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Abstract. We analyze walking people using a gait sequence represen-
tation that bypasses the need for frame-to-frame tracking of body parts.
The gait representation maps a video sequence of silhouettes into a pair
of two-dimensional spatio-temporal patterns that are near-periodic along
the time axis. Mathematically, such patterns are called “frieze” patterns
and associated symmetry groups “frieze groups”. With the help of a
walking humanoid avatar, we explore variation in gait frieze patterns
with respect to viewing angle, and find that the frieze groups of the gait
patterns and their canonical tiles enable us to estimate viewing direction
of human walking videos. In addition, analysis of periodic patterns al-
lows us to determine the dynamic time warping and affine scaling that
aligns two gait sequences from similar viewpoints. We also show how gait
alignment can be used to perform human identification and model-based
body part segmentation.

1 Motivation

Automated visual measurement of human body size and pose is difficult due to
nonrigid articulation and occlusion of body parts from many viewpoints. The
problem is simplified during gait analysis, since we observe people performing
the same activity with certain time period. Although individual gaits vary due
to factors such as physical build, body weight, shoe heel height, clothing and
the emotional state of the walker, at a coarse level the basic pattern of bipedal
motion is the same across healthy adults, and each person’s body passes through
the same sequence of canonical poses while walking [6]. We have experimented
with a simple, viewpoint-specific spatio-temporal representation of gait. The
representation collapses a temporal sequence of body silhouette images into a
periodic two-dimensional pattern. This paper explores the use of these frieze
patterns for viewing angle determination, human identification, and non-rigid
gait sequence alignment.

2 Related Work

Many approaches to analyzing gait sequences are based on tracking the body
as a kinematic linkage. Model-based kinematic tracking of a walking person was
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pioneered by Hogg [11], and other influential approaches in this area are [2,4].
These approaches are often brittle, since the human body has many degrees of
freedom that cannot be observed well in a 2D image sequence. Our work is more
closely related to approaches based on pattern analysis of spatio-temporal repre-
sentations. Niyogi and Adelson delineate a person’s limbs by fitting deformable
contours to patterns that emerge from taking spatio-temporal slices of the XYT
volume formed from an image sequence [17]. Little and Boyd analyze temporal
signals computed from optic flow to determine human identity from gait [14].
Analyzing features over a whole temporal sequence is a powerful method for
overcoming noise in individual frames.

Liu and Picard [15] propose to detect periodic motions by treating temporal
changes of individual pixels as 1D signals whose frequencies can be extracted.
Seitz and Dyer [18] replace the concept of period by the instantaneous period,
the duration from the current time instant at which the same pattern reappears.
Their representation is effective in studying varying speed cyclic motions and
detecting irregularities. Cutler and Davis [5] also measure self-similarity over
time to form an evolving 2D pattern. Time-frequency analysis of this pattern
summarizes interesting properties of the motion, such as object class and number
of objects.

Fig. 1. Spatio-temporal gait representations are generated by projecting the body sil-
houette along its columns (FC) and rows (FR), then stacking these 1D projections over
time to form 2D patterns that are periodic along the time dimension. A 2D pattern
that repeats along one dimension is called a “frieze” pattern.

3 A Spatio-Temporal Gait Representation

Consider a sequence of binary silhouette images b(t) ≡ b(x, y, t), indexed spa-
tially by pixel location (x, y) and temporally by time t. Form a new 2D image
FC(x, t) =

∑
y b(x, y, t), where each column (indexed by time t) is the vertical

projection (column sum) of silhouette image b(t), as shown in Figure 1. Each
value FC(x, t) is then a count of the number of silhouette pixels that are “on” in
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column x of silhouette image b(t). The result is a 2D pattern, formed by stacking
column projections together to form a spatio-temporal pattern. A second pattern
FR(y, t) =

∑
x b(x, y, t) can be constructed by stacking row projections. Since a

human gait is periodic with respect to time, FC and FR are also periodic along
the time dimension. A two-dimensional pattern that repeats along one dimen-
sion is called a frieze pattern in the mathematics and geometry literature, and
group theory provides a powerful tool for analyzing such patterns (Section 4.1).

Figure 2 shows the column projection frieze pattern FC extracted from a
roughly 30 second long sequence of a person walking along a test course. Note
the changes in appearance of the frieze pattern as the walking direction changes.
In our experiments, body silhouette extraction is achieved by simple background
subtraction and thresholding, followed by a 3x3 median filter operator to sup-
press spurious pixel values. Silhouettes across a gait sequence are automatically
aligned by scaling and cropping based on bounding box measurements so that
each silhouette is 80 pixels tall, centered within a window 80 pixels wide by 128
pixels high. Background subtraction is a commonly used method for extract-

Fig. 2. Frieze pattern extracted from a 30 second long walking sequence. Note the
changes in appearance of the frieze pattern as the walking direction changes.

ing body silhouettes from a stationary background scene [7,20]. It is difficult
for kinematic trackers to automatically identify and fit individual limb positions
from such data. This is because background subtraction often yields noisy sil-
houettes with holes, fragmented boundaries, and extra parts due to background
clutter and shadows. However, by distilling a sequence of silhouettes into a pe-
riodic pattern that can be smoothed and analyzed using robust signal analysis
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techniques, our “holistic” approach to gait analysis is better able to deal with
noisy silhouette data.

4 Model-Based Gait Analysis

With the aid of a 3D walking humanoid model, we have studied how the spatio-
temporal frieze patterns described above vary with respect to camera view-
point. Our model of human body shape and walking motion is encapsulated
in a VRML/H-Anim 1.1 compliant avatar called “Nancy”. 1 Nancy’s 3D poly-
hedral body parts were generated by a graphics designer, and the gait motion,
specified by temporal sequences of interpolated rotations at each joint, is based
on the motion sequence of a real person in “The Human Figure in Motion” by
Eadweard Muybridge. We have ported Nancy into an open-GL program that
generates 2D perspective views of the avatar given a camera position and time
step within the gait cycle. Figure 3 illustrates variation of the column projection
frieze patterns FC defined in Section 3 when Nancy’s gait is seen from different
viewing directions. The diversity inspires us to seek an encoding for these dif-
ferent types of frieze patterns in order to determine viewpoint from frieze group
type. One candidate for categorizing frieze patterns is by their symmetry groups.

(a) (b)

Fig. 3. (a) A database of gait sequences is generated from 241 sample viewpoints. The
subject is a walking humanoid avatar (motion sequence is from a real person). (b) Some
gait patterns of the avatar “Nancy” viewed from different directions.

4.1 Frieze Symmetry Groups Classification

Any frieze pattern Pi in Euclidean space R2 is associated with a unique symmetry
group Fi, where i = 1..7,∀g ∈ Fi, g(Pi) = Pi. These seven symmetry groups are
1 c©1997 Cindy Ballreich, 3Name3D / Yglesias, Wallock, Divekar, Inc.
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called frieze groups, and their properties are summarized in Figure 4 and Table 1.
Five different types of symmetries can exist for frieze patterns: (1) translation,
(2) 2-fold rotation, (3) horizontal reflection (4) vertical reflection, and (5) glide-
reflection. A frieze pattern can be classified into one of the 7 frieze groups based
on what combination of these 5 primitive symmetries are present in the pattern
[16] (Table 1).

(A) (B)

Fig. 4. (A) The seven frieze patterns (P1...P7) in Euclidean space R2. (B) The subgroup
relationship among the seven frieze symmetry groups (F1...F7 in Table 1). Fi → Fj

means Fi is a subgroup of Fj .

We are interested in classifying imperfect and noise-contaminated frieze pat-
terns generated from real human gaits. There are two important and intertwined
computational issues for frieze symmetry group classification: 1) given an im-
perfect frieze pattern, how to decide whether or not it has certain types of sym-
metries; and 2) given the symmetry measures for a pattern, how to give each
of the seven frieze groups an equal chance to be chosen as the symmetry group
of the pattern, since these groups are not disjoint. The first issue is addressed
by establishing a distance measure between an imperfect periodic pattern and
frieze patterns. The second issue is addressed by using geometric AIC [12,13] for
symmetry group model selection.

Distance to the Nearest Frieze Patterns. We define the symmetry distance
(SD) of an approximately periodic pattern P to the set of all frieze patterns {Pn}
with frieze group Fn as

SDn(P ) = min
Q∈{Pn}

{
tN∑
i=1

(
pi − qi

si

)2

} (1)

where N is the number of pixels in a tile (smallest 2D repeating region), t is
the number of tiles being studied, pi and qi are intensity values of corresponding
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Table 1. Symmetries of frieze pattern tiles (N is number of pixels in one tile)

Symmetry translation 2-fold Horizontal Vertical Glide Degrees of
Group rotation reflection reflection reflection Freedom
F1 yes no no no no N
F2 yes no no no yes N/2
F3 yes no no yes no N/2
F4 yes yes no no no N/2
F5 yes yes no yes yes N/4
F6 yes no yes no no N/2
F7 yes yes yes yes no N/4

pixels of pattern P and Q ∈ {Pn} respectively, and si is the standard deviation
of the frieze pattern at pixel i. For independent Gaussian noise, the distance
SDn has a χ2 distribution with tN degrees of freedom.

The symmetry distance measure is defined with respect to a frieze pattern
Q ∈ {Pn} that has the minimal distance to P . We can show that this pattern
Q can be constructed as follows: (1) For t > 1 and n = 1, Q is the pixel-wise
average of all the tiles in P . (2) For t = 1 and n > 1, Q = (On(P )+P )

2 , where
On(P ) is the pattern obtained by applying the set of symmetry operations in
Fn to P . (3) For t > 1 and n > 1, Q is the pixel-wise average of each Q obtained
above. Our definition of frieze pattern symmetry distance in pixel intensity space
is analogous to that of Zabrodsky et.al. [21,13] for polygon distance in vertex
location space.

Geometric AIC for Frieze Group classification. The frieze symmetry
groups form a hierarchical structure (Figure 4B) where frieze group F1 is a
subgroup of all the other groups and so on. For example, a frieze pattern P3
(with vertical reflection symmetry) is a more general pattern type than P5 or
P7, since any P5 or P7 frieze with more complicated symmetries also has vertical
reflection symmetry. But this implies that the distance of a pattern P to P3
is always no greater than the distance to P5, since the set of P5 patterns is a
subset of the P3 patterns. If no care is taken, a symmetry group classification
algorithm based on raw symmetry distance scores will always favor P3 over P5.
To address this problem, we adopt the concept of Geometric-AIC (G-AIC) pro-
posed by Kanatani [12,13]. Given two possible frieze patterns whose symmetry
groups have a subgroup relationship, G-AIC states that we should prefer Fm

over Fn if
SDm

SDn
< 1 +

2(dn − dm)
r(tN) − dn

(2)

where dm and dn are the degrees of freedom for frieze patterns of Fm and Fn re-
spectively, and r is the codimension. Since the data space (the intensity space) is
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dimension one, and our model space (point in multidimensional intensity space)
dimension is 0, the codimension r = 1 − 0 = 1.

(b) (f) (g)(e)(a) (c) (d)

Fig. 5. Determining the degrees of freedom of frieze patterns by how many constraints
a pixel intensity has to satisfy. The figure shows the corresponding pixels that must
have the same intensity values in (a) two tiles of a P1 pattern; (b)-(g) a tile from frieze
pattern P2...P7 respectively.

The degrees of freedom (DOF) of a frieze pattern depends on how the inten-
sity of each pixel on the pattern is constrained. For frieze patterns with transla-
tion symmetry only, the only constraint for each of the tN pixels is to have the
same intensity value as the pixel t units to the left. Thus its DOF is N . On the
other hand, pixels on a P3 pattern have to satisfy a vertical reflection symmetry
constraint, and thus half of the pixel intensities need to be the same as the other
half. So the DOF of a P3 pattern is N/2. The last column of Table 1 and Figure
5 explain the DOFs of the seven frieze groups. In summary, we would prefer to
classify a pattern P as having frieze group Fm rather than Fn if

SDm(P )
SDn(P )

<
t

t − 1
, for m = 2, 3, 4, 6 and n = 1 (3)

SDm(P )
SDn(P )

<
2t

2t − 1
, for m = 5, 7 and n = 2, 3, 4, 6 (4)

SDm(P )
SDn(P )

<
2t + 1
2t − 2

, for m = 5, 7and n = 1 (5)

4.2 View Direction Estimation

To study the effects of viewpoint on human gait appearance we have generated
a database of 241 walk sequences, indexed by viewing direction azimuth and
elevation, by sampling the view sphere at roughly every 10 degrees (Figure 3).
This type of detailed study is perhaps only possible given a generative model,
since the cost of gathering such data experimentally would be prohibitive. Fig-
ure 6 shows the frieze groups associated with the 241 column projection frieze
patterns FC generated from Nancy’s gait when viewed from these directions.
Row projection frieze patterns FR exhibit less variation with respect to group
structure, and are not used in this section.

The underlying assumption in the current approach is that the distribution of
symmetry groups of the gait patterns from different views of the computer model
can provide guidance for determining the viewing angle of an observed human
subject’s gait. Figure 7 shows a comparison among corresponding avatar and two
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Fig. 6. Symmetry group labelings of the frieze patterns of a humanoid avatar viewed
from different directions on the upper hemisphere (Figure 3). Each sample point on
the hemisphere is projected to the plane of elevation 0 degrees. Since the shape and
motion of the avatar is based on a real person, the symmetry group distribution map
above is NOT perfectly symmetrical with respect to the 0o (Frontal view) and 180o

(Back view) line.

individual human subject (one male, one female) frieze patterns, viewed from
six different viewing angles. One can observe that frieze patterns from the same
view point share the same frieze symmetry group, and their tiles have a similar
appearance. We also observe that the avatar frieze patterns are visually similar to
the patterns extracted from gait video of real human subjects. In another word,
the gait frieze patterns so computed are more similar across different subjects
than across viewing directions.

Given an observed human subject gait pattern P = FC (Section 3), we use a
moment-based method (Section 5.1) to align the model friezes Pi from each of
the 241 candidate viewing directions to the subject frieze. Applying PCA to a
typical tile from P and taking the non-dominant PCA components that are most
sensitive to discriminate pattern variations, the closest K nearest neighbors are
found in this subspace. We used a dual elimination method to decide which angle
values from these K neighbors we can count on. The first condition is that P and
Pi have the same symmetry group. The second condition is that corresponding
pixels of tiles from P and Pi must have similar intensities. Results for classifying
viewing direction for two human subjects is listed in Table 2.

In this framework we have assumed affine camera models, thus only one view-
ing direction (specified by azimuth and elevation) is estimated for a ray directed
towards the center of the person. However, the data used in the experiment
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Fig. 7. View of FC frieze patterns from six different angles. Left: Avatar Nancy (motion
sequence is extracted from a real female person). Middle: human subject # 1 (male).
Right: human subject # 2 (female).

Table 2. View direction estimation using frieze groups, for two real human subjects
viewed from six different cameras

Camera Sym. Ground truth subj 1 estimate subj 2 estimate
ID Group View Dir. elevation azimuth elev azim elev azim
3 F7 L. side 15.4 83.2 50 75 10 80
5 F3 L. front 12.0 37.4 30 160 80 45
7 F5 Frontal 25.0 359.8 20 0 20 0
13 F3 R. back 11.4 234.9 20 200 20 240
16 F3 R. front 11.9 314.5 40 334 10 20
17 F5 Back 26.5 181.4 20 180 20 180

comes from a perspective camera, and due to the proximity of the subject, the
difference in viewing ray elevation between their head and feet is roughly 28
degrees. This partly explains why estimation of azimuth angles tends to be more
accurate than elevation angles. Furthermore, much more accurate estimations of
viewing angles are achieved for frieze patterns with non-F3 groups (Table 2). This
can be explained by the multiple possible angle ranges for P3 patterns (Figure
6). We have dealt with this using majority votes and robust median estimators.
Although having the same symmetry group is only a necessary condition for two
gait patterns to share the same viewing direction, our initial experiments show
that this condition yields better estimation accuracy than not using symmetry
groups at all. Accuracy would be further improved by using these cues in com-
bination with other constraints, for example geometric constraints on azimuth
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and elevation provided by approximate knowledge of ground plane and direction
of travel [19].

5 Spatio-Temporal Gait Alignment

Consider two gait sequences, represented by two pairs of frieze patterns FC(x, t),
FR(y, t) and F ′

C(x′, t′) , F ′
R(y′, t′). We seek to align the patterns temporally and

spatially, as a precursor for further correspondence-based analysis. Temporal
alignment of gait sequences amounts to aligning frieze patterns horizontally,
thereby determining a mapping between time variables t and t′. Spatial align-
ment means finding a mapping between pixel locations (x, y) in sequence 1 and
(x′, y′) in sequence 2. We restrict this to a four parameter affine mapping, and
show that it can be found by aligning the corresponding row and column friezes
along their vertical dimensions.

Spatio-temporal alignment of two video sequences is typically treated within
a framework of 3D space-time volumetric warping [3]. However, representing
human activity using line projection frieze patterns collapses the problem down
to 2D spatial pattern alignment. Temporal alignment of these frieze patterns is
further simplified by the periodic nature of the patterns themselves, allowing us
to use simple periodic signal analysis in place of expensive dynamic time warping
procedures [8].

5.1 Moment-Based Gait Alignment

It is well known that the first and second moments of two binary silhouettes can
be used to determine an affine transformation that coarsely aligns them, and
that some of the moments of a silhouette image can be computed from its row
and column projections [1]. This forms the basis of our gait alignment method.

First, we generalize the concept of moments of a binary image to cover a
time series of moments computed from a sequence of binary images. Define a
moment sequence as mij(t) =

∑
x

∑
y xiyjb(x, y, t), which is a sequence of single-

frame binary silhouette moments, indexed by time. Note that m00(t) is just the
area of the binary silhouette over time, while x̄(t) ≡ m10(t)/m00(t) and ȳ(t) ≡
m01(t)/m00(t) are the coordinates of the silhouette centroid over time. Similarly,
define a central moment sequence as µij(t) =

∑
x

∑
y(x−x̄(t))i(y−ȳ(t))jb(x, y, t),

which is a sequence of moments measured after translating each silhouette so
that its centroid is at the origin. The second central moments measure the spread
of silhouette pixels about the centroid, and can be used to derive the principal
axis of the silhouette shape.

Since we are summarizing each sequence of silhouettes with frieze patterns,
we are concerned only with moments that can be computed from row and column
projections. For example, consider silhouette area

m00(t) =
∑

x

∑
y

b(x, y, t) =
∑

x

(∑
y

b(x, y, t)

)
=
∑

x

FC(x, t)
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which can thus be computed from the frieze pattern as well as the original silhou-
ette sequence. Any moment sequence mij(t) or central moment sequence µij(t)
with either i or j (or both) equal to zero can be computed from frieze patterns
FC(t) and FR(t). In the present case, we will use m00(t), m10(t), m10(t), µ20(t),
and µ02(t). Note that the second central moment µ11(t) can not be determined
from the two frieze patterns, and we will therefore not be able to adjust skew or
principle axis rotation when aligning silhouette shapes using friezes alone.

We now present an algorithm for moment-based gait alignment. To a first
approximation, the temporal alignment between the two periodic gait sequences
can be represented as t′ = ρ t+φ, where ρ corrects for the relative stride frequency
and φ corrects for the relative phase difference (position within a stride). The
average stride frequency of each gait sequence is found by taking signal m00(t),
“whitening” it by subtracting its mean and dividing by its standard deviation,
then autocorrelating to find peaks occurring at a fundamental frequency. From
some viewpoints this is the stride frequency, and from others it is half the stride
frequency (e.g. a bipedal gait viewed from the side looks self-similar halfway
through a full stride). Whether the autocorrelation of m00(t) yields peaks at
half the stride frequency is viewpoint dependent, and can be calibrated using
the walking avatar model. Let f and f ′ denote the average frequencies of the two
gait sequences, computed from m00 of sequence 1 and m′

00 of sequence 2. Then
ρ = f ′/f . To determine the relative phase, we crop a subsequence of temporal
length f from m00(t), expand or contract it by ρ, then correlate with m′

00. The
average lag of prominent peaks of the correlation result determines the relative
phase. There may be a two-fold ambiguity in the phase from those viewpoints
for which the autocorrelation of m00 yields peaks at half the stride frequency.
For people close to the camera, the perspective effects are usually enough to
uniquely determine the phase. For people far away, however, it can be difficult
to distinguish between left foot forward or right foot forward on the basis of
silhouette moment information alone.

After determining the temporal mapping between t and t′, we now align the
frieze patterns spatially. Given the moments that we can compute from frieze
patterns, we determine the two translations and two scale factors that relate
(x, y) and (x′, y′) for corresponding time steps in the two sequences. Dropping
the time variables from the notation, this affine transformation is found to be

[
x′

y′

]
=



√

µ′
20 m00

µ20 m′
00

0

0
√

µ′
02 m00

µ02 m′
00


 [x − m10/m00

y − m01/m00

]
+
[

m′
10/m′

00
m′

01/m′
00

]

Whether to allow both scale factors to vary independently for each time step,
to enforce their ratio to be constant, to compute a temporal average for each, or
other variations depends on the application and on the amount of noise one can
expect in the underlying silhouette data.
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5.2 Applications of Gait Alignment

We illustrate the utility of moment-based frieze alignment with two applications.
The first involves comparing frieze tiles to classify a walking person’s identity
given a prior training set of gait data. The second application concerns matching
a walking humanoid model to gait silhouette data from a real person, in order
to locate specific body parts in each frame.

Human Identification. Given a dataset of gait sequences collected from one
camera viewpoint, we want to analyze a new sequence to determine which person
it is. Our approach is to create row and column silhouette projection friezes for
each sequence, warp them all temporally to a canonical frequency and phase
using the first half of the above alignment procedure, then cut out several tiles
corresponding to individual strides from each sequence. These aligned frieze
tiles are compared using normalized correlation, and subject classification is
performed by nearest neighbor matching on correlation scores. This approach
implicitly captures biometric shape cues such as body height/width ratio, body-
part proportions, stride length and amount of arm swing.

(a) (b) (c)

Fig. 8. Confusion matrices for nearest neighbor classification of 25 human subjects
using gait frieze pattern tiles. (a) Result from training and testing on non-overlapping
slow walking gait sequences. Classification rate is 100%. (b) Training on slow walk,
testing on fast walk. Classification rate is 100%. (c) Training on slow walk, testing on
walking carrying a ball (to inhibit arm swing). Classification rate is 81%. Blank rows
in (b) and (c) denote subjects for which there is no corresponding test data available.

To test this approach, we use the CMU MoBo database [9], which contains
motion sequences of 25 subjects walking on a treadmill. Each subject is recorded
performing four different types of walking: slow walk, fast walk, inclined walk,
and slow walk holding a ball (to inhibit arm swing). Figure 8 shows results
achieved for side views, for gait combinations slow-slow, slow-fast and slow-ball.
For the slow-slow experiment, the gallery consisted of tiles from the first five
seconds of each subject’s slow walk gait sequence, and the probe set consists of
tiles from the last five seconds of the same sequences. For both slow-fast and
slow-ball, the classification algorithm is trained on all tiles from the slow walk
sequences, and tested on all tiles from the other two gait sequences. We see that
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the results are quite good, even across different gait types. Although the match
similarity metric is simple normalized correlation, each tile succinctly represents
both spatial and temporal information from an entire stride subsequence.

Model-Based Body Part Analysis. Assume that we know the camera view-
point, and have rendered a walking humanoid model from that viewpoint. We
now have a sequence of model body silhouettes that can be matched against a
real gait sequence. After spatio-temporal gait alignment, the temporal pairing
of each frame of the data sequence with a corresponding model frame is known,
along with a four parameter affine transformation that aligns those two binary
silhouettes. Thus, for each frame, we can project the model silhouette contour
onto the data silhouette image. A sample frame showing an overlayed model con-
tour found through automatic gait sequence alignment is shown in Figure 9A.
The aligned model contour does not exactly coincide with the person’s body

(a) (b) (c) (d)

Fig. 9. (a) Moment-based alignment of model and data silhouettes. (b) Sampled points
from model and data silhouette contours. (c) Results of non-rigid thin-plate spline
alignment of the two sets of sample points. (d) Model silhouette warped by thin-plate
spline transform, overlayed on data silhouette.

outline due to a variety of factors, including differences in body shape and joint
angle kinematics between the avatar and the human being (e.g. body proportions
and amount of arm swing), as well as small differences in camera perspective
between the model and data viewpoints. However, note that the overall temporal
and spatial alignment is quite good, in the sense that the aligned model tells us
what body parts should be visible, and roughly where they should appear in the
image. More importantly, we know which body parts are occluded and should
not be considered for further analysis in this frame.

To illustrate what can potentially be done given this initial alignment be-
tween model and data silhouettes, we uniformly sample points from along each
silhouette contour and use a program for non-rigid point matching to compute
a thin-plate spline transformation between them [10]. Figure 9 shows, from left
to right, the initial model contour alignment, the two sampled point sets, the
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resulting point sets after warping non-rigidly by a thin-plate spline, and the
new warped model contour overlayed over the data silhouette. The agreement
between contours is now much improved. The success of the non-rigid point
matcher in this case is due in large part to the accuracy of the model silhouette
topology, as determined by moment-based alignment of gait frieze patterns. More
examples are shown in Figure 10. Model-based gait analysis using frieze patterns
offers an efficient alternative to kinematic body part tracking for determining
the location of individual body parts in each frame of a gait sequence.

(a) (b) (c)

Fig. 10. Spatially and temporally aligned model silhouette overlayed on original image
for three views taken simultaneously by synchronized cameras. We plan to use results
like these for further model-based body part analysis, ultimately leading to 3D body
reconstruction and motion capture of a walking human.

6 Summary

We have presented a periodic pattern representation for analyzing gait sequences.
Silhouette row and column projections are stacked over time to form frieze pat-
terns that can be analyzed using the mathematical theory of symmetry groups.
With the help of a walking humanoid avatar, we have studied the correlation be-
tween the seven frieze symmetry groups and gait viewing direction, and have de-
veloped practical techniques for classifying imperfect frieze patterns. Our future
work will explore methods for more efficient and accurate viewpoint estimation
from frieze patterns, and extend our mathematical methods for imperfect pat-
tern analysis to patterns that are periodic along two dimensions. We have also
presented a moment-based method for aligning frieze gait patterns both tempo-
rally and spatially. The method has applications in determining human identity
from gait biometrics, and it provides an efficient alternative to frame-by-frame
tracking approaches for locating and delineating body parts.
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