using a discrete delta
function as input and applying repeated non-separable recursive filtering according to
[22) with a Galilean transformation parametrization of the filter shape (28) followed by
subsequent Galilean based computation of velocity-adapted spatio-temporal derivatives
according to ([B2) for different orders of spatial and temporal differentiation. (In all
cases, the spatio-temporal smoothing parameters are the same (Agz = 16, A\ = 64,v =
1/3) as well as the number of layers k = 10 and the image size 150 x 150 pixels.
Horisontal axis: space . Vertical axis: time t.)

2 2, .2 2 .2
k(h o] v)( 1+4T)\t_1>g>\zxsk<h £ h = 1+&)

2 2 2 k
(31)
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where the upper bound on the image velocity is now given by |v| < h. Thus,
we will be able to capture higher image velocites at coarser spatial scales using
spatio-temporal recursive filtering only. However, if we want to capture rapid
motions at fine spatial scales, then an additional warping mechanism is necessary.
Figure [2 shows a few examples of kernels computed in this way, followed by
the computation of velocity-adapted spatio-temporal derivatives according to

0p =0, Op=v0,+0 (32)

2.4 Recursive Non-separable Scale-Space in 2+1-D

To extend the previously developed recursive velocity adaptation scheme from
one to two spatial dimensions, let us consider a smoothing scheme of the form

abc 1 gkl
fout(xay,t): ef fout(xat71)+ mnp fin(xat) (33)
L ghi Lt qrs

where the matrices within parentheses denote computational symbols in the
spatial domain (which relate the filter coefficients a, b, . . ., s to spatial positions).
From the generating function of the corresponding filter

w(u7,u7 Z) =
_ put +mu+ kvt +ro4+lu o+ sum o + juvT 4 quo
ol — (futdumt + v+ bt 4 culom Fiu o + auv—! 4 guw)z
(34)

where u denotes the transformation variable in the spatial z-direction, v denotes
the transformation variable in the spatial y-direction and z the corresponding
transformation variable in the temporal domain, we obtain the mean vector M
and the covariance matrix V as

Pu Moz
M = %) = Hy ) (35)
Pz /) |(w,2)=(1,1,1) Kt

Puu + Py — (Pi Puv — PuPuv Puz — PuPz
V= Puv — PuPo  Pov — Pv — Vo Puz — PoPz (36)
Puz — PuPz Poz — PoPzr Yoz T Pz — sz (u,v,2)=(1,1,1)

,umm ,LLzy /th
= | Hzy Hyy Myt . (37)
Lot Pyt 17+ [

Our next aim is to solve for the parameters a, b, ... s in the recursive filter in
terms of the parameters pi,, iy, [t faz, tay, Hyys Mzt a0 e, With the additional
constraint ¢(1,1,1) = 1. Structurally, this problem has 18 degrees of freedom in
the parameters a, b, ... s, one constraint due to normalization, three constraints
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in terms of the mean values and six constraints in terms of the covariance matrix,
out of which one constraint is redundant due to the coupling between the mean
and the variance in the temporal direction. Thus, we expect to problem to have
18 —1—-3—(6—1) =9 degrees of freedom, After some calculations, it can be
shown that in terms of the difference operators in figure [3] this non-separable
recursive smoothing scheme can on incremental form be expressed as

fout(xayvt) - fOut(xvy’t - 1) =
1

]. 2 2#1/14171&)
+ = rz+ x4 . 5mr out\T, atfl
5 <u T Jout(z,y )

Hy ot + Pyt

+ (,U:cy + fafby — 1+

) 5myfout(xayat_ 1)
1 2 2hyliyt
+§ (M’lj’u—i_ﬁ'y— m 6zyfout(xay7t_1)
Mt
69: iny Jout )\ T, 7t
T+ t(fins fout) (%, y, 1)

Hyt
1 —+ ILLt

+

+

6yt(fin7f0ut)(aj7y7t)) (38)
where the nine degrees of freedom in the solution are contained in

D =fin(z,y,t) = four(z,y,t — 1)
+ % taxt Ozt (fins fout) (@, y,t) + % Hayt §zyt(fin7 Jout) (@, y,1)
+ 2 byt Oyt (fin, fout)(,y,t)
+ % Pazy Ozay(fout) (T, y,t) + % Py Ozyy (fout) (2,9, 1)
L2 it Ovyt (Fouts Fout) (@, Y, t) + 22 tayye Syt (fouts fout) (T, 4, )
+ 35 Hawyy Ozayy (fout) (@, Y, ) + 155 Howyyt Ozayyt (fouts four) (@, 9, 1) (39)

Parameterization of filter shapes based on Galilei transformations. To parame-
terize these filter shapes, let us first express the spatial part of the covariance
matrix in terms of two eigenvalues (A1, A2) and one orientation «

Cro Cot Cot A cos?a + Agsin? o (Ay — Ap) cosa sina 0
Y= CuyCyy Cpe | = (Ma—A1)cosasina A\;sin® a + Ay cos?a 0
Cxt Cyt Ct 0 0 At

(40)

Then, by subjecting this matrix to a Galilei transformation ([@l), we obtain

Acos?a+ Agsin?a +v2); (A — A1) cosa sina 4 vav, A v\
Y =1 (A2 — M) cosa sina + vo, e A sin? v + Ay cos? o + vj)\t Uy
vx)\t ’Uy)\t >\t
(41)
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0 0 O
0 fin(w,y,t) = | =1/20 +1/2 | fin(z,y,1)
0 0 O

0 0 O
+1 =241 | four(z,y,t —1)
0 0 O
~1/40 +1/4
0 0 O fout(z,y,t — 1)
+1/40 —1/4
0 0 O

_1/20+1/2 (fin(m7y7t)_fOUt(m7y7t_1))
0 0 O

a:xfout(m y7t - 1

Oay fout (@, y,t — 1)

6zt(fin7 fout x, y>

0 0 O
~1/40 +1/4
0 0 0 (fi”(xvyat)_fout(x,y,t—1))
+1/40 —1/4
-1/20+1/2
+1 0 -1 Sout(z,y,t)
~1/20+1/2
—1/20 +1/2
+1 0 _1 (fi”(xvy7t)7fout(x,y,t71))
-1/20+1/2
1 -2 1
-2 +4 -2 fout(ﬂh y,t)
1 -2 1
+1 -2 41

5zzyyt(fin7 fout)(-'% Y, t) = —2+4 -2 (fln(xa:% t) - fout(f, y,t— 1))
+1 -2 +1

zyt(fzn,fout x, y7
acyy (fout x, y7
6zyyt(fzn7 fout l' y7

‘Swyy(ftmt z,y,t

0 0 O
ézlt(finvfout x y7 <+1 -2 +1 (fin(xvyvt) _fout(xvyvt_ 1))

Fig. 3. Difference operators used in the construction of the discrete recursive spatio-
temporal scale-space representation in 2+1-D space-time (BR). To reduce redundancy,
operators that are mere rotations of corresponding operators in other directions are
not shown. Thus, dy, dyy, dyt, Oyyt, Ozzy and dzzy¢ have been suppressed.

Velocity-adapted spatio-temporal derivatives are finally given by
0z = Oy Oy = 0y O = vy 0y + vy Oy + O (42)

Figures@Halshow a few examples of spatio-temporal scale-space kernels generated
in this way. Figure [ shows filters corresponding to v = 0, while figure Bl shows
corresponding velocity adapted (and non-separable) recursive filters for a non-
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Fig. 4. Level surfaces of spatio-temporal receptive fields for the 24+-1-D separable recur-
sive spatio-temporal scale-space. (a) The raw smoothing kernel h(zx, y,t). (b) First-order
temporal derivative 9:h(z,y,t). (¢) First-order spatial derivative d.h(x,y,t). (d) First-
order temporal derivative of Laplacian response 0¢(9zz + Oyy)h(x,y,t). (In all cases,
the smoothing parameters have been Ayx =2, A\yy =1, Ay =4, v = 0 and five identical
recursive filters have been coupled in cascade.)
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Fig. 5. Level surfaces of spatio-temporal receptive fields for the 241-D velocity-
adapted spatio-temporal scale-space. (a) The raw smoothing kernel h(z,y,t). (b) First-
order temporal derivative O¢h(z,y,t). (c) First-order spatial derivative dzh(z,y,t).
(d) First-order temporal derivative of second-order derivative in the velocity direction
O:0zzh(z,y,t). (In all cases, the smoothing parameters have been Agz = 2, A\yy = 1,
At =4, (vz,vy) = (0.2,0.0) and five identical filters have been coupled in cascade.)
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zero velocity v # 0 While we have here generated explicit filter shapes for
the purpose of graphical illustration, the practical approach of implementing
this scale-space concept is, of course, by first performing the spatio-temporal
smoothing operation once and for all using ([38), and then computing derivative
approximations from difference operators in space and time, which are combined
according to (H2) at every image point.

3 Summary and Outlook

We have presented a theory for non-separable spatio-temporal scale-space ker-
nels, based on time-causal recursive filtering. This theory provides a well-founded
framework for spatio-temporal filtering with continuous scale and velocity pa-
rameters, in such a way that the spatio-temporal covariance matrices of the
discrete filters transform in an algebraically similar way as for continuous filters
under Galilean motion. We propose that the notion of velocity-adapted filtering
should be considered as an important mechanism whenever a computer vision
system aims at computing spatio-temporal receptive field responses of time-
dependent image data under the constraint that the image descriptors are to be
invariant under Galilean motion in the image plane. One example of the bene-
fit of such a mechanism is presented in (Laptev & Lindeberg 2002), where it is
shown how the incorporation of velocity adaptation improves the performance of
spatio-temporal recognition schemes, compared to a more traditional approach
of using separable spatio-temporal filters only.

Notably, these receptive field profiles have high qualitative similarity to re-
ceptive fields profiles recorded from biological vision (DeAngelis et al. 1995, Val-
ois et al. 2000) in analogy with previously established relations between
spatial receptive fields and Gaussian derivative operators (Young 1987); see
(Lindeberg 2001) for a comparison. There are also interesting relations to
methods for optic flow estimation from spatio-temporal filters (Adelson &
Bergen 1985, Heeger 1988), steerable filters (Freeman & Adelson 1991) and
models of biological receptive fields (Watson & Ahumada 1985, Simoncelli &
Heeger 1998).
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