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Abstract. This paper deals with the matching of geometric shapes.
Our primary contribution is the use of a simple, robust, rich and effi-
cient way to represent shapes, the level set representations according to
singed distance transforms. Based on these representations we propose a
variational framework for global as well as local shape registration that
can be extended to deal with structures of higher dimension. The op-
timization criterion is invariant to rotation, translation and scale and
combines efficiently a global motion model with local pixel-wise defor-
mations. Promising results are obtained on examples showing small and
large global deformations as well as arbitrary topological changes.

1 Introduction

The problem of registering geometric shapes [23] is a complex issue in computer
vision, computer graphics and recently medical imaging. It has been studied in
various forms during the last decade due to its wide application not limited to
registration, recognition, retrieval, tracking, etc.

A general registration formulation can be stated as follows: given two shapes,
an input D and a target S, and a dissimilarity measure, find the best transforma-
tion that associates to any point of D a corresponding point at S and minimizes
the dissimilarity measure between the transformed shape D̂ and the target S.
This dissimilarity can be defined either along the contour (shape-based) or in the
entire region (area-based) determined by the contour.

At this point, we have to distinguish the methods that aim to provide shape
recognition. In that case correspondences between the source and the target
shape are considered known or can be easily recovered and the objective is to
find from a given set of examples the shape that provides the lower dissimilarity
measurement with the target [1, 19, 22, 26]. Towards this direction, methods that
do not require correspondence and are based on the matching of some global
shape characteristics have been also investigated. It is important to note that
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our paper does not focus on the matching and the recognition of shapes but
addresses registration with unknown correspondence.

Shape registration has been approached into a number of ways, that can be
mainly categorized [14] according to three factors: (i) Nature of Transformation,
(ii) Domain of Transformation, (iii) Optimization Procedure. An effort to briefly
cover the existing literature on these areas will be made in the next paragraphs.

A critical component of the registration procedure is the underlying motion
model (nature of transformation) that is used to map the current shape to the
target. The selection of the motion model can affect drastically the performance
of the registration procedure. Rigid transformations refer to translation and rota-
tion and are a compromise between low complexity and fairly acceptable match-
ing between the different structures. A step forward, the affine transformation,
is a more complicated model that is invariant to a large variety of motions. The
use of projective geometry has been also considered to match shapes. Finally,
curved or elastic registration methods can better account for local deformations
and therefore have been also considered.

As far as the domain of transformation is concerned, the distinction is easier.
Global transformations are valid for the entire shape [1] and for any point of D we
can obtain the corresponding point at S by applying the same transformation,
while local transformations are applied at the pixel level [5].

Finally, the optimization procedure refers to the selection of a mathematical
framework by means of finding an optimum of some functional defined on the
parameter space. These functionals attempt to quantify the similarity between
the two shapes and can be based either in variational [4, 9], or stochastic prin-
ciples [24]. As far the optimization procedures are concerned, gradient-descent,
geometric hashing, iterative closest point, etc. can be found in the literature.
Finally, methods for shape registration can be categorized according to the fea-
ture space on which the matching is performed (Euclidean space, affine space,
curvature space, medial axes/skeletons [19, 26], graph and shocks [21], etc.).

In this paper we propose a variational framework for shape alignment that
can be extended to any arbitrary dimension. We adopt an implicit representation
inspired by the level set methods [16] and refers to signed distance transforms.
Furthermore, we introduce an optimization criterion that can account for global
(rigid, affine) and local pixel-wise deformations. This criterion is defined in the
space of signed distance transforms, and is minimized using a gradient descent
method. Global and local registration parameters are recovered using different
update factors that allow us to recover first the global transformation and then
the local deformations. Encouraging experimental results using 2D shapes were
obtained.

Distance transforms [18] have been considered for image registrations in the
past [6, 8, 12, 13]. In [6] a local-registration is recovered by seeking pixel-wise the
lowest cost geodesic path between the source and the target. This method is very
local, does not account for any neighborhood coherency and can fail to provide
a meaningful registration result unless properly initialized.
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In [8, 12] the Euclidean distance was considered to be the feature space.
Then 2D/3D objects are to be registered using linear transformations. In [12]
registration is done towards a prior shape model that refers to a collection of
points obtained through uniform sampling. In [8] distance maps from edges are
considered. In both cases registration is obtained through the minimization of
a metric defined on the space of distance transform. Both methods focus on
global transformations and cannot deal with local deformations. Furthermore,
they cannot deal with important scale variations and do make use of a feature
space with less information compared with the one consider in this paper.

The reminder of this paper is organized as follows. In Section 2 we briefly
introduce the selected shape representation. The registration method of is pre-
sented in Section 3 while summary and discussion appear in Section 4.

2 Shape Representation

A crucial component in the procedure of registering arbitrary shapes is the un-
derlying shape representation [11] since it can significantly affect the performance
of the selected registration algorithm.

The use of point-based snake models [10], deformable models/templates [2],
active shapes [7], Fourier descriptors, medial axis, level set representations [3,
15] are some alternatives. Although, these representations are powerful enough
to capture a certain number of local deformations, they require a large number
of parameters to deal with important shape deformations, and they cannot deal
with changes of topology. Also, their extension to describe structures of higher
dimension than curves and surfaces is in most of the cases not trivial. Based, on
these considerations and given the assumption that we would like to obtain a
global to local registration, we will consider the use of the level set representa-
tions that can deal with local deformations and is invariant to translation and
rotation.

Level Set Representation [16] is a powerful mathematical tool that can to
deal with applications that share a common concern, evolving interfaces. Within
these representations, contours/shapes are modeled as the zero-level set (φ = 0)
of a function defined in a higher dimension. The most common selection for the
embedding function is singed (Euclidean) distance transform.

In order to facilitate the introduction of the method, we consider the 2D case
and let Φ : Ω → R+ be a Lipchitz function that refers to a level set representation
for a given shape S. This shape defines a region R in the image plane Ω. Given
these definitions the following shape representation is considered:

ΦS(x, y) =




0, (x, y) ∈ S
+D((x, y),S) > 0, (x, y) ∈ RS
−D((x, y),S) < 0, (x, y) ∈ [Ω −RS ]

where D((x, y),S) refers to the min Euclidean distance between the grid loca-
tion (x, y) and the shape S. The fast marching algorithm can be used for the
construction of these representations [20].
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It can be easily shown that this representation [ΦS ] is invariant to translation
and rotation. Let us consider a shape D that is obtained after rotating S by an
θ angle and translating by a vector (Tx, Ty). Then, if we consider a pixel (x, y)
with distance d from the interface D, the following relation holds:

d = D((x, y),D) = min(u,v)∈D
{√

(u− x)2 + (v − y)2
}

The use of the inverse transformation between D and S for (x, y) leads to the
following equation:ÿ

x̂

ŷ

!
=

ÿ
x cos(−θ) + y sin(−θ) − Tx

−x sin(−θ) + y cos(−θ) − Ty

!

S =

(ÿ
û

v̂

!
=

ÿ
u cos(−θ) + v sin(−θ) − Tx

−u sin(−θ) + v cos(−θ) − Ty

!
: (u, v) ∈ D

)

Thus, the distance between

(
x̂
ŷ

)
and the interface S is given by

D((x̂, ŷ),S) = min(û,v̂)∈S
np

(û− x̂)2 + (v̂ − ŷ)2
o

= min(u,v)∈D

8<
:
vuut ((u− x) cos(−θ) − (v − y) sin(−θ))2

+((u− x) sin(−θ) + (v − y) cos(−θ))2

9=
;

= min(u,v)∈D
np

(u− x)2 + (v − y)2
o

= D((x, y),D)

We have shown that the selected representation is invariant to rotation and
translation. On the other hand when the transformation has as a scale component
s then level set shape representations are not invariant and the following relation
holds between the representation of S and D:

D((x, y),D) = s D((x̂, ŷ),S)

3 Shape Alignment and Registration

In the registration problem the objective is to find a point-wise transformation
between the current shape D and the target shape S that minimizes a given
dissimilarity measure between the two shapes.

The use of level set representations changes the dynamics of the problem
since these representations refer to a higher dimensional space than the origi-
nal one (2D shapes). Hence, we will seek for a transformation A that creates
pixel-wise intensity correspondences (level set values) between the current shape
representation s ΦD and the target shape ΦS . Due to the fact that the selected
representations [ΦD, ΦS ] are invariant to translation and rotation we can write:



(s, θ, T )

A(x, y) =

ÿ
Ax

Ay

!
= s

ÿ
cos θ sin θ

− sin θ cos θ

!ÿ
x

y

!
+

ÿ
Tx

Ty

!

∀(x,y) ∈ Ω : s ΦD(x,y) = ΦS (A(x,y))
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Thus, registration can be viewed now as a global optimization task that involves
all pixels in the image plane. Based on this assumption, several optimization
criteria have been proposed to recover the unknown transformation parameters;
sum of squared differences, optimization of the correlation ratio, mutual informa-
tion, etc. In order to introduce and demonstrate the performance of our method,
at the very beginning we will consider the simplest possible criterion, the sum
of square differences.

3.1 Sum of Squared Differences

Initially, we assume a global rigid deformation between S and D that involves
three parameters [A = (s, θ, T )]; a rotation angle θ, and translation vector T =
(Tx, Ty) and a scale factor s. Then, the optimization criterion is given by:

E(s, θ, T ) =

ZZ
Ω

(sΦD(x, y) − ΦS(Aτ (x, y)))2 dxdy

However, the level set representations for the considered shapes S and D are
not equally defined in the image plane (they depend on the positions of the
initial shapes). As a consequence, we can constrain the information space and
decrease the complexity of the problem by considering the area defined by two
equal distance contours (inwards, outwards) from the input shapes.

E(s, θ, T ) =

ZZ
Ω

Nδ(ΦD(x, y), ΦS(Aτ(x, y))) (s ΦD(x, y) − ΦS(Aτ(x, y)))2 dxdy

where Nδ is a binary function given by

Nδ(φ1, φ2) =

{
0, min(|φ1|, |φ2|) > δ

1, min(|φ1|, |φ2|) <= δ

that has a simple interpretation. All pixels (isophotes), within a range of distance
δ from the actual shape are considered in the optimization process.

As a consequence, the registration is done in an augmented shape-driven
(level set) space. This space is robust to very local deformations and miss-
ing data since the selected representation is obtained through a global proce-
dure (Euclidean distance). Moreover, the proposed framework is invariant to
rigid transformations and refers to multiple shape matching (isophotes) between
shapes that are clones of the original ones to be registered.

Using the proposed formulation we were able to convert a geometry driven
point-correspondence problem into an image-registration application where space
as well feature-based (intensity) correspondences are considered.

The optimization of this criterion can be done using a gradient descent
method 



d

dt
θ =2

ZZ
Ω

Nδ(ΦD, ΦS)(∇ΦS · ∇θA
τ ) [(sΦD − ΦS(Aτ))]

d

dt
s =2

ZZ
Ω

Nδ(ΦD, ΦS)(ΦD + ∇ΦS · ∇sA
τ ) [(sΦD − ΦS(Aτ))]

d

dt
T =2

ZZ
Ω

Nδ(ΦD, ΦS)

ÿ
∇ΦS ·

ÿ
∇TxA

τ

∇TyA
τ

!!
[(sΦD − ΦS(Aτ))]
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(1)

(2)

(3)

Fig. 1. (1) Rigid Hand Registration (Synthetic Data): {s = 1.27, θ = 71.38o, Tx =
−19.65, Ty = 21.32}. (2) Rigid Body Registration (Synthetic Data): {s = 0.63, θ =
59.94o, Tx = −13.97, Ty = −14.09} (3) Rigid Body Registration (Real Data).

The performance of the proposed module is shown in [Fig. (1)]. The selected
representation is powerful and can provide encouraging results using a quite
simple optimization criterion like the sum of squared differences. However, a
validation of the method is required.

The characteristics of the cost function is a good indicator regarding the sta-
bility of the problem. Non-convex optimization criteria (like the one consider in
this paper) suffer from the initial conditions. In our approach, we have consid-
ered a very strong feature space, the signed distance transforms and therefore
one would expect that the performance of the method will be satisfactory.

In order to perform a study on this performance, we can constrain the un-
known parameter space in two dimensions. We have considered the examples
shown in [Fig. (1.1)]. Then, from the 4-dimensional parameter space we have
studied the following cases:

– Scale and rotation are known, translation is to be recovered [Fig. (2.(i.1))],
– Translation in x and scale are known, translation in y and rotation are to

be recovered [Fig. (2.(i.2))],
– Translation in x and rotation are known, translation in y and scale are to

be recovered [Fig. (2.(ii.1))],
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Fig. 2. Empirical evaluation of the cost function: (i.1) Unknown translation [x, y], (i.2)
Unknown transaltion [x] and rotation, (ii.1) Unknown translation [x] and scale, (ii.2)
Unknown scale and rotation.

– Translation in x and translation in y are known, rotation and scale are to
be recovered [Fig. (2.(ii.2))].

Then, we have quantized the search space using uniform sampling (100 sam-
ples) for all unknown parameters in each case. Translation transformations in
(x, y) were in the range of [−50, 50] × [−50, 50], scale in [0.75, 1.25] and rota-
tion in

[−π
3 ,

π
3

]
. Then, one can estimate the cost function in the space of two

unknown parameters, by considering all possible combinations derived from the
sampling strategy (the other two parameters are fixed) [Fig. (2)]. The result-
ing functional as shown in [Fig. (2)] has some nice properties; it is smooth and
exhibits a single global minimum.

One can claim that the cost function [Fig. (2)] has a convex form for all
cases with two unknown variables. This convexity cannot be guaranteed when
the registration problem is considered in its full dimensionality, the four variables
of rigid transformations. However, the form of this function in a reduced variable
space is a good indicator for a well-behaved optimization criterion with smooth
properties.

3.2 Global-to-Local Registration

The framework described in the previous section is limited to global rigid trans-
formation and cannot account for non-rigid objects (shapes) and local deforma-
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Fig. 3. Global-to-Local Rigid Body Registration. {s = 0.63, θ = 59.94o, Tx =
−13.97, Ty = −14.09}

tions. In order to overcome this limitation we will incorporate to the method
the notion of local deformations by assuming that the observed shape is a rigid
transformation A of the target combined with some local deformations (u, v).
Under this assumption, we can write:




(s, θ, T )

(u(x, y), v(x, y)) : (x, y) ∈ Ω

∀(x,y) ∈ Ω : sΦD(x,y) = ΦS (Aτ + (u,v))

Now, we can decompose the previous hypothesis into two terms and define the
following registration criterion:

E(s,θ, T, (u, v)) = α

ZZ
Ω

Nδ(ΦD, ΦS) (sΦD − ΦS(Aτ ))2

+ (1 − α)

ZZ
Ω

Nδ(ΦD, ΦS) (sΦD − ΦS(Aτ + (u, v)))2

that has a simple interpretation: registration errors according to the rigid trans-
formation are corrected using the local deformation field. The performance of
this additional term is shown in [fig. (3)]. For demonstration purposes, we con-
sider the same input as the one that was used to validate the performance of the
criterion that accounts only for a global rigid transformation.

A natural registration assumption refers to the smoothness of the transfor-
mation field. Local deformations cannot be independent in a pixel level and
therefore this condition has to be also considered during the recovery of the
corresponding field. This can be done by introducing a constraint (in terms of a
penalty function) that accounts for smoothness on the field (u, v):

E(s, θ, T, (u, v)) = α

ZZ
Ω

Nδ(ΦD, ΦS) (sΦD − ΦS(Aτ))2

+ (1 − α)β

ZZ
Ω

Nδ(ΦD, ΦS) (sΦD − ΦS(Aτ + (u, v)))2

+ (1 − α)(1 − β)

ZZ
Ω

Nδ(ΦD, ΦS)
ÿ
u2
x + u2

y + v2
x + v2

y

þ

Let us now try to interpret the above functional. The first term aims at find-
ing pixel-wise intensity (level set representation) correspondences using a global
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motion model (rigid transformation). The second term, aims at correcting the
correspondences in a pixel level using a local deformation model on top of the
existing global model, while the third term constrains the deformation field to
be locally smooth.

The minimization of this functional is done using a gradient descent:


d

dt
s =2

ZZ
Ω

Nδ(ΦD, ΦS)(ΦD + ∇ΦS · ∇sA
τ)

[α (sΦD − ΦS(Aτ)) + β(1 − α) (sΦD − ΦS(Aτ + (u, v)))]

d

dt
T =2

ZZ
Ω

Nδ(ΦD, ΦS)

ÿ
∇ΦS ·

ÿ
∇TxA

τ

∇TyA
τ

!!

[α (sΦD − ΦS(Aτ)) + β(1 − α) (sΦD − ΦS(Aτ + (u, v)))]

d

dt
θ =2

ZZ
Ω

Nδ(ΦD, ΦS)(∇ΦS · ∇θA
τ )

[α (sΦD − ΦS(Aτ)) + β(1 − α) (sΦD − ΦS(Aτ + (u, v)))]

d

dt
u = 2(1 − α)(1 − β) (uxx + uyy) +

2β(1 − α)∇xΦS(Aτ + (u, v)) (sΦD − ΦS(Aτ + (u, v)))

d

dt
v = 2(1 − α)(1 − β) (vxx + vyy) +

2β(1 − α)∇yΦS(Aτ + (u, v)) (sΦD − ΦS(Aτ + (u, v)))

The performance of the complete system is shown in [fig. (4)].
The selection of the α parameter is a crucial component of the algorithm since

it controls global-to-local factor. This is clearly shown in the motion equations
where the construction of the local deformation field is delayed (actually it is
done very slowly) until the parameters of the global rigid model are properly
estimated.

The same property can be obtained through a two stage approach that in-
volves the estimation of the global model first, and then the local estimates of
the deformation field. However, such selection involves the use of time measures
to control the gradient descent method and cannot be done automatically. One
can claim that a similar argument is also valid for the approach presented in
this paper. We can argue that the selection of α parameter does affect the reg-
istration parameters (global and local estimates) but not the final registration
result since by modifying α, we theoretically change the estimates of the un-
known parameters (global and local deformation measures) but not their joint
estimates. This is clearly shown in [fig. (4)] where three different cases have been
considered independently:

– A global rigid transformation [fig. (4.1)],
– A global-to-local rigid transformation with local deformations [fig. (4.2)],
– A local (pixel-wise registration) model [fig. (4.3)].

Based on the obtained results, we can claim that the registration performance
of this representation for the three different type of transformations is compa-
rable/similar. However, in order to overcome this limitation one can consider
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modifying the objective function to penalize the formation of a rich local de-
formation field. The use of the local deformation field magnitude is a common
selection to perform this task leading to the following example:

E(s, θ, T, (u, v)) = α

∫∫
Ω

Nδ(ΦD, ΦS) (sΦD − ΦS(Aτ ))
2

+ (1 − α)β

∫∫
Ω

Nδ(ΦD , ΦS) (sΦD − ΦS(Aτ + (u, v)))
2

+ (1 − α)(1 − β)

∫∫
Ω

Nδ(ΦD, ΦS)
[(
u2
x + u2

y + v2
x + v2

y

)
+ γ

(
u2 + v2

)]

However, it is important to note that the introduction of local deformations
cannot guarantee the proper handling of the shape to be registered. For example
several points or parts of the source shape may be mapped to the same point
or part of the target even in the case where scale variations are not present
[fig. (4)]. Thus, the transformed shape may be quite different or even an open
structure compared with the original one. In order to deal with this issue, we
can consider the use membership functions for each pixel that enforces a ”one-
to-one” pixel-wise correspondence between the current and the target shape or

3.3 Supervised Registration and Joint Learning

We now consider the registration problem in more complex scenario where the
target is not a shape, but a shape model with local degrees of variability. We
assume the existence of this model that refers to a distance function [ΦS(x, y)]
associated with some variability measurements [σS(x, y)] :

ΦS(x, y) =




0, (x, y) ∈ S
+D((x, y),S) > 0, (x, y) ∈ RS
−D((x, y),S) < 0, (x, y) ∈ [Ω −RS ]

Then, for a given pixel location (x, y) and a given value φ the conditional
probability of having this value at the location in S is given by:

pS(x,y)(φ) =
1√

2πσS(x, y)
e
− (φ−ΦS (x,y))2

2σ2S (x,y)

The construction of this model can be done using variational framework that
assumes the existence of a training set of shapes that are registered with respect
to an arbitrary element of this set [17].

Given this model, a more challenging and promising task is to register a given
shape D by maximizing the maximum likelihood density between the model and
the input shape. If we assume that the conditional densities of the model are
independent across pixels, then the optimization criterion is equivalent with the
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(1)

(2)

(3)

Fig. 4. (1) Global {s = 0.79, θ = 1.34o, Tx = −16.34, Ty = −15.76}, (2) Global-to-
Local {s = 0.81, θ = 2.07o, Tx = −14.97, Ty = −15.43}, (3) Local Registration with
regularization constraints.

minimization of:

E(s, θ, T, (u, v)) = α

ZZ
Ω

Nδ(ΦD, ΦS)

ÿ
log (σS(A)) +

(ΦD − ΦS(A))2

2σ2
S(A)

þ

+ (1 − α)β

ZZ
Ω

Nδ(ΦD, ΦS)

ÿ
log (σS(A + (u, v))) +

(ΦD − ΦS(A + (u, v)))2

2σ2
S(A + (u, v))

þ

+ (1 − α)(1 − β)

ZZ
Ω

Nδ(sΦD, ΦS)
ý
u2
x + u2

y + v2
x + v2

y + γ
ü
u2 + v2ûú

One can easily interpret this function. Shape components are considered accord-
ing to their variability (denominator factor) in the registration process. There-
fore, the global registration component will be recovered using the rigid parts
of the shape model, while local deformations will be estimated accordingly in a
less significant manner due to the contribution of the variability estimates.

4 Conclusions

In this paper, we have proposed a novel simple framework based on variational
principles for global to local shape registration. The proposed framework makes
use of a powerful mathematical tool, the level set representations that is inte-
grated with variational (sum of squared differences) and stochastic principles
(Supervised Registration and Joint Learning) resulting in a scale, translation
and rotation invariant paradigm for shape registration. The extension of the
method to deal with structures of higher dimension is a straight-forward step
that is currently under investigation, as well as to deal with open structures.

The efficiency of the proposed formulation is demonstrated using a very sim-
ple optimization criterion, the sum of squared differences. Therefore, we can
presume that the selected shape representation is very powerful, and has strong
discrimination power. Very encouraging [fig. (5)] experimental results were ob-
tained using all variations of the proposed framework.
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(1)

(2)

(3)

(4)

(5)

(6)
(a) (b) (c) (d)

Fig. 5. Global Registration for non-rigid objects: (1,2,3,4,5,6) Different examples. (a)
Input Shapes, (b,c) Indermidiate Results, (d) Registration Result.

Conventional methods were considered to implement the obtained PDEs in
this paper. Therefore, small time steps are required to guarantee stability and
convergence. The estimation of the rigid transformation can be done in real time,
due to the small number of involved parameters once an appropriate numerical
approximation methods are used [25]. The current implementation takes up to a
couple of seconds modulo the initial position of shapes. Recovering the complete
local deformations field is very expensive.

In order to validate our approach, we have considered four different examples
[fig. (6,7)] to validate the performance of the method. Cases with severe local
deformations and topological changes resulting to missing and occluded parts
have been also investigated. Towards this end, two fingers were progressively
removed from the hand input shape [fig. (7)].

In order to perform reliable tests, the input shape has been globally and lo-
cally deformed. We have considered a four dimensional random variable (s, θ, Tx,
Ty) defined in the following space:

(θ, s, Tx, Ty) ∈
(
[−π

3
,
π

3
], [0.8, 1.2], [−30, 30], [−30, 30]

)
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(a)

(b)
(i)

(a)

(b)
(ii)

Fig. 6. Empirical Evaluation (a) Initial Condition, (b) Registration Result. Perfor-
mance (Registration Ratio): (i) 100 %, (ii) 100 %.

For all examples we have ran a 100 trials using a random generation process
for the parameters of the rigid transformation. The obtained results are shown
in [fig. (6,7)]. Each column corresponds to a random trial. The first row (a),
refers to the initial condition and the second row (b) to the final registration
result. The registration performance of the algorithm is also shown.

As far the future directions of the proposed approach are concerned, several
issues remain open. The acceleration of the method to perform real time regis-
tration is a natural step to be done. Moreover, the integration of image/intensity
features into the shape registration algorithm can further improve the perfor-
mance of the proposed framework. An hybrid approach that makes use primarily
of the shape information and secondly of the image features can be a valuable
element to the segmentation of medical structures where the global shape vari-
ability is not discriminant. Also, the investigation of more complex motion struc-
tures and global transformations is step to be done. Shape recognition is also
an interesting application. One can consider (after alignment) the use of these
representations as feature space to the recognition process.

The proposed framework can be considered static since it is based on already
extracted shapes. In many cases, solving the segmentation problem cannot be
done trivially and therefore shape registration becomes more complicated. To
overcome this constraint, a joint optimization approach has to be investigated
where both, the problems of segmentation and registration are treated simulta-
neously.
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(a)

(b)
(i)

(a)

(b)
(ii)

Fig. 7. Empirical Evaluation (a) Initial Condition, (b) Registration Result. Perfor-
mance (Registration Ratio): (i) 100 %, (ii) 77 %.
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