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Abstract. We address the problem of estimating the three-dimensional shape and
radiance of a surface in space from images obtained with different focal settings.
We pose the problem as an infinite-dimensional optimization and seek for the
global shape of the surface by numerically solving a partial differential equation
(PDE). Our method has the advantage of being global (so that regularization can
be imposed explicitly), efficient (we use level set methods to solve the PDE), and
geometrically correct (we do not assume a shift-invariant imaging model, and
therefore are not restricted to equifocal surfaces).

1 Introduction

Shape from defocus (SFD) consists of reconstructing the three-dimensional shape and
radiance (“texture”) of a scene from a number of images taken with different focal
settings. It is one of the classical problems in Computer Vision. This problem can be
posed as the inversion of certain integral equations that describe the imaging process.
Once an optimality criterion has been chosen, the problem can then be solved uniquely
under suitable conditions on the radiance and the shape of the scene [13].

What makes SFD possible is the fact that the image of a scene at a certain position
on the image plane (a “pixel”) depends upon the radiance on a region of the scene, as
well as on the shape of such a region. What makes SFD possible, however, also makes
it difficult: the image at a given pixel is obtained by integrating the (unknown) radiance
of the scene against an (unknown) kernel that depends upon its shape. Given values of
the integral at each pixel, one needs to estimate both the radiance and the kernel, which
is known to be a severely ill-posed inverse problem in its full generality.

Several approaches have been presented to address this problem, which is an instance
of “blind deblurring”, or “blind deconvolution” if one is willing to make the simplifying
assumption of shift-invariant kernels, as we describe in Section 1.1. Typically, the depth
of the scene is computed after approximating (locally) the radiance of the scene using
various classes of functions or filters.

In this paper, rather than estimating depth at each pixel, we formulate shape from de-
focus within a variational framework as the problem of estimating an infinite-dimensional
surface in space. We derive the optimality conditions and design a numerical algorithm
to efficiently reach a (local) minimum. We do not make the assumption that the imaging
kernel is shift-invariant – one that is patently violated at occluding boundaries – and
therefore we can easily handle complex shapes.
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1.1 Relation to Previous Work

In the literature of computer vision, a number of algorithms have been proposed to esti-
mate depth from defocus. The main assumption, common to most algorithms available
in the literature, is that the scene is locally approximated by a plane parallel to the image
plane [2,7,8,10,12,15,17,19,22,23,24,25,26]. This is called the equifocal assumption and
it allows describing the imaging process as a linear convolution; the price to pay, how-
ever, is a fundamental trade-off between robustness and precision. In order to increase
the reliability of the estimation, one would want to integrate over regions that are as large
as possible; on the other hand, for the equifocal assumption to be valid, one would want
regions to be as small as possible. In particular, at occluding boundaries the equifocal
assumption is violated altogether.

Several algorithms have been also proposed to solve the problem in the shift-variant
case as, for example, in [18]. [4] presents several methods for this purpose. The block-
variant blur methods correct the assumption of local equifocal imaging by taking into
account contributions from the neighboring regions. Other techniques are the complex
spectrogram and the Wigner distributions, which are applied in a space-frequency frame-
work.A successful approach employs a Markov random field model to obtain a maximum
a-posteriori estimate of the blurring parameters.

1.2 Main Contributions

The equifocal assumption impacts both the shape reconstruction and radiance restoration.
Shape estimation is affected by how well an equifocal plane approximates (locally)

the observed surface. This, in particular, implies that, within the surface, the best can-
didates will have equifocal tangent planes. It is clear that, unless the whole surface is
close to be a plane parallel to the image plane, these candidates will be isolated points or
curves. This implies that, in general, the estimation will be incorrect almost everywhere.
Also, notice that this behavior does not depend on the smoothness of the surface. For
example, if we consider a slanted plane, which is a smooth surface, any algorithm relying
on the assumption above will result in a biased shape estimation.

Since the equifocal assumption at a point holds in general only locally, it is always
associated with the choice of a domain around that point. Typically, such a domain is
a square window. This is also the domain where the radiance is reconstructed. Notice,
however, that when the chosen window is not in focus, it will receive contributions
from the radiance lying on the neighboring regions, which are not accounted for in the
imaging model. This implies that, regardless of the information carried by the texture
of the radiance, the restoration of regions with higher intensity gradient (energy) will be
favored over that of regions with lower intensity gradient.

These limitations motivate us to take a different approach. In this paper we forgo
the equifocal assumption by approximating the scene with tangent planes, so that we
can integrate visual information over the entire image. This results in superior resistance
to noise (as also noticed in [4]). We formulate the problem within a variational frame-
work, so that we can regularize the reconstruction process via imposing smoothness,
and we do not make explicit approximations of the shape; rather, we estimate shape via
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optimization on the infinite-dimensional space of smooth surfaces. We compute the nec-
essary optimality conditions and numerically implement a partial differential equation
to converge to a (local) minimum. Last, but not least, we achieve superior computa-
tional efficiency by estimating global shape, as opposed to depth at each pixel since the
radiance on overlapping regions does not need to be recomputed.

2 Optimal Shape from Defocus

Let P be a generic point on the surface s in the scene with coordinates X ∈ R
3. Suppose

that we are imaging the scene using a real aperture optical system with focal setting
η. By exploiting the additive nature of the energy transport phenomena, we model the
image formation process with an integral of the form

Iη(x) =
∫

s

hη(X, X̃)r(X̃)dA(X̃) (1)

where x = πη(X) ∈ R
2 is the projection of P on the image plane, which depends

on the geometry of the optics, and in particular on the focal setting η, and dA(X̃) is
the Euclidean area form of s at X̃. r is the radiance density of the scene and hη is the
imaging kernel, which depends on the geometry of the imaging device. hη satisfies the
normalization constraint, i.e. for any surface s∫

s

hη(X, X̃)dA(X̃) = 1. (2)

We are able to measure the intensity I(x) at each point x. Our goal is to reconstruct both
the radiance r and the shape s of the scene from a collection of images obtained with
different focal settings.

Suppose we haveL images with different settingsη1, . . . , ηL.We collect and organize
these images into an array I

.= [Iη1 , . . . , IηL
]T , and do the same for the respective

kernels h
.= [hη1 , . . . , hηL

]T . The right-hand side of equation (1) can also be interpreted
as the synthetic image generated by a given surface s radiating energy with a given
radiance density r. In this case we denote the collection of all such images with J

.=
[Jη1 , . . . , JηL

]T .

2.1 Cost Functional

Inverting the integral in equation (1) based on measurements I is an ill-posed problem.
Furthermore, often (1) is only an approximation of the model that generates the data. We
will therefore look for solutions that minimize a suitable optimization criterion. In [6]
Csiszár presents a derivation of “sensible” optimization criteria for the problem above,
and concludes that the only two that satisfy a set of consistency axioms are the L2-
norm – when the quantities at play are unconstrained – and the information-divergence
– when both the radiance and the kernel are constrained to be non-negative. The latter
criterion applies to our case since the radiance represents an energy density and the kernel
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represents surface area. Therefore, without further discussion, we adopt the information-
divergence (or I-divergence) as a cost functional for the discrepancy between measured
images I and the synthetic images J :

Ψ(I|J) =
∫

s

Φ(I(x)|J(x))dA (3)

where

Φ(I(x)|J(x)) = I(x) log
I(x)
J(x)

− I(x) + J(x) (4)

x = π(X), X belongs to the shape s. Notice that our cost functional (3) is defined
for the surface s, instead of the image domain as commonly seen in the literature. This
allows us to derive a geometric flow (see Section 2.2) to minimize the cost functional
with respect to the surface. To emphasize the dependency of J on the surface s and the
radiance r, we write, with an abuse of notation, J = J(s, r).

Hence, the problem of retrieving both shape s and radiance r from a collection of
images I

.= [Iu1 , . . . , IuL
]T can be formulated as that of finding a minimizer (ŝ, r̂) for

the I-divergence between I and J = J(s, r):

(ŝ, r̂) = arg min
(s,r)

Ψ
(
I|J(s, r)

)
. (5)

2.2 Radiance and Shape Estimation

The problem of minimizing the cost functional (3) involves solving a nonlinear opti-
mization problem for two unknowns, which are both infinite-dimensional. To our best
knowledge, there is no direct solution to minimize simultaneously both the shape s and
radiance r, so we choose to divide the optimization into two sub-problems through an
alternating minimization technique. Suppose we are given an initial guess for the radi-
ance r0 and the surface s0 (see Section 3.4 for more details on initialization), then the
algorithm can be written as:{

r̂k+1 = arg min
r

Ψ(I|J(ŝk, r))

ŝk+1 = arg min
s

Ψ(I|J(s, r̂k+1)).
(6)

The enabling step to use such an alternating minimization relies on having two iterations
that independently lower the value of the cost functional, so that their combination leads
toward the (local) minimum. For the first part we employ an iterative formula on the
radiance r, which is constrained to be strictly positive, obtained from the Kuhn-Tucker
conditions [11] on the cost functional. For the second part we use a gradient descent
flow implemented using level set methods [16].

Radiance Iteration. Any radiance r that minimizes the cost function must satisfy the
following necessary conditions:∫

s

h(X, X̃)I(π(X))∫
s
h(X, X̄)r(X̄)dA(X̄)

dA(X)
{

=
∫

s
h(X, X̃)dA(X) ∀ X̃ : r(X̃) > 0

≤ ∫
s
h(X, X̃)dA(X) ∀ X̃ : r(X̃) = 0

(7)
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These are the Kuhn-Tucker conditions, and since no closed-form solution is generally
available, we seek for an iterative procedure such that the radiance will converge to a
fixed point. Following Snyder et al. [21] we define the iteration as:

r̂k+1(X̃) = r̂k(X̃)
1∫

s
h(X, X̃)dA(X)

∫
s

h(X, X̃)I(π(X))∫
s
h(X, X̄)r̂k(X̄)dA(X̄)

dA(X). (8)

It can be shown that this iteration provably minimizes the chosen cost functional (with
respect to r) even when the iteration is computed without the correct shape s [10].

Gradient Descent Flow We minimize (3) with respect to the surface s by introducing
an auxiliary time variable t and deforming the surface s(t) .= {P (X, t) : X ∈ s} in time
t starting from an initial surface s(0). The evolution is governed by a partial differential
equation:

Pt = EL(X, s)N, (9)

where N is the unit normal to the surface at P and EL(X, s) = 0 is the Euler-Lagrange
equation of the cost function (3). Note that in equation (9) we let the surface deform
only along the normal direction, because the deforming in the tangent space will not
change the shape of the surface (what it changes is the parameterization). This PDE is
the gradient descent flow. When this flow converges to the steady state, i.e. Pt = 0, the
Euler-Lagrange equation is satisfied. And it can also be shown that the cost functional
monotonically decreases with respect to t (if a suitable initial shapeP (X, 0) is provided).
Therefore, we are guaranteed to reach a (local) minimum of the cost function.

Away from discontinuities, we approximate the surface locally around P (X, t) with
the tangent plane TP . Note that this approximation is fundamentally different from the
equifocal assumption, because the tangent plane is not necessarily parallel to the focal
plane. Hence the resulting kernel h is not shift-invariant. We assume that the radiance
r is defined on a neighborhood around s (see Section 3.3 for more details on how to
extend the radiance into R

3). A point Y in TP satisfies the identity NT Y = NT X,
where N is the unit normal vector of s at P . Let K be the transformation bringing local
coordinates (u, v) to points in TP , K : Ω ⊂ R

2 → TP . K can always be assumed to
take the following form as long as the third component of N is non-zero:

Y = K(X, u, v) = X + [u v k(u, v) ]T . (10)

Immediately we have

k(u, v) = −N1u + N2v

N3
, (11)

where N1, N2 and N3 are the components of N . Hence K explicitly depends on X and
N . Under these assumptions, the model image J can be computed as:

J(π(X)) =
∫

h (X,X + K (u, v)) r (X + K (u, v)) dudv. (12)

In [9], Faugeras and Keriven prove that the Euler-Lagrange equation for (3) takes
the following form:

EL(X, s) = HΦ−ΦX ·N−H(ΦN ·N)+Tr
(
(ΦXN )TP

+ dN ◦ (ΦNN )TP

)
= 0 (13)
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where Tr(·) denotes the trace; H is the mean curvature, and ΦX and ΦN stand for the
derivatives of Φ with respect to X and N respectively. ΦNN and ΦXN are the second
order derivatives of Φ and (ΦNN )TP

and (ΦXN )TP
are their restrictions to the tangent

plane TP . dN is the differential of the Gauss map of the surface, which involves the
second fundamental form. Writing the expressions explicitly, we have:

ΦX = log
(
I

J

)
IX +

(
1 − I

J

)
JX

ΦN =
(

1 − I

J

)
JN

IX = ∇I · ∂π(X)
∂X

JX =
∫

(hXr + h∇r) dudv

JN =
∫

∂K

∂N
(hXr + h∇r) dudv

Note that we have skipped the arguments of all the functions for ease of notation.
Similarly we can compute ΦXN and ΦNN .

Finally, the gradient descent flow of P (X, t) is:

Pt =
(
HΦ − ΦX · N − H(ΦN · N) + Tr

(
(ΦXN )TP

+ dN ◦ (ΦNN )TP

))
N. (14)

Since the flow (14) depends only on the first and second derivatives of Φ with respect
to X and N and geometric quantities, namely, H , N , dN , TP , the flow is independent
of any particular parameterization of the surface one chooses. In this sense, the flow
is intrinsic. Experimentally, we find that the following first-order approximation of the
flow (14) yields very similar results to those of the full second-order flow, while avoiding
the time-consuming computation of ΦXN and ΦNN :

Pt = (HΦ − ΦX · N − H(ΦN · N))N. (15)

3 Implementation

3.1 Level Set Iteration

We implement the flow (14) and (15) using level set methods. The level set methods were
originally developed by Osher and Sethian [16]. Since then, the methods have gained
popularity in various fields. Many fast numerical schemes have been proposed based on
it. For a complete account refer to [20]. The level set implementation of any geometric
flow begins by embedding the initial interface P (X, 0) as a level set of a scalar function
ψ0(X) which is then taken to be the initial condition for a function over time ψ(X, t):

ψ0 : R
3 → R, ψ : R

3 × R
+ → R, ψ(X, 0) = ψ0(X).

The choice of a particular level set is arbitrary but is typically taken to be zero. The key
point is that the interface is continuously embedded within the same fixed level set of ψ
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at all times. Thus, choosing the zero level set we have

ψ0(P (X, 0)) = 0, and ψ(P (X, t), t) = 0.

Differentiating with respect to t therefore yields:

ψt + ∇ψ · Pt = 0 (16)

an evolution equation for ψ (where ∇ψ = ψX) which evolves the interface P (X, t)
described implicitly by ψ(X, t) = 0 for all t.

3.2 Intersection with the Surface

In the radiance iteration it is necessary to determine which point on the surface s cor-
responds to which point on the image plane, in order to establish the blurring radius of
the kernel h. To be more specific, one needs to compute the intersection of a ray, which
depends on the imaging model, with the surface s. Obtaining explicitly all the possible
intersections with a discrete representation of the surface, for instance a triangulated
mesh, turns out to be a computationally expensive task. Rather, it is possible to do this
very efficiently by exploiting the advantage of an implicit formulation of the shape, i.e.
the level set function ψ or the signed distance function. Let the ray be defined by a
point X0 and a direction v. Let X be the intersection we are looking for. X satisfies the
following (nonlinear) ordinary differential equation:{

dX
dt = c(X) · v
X(0) = X0

(17)

where c(·) is a scalar speed function defined as follows

c(X) =
{

sign(ψ(X)) if |ψ(X)| > 1
ψ(X) if |ψ(X)| ≤ 1 . (18)

The rationale is that we move X according to c(·) so that X is lead towards the surface.
When X crosses the surface, c(X) will change sign accordingly, and therefore X will be
forced to move in the opposite direction. Hence, X will oscillate around the intersection
of the ray with the surface, reducing the overshoot at each step. Finally, we decide for
X to be the intersection when the oscillation remains within a fixed band around the
surface. This happens typically within a few iterations (3 to 5).

3.3 Radiance Extension

As mentioned in Section 2.2, we assume that the radiance is defined in a neighborhood
around the surface s. Since the radiance is originally defined only on the surface (or the
zero level set of ψ), we need to find a way to extend it. One way to do so, which is widely
used in the literature of applied mathematics [5,27], is to extend r such that it is constant
along the normals of s. This means that the extension should satisfy

∇r · ∇ψ = 0. (19)
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To solve the above equation we numerically search for the steady state solution of the
following PDE:

∂r

∂t
+ sign(ψ)(∇r · ∇ψ) = 0. (20)

Note that this keeps r on the zero level set of ψ (the surface s) unchanged. However, as a
result of this process, the data is now defined in a neighborhood of s. The equation (20)
can be efficiently solved using the fast marching technique [20].

3.4 Initialization

To start the alternating minimization one needs to have an initial guess for both radiance
and surface. Since we have no prior knowledge on either unknown, we proceed as
follows: choose one of the input images Iu1 , taken with focal setting u1; define the
initial surface as a plane parallel to the focal plane passing through the focal depth
u1; compute the radiance by back-projecting the image Iu1 onto the defined surface.
As we see in our experiments, such a choice is not crucial to the estimation process.
However, we also notice that a good initialization speeds up the minimization procedure
considerably. Therefore, during the first steps of our algorithm we perform the surface
estimation using a simple search of the minimum of the cost functional computed over a
small grid of possible depths, assuming the surface is locally a plane. This initial surface
is then used for the radiance iteration step after being smoothed. Later we substitute the
search step with the level set iteration and proceed with the minimization as described
in the previous sections.

4 Experiments

In this section we report some experiments with real images. Figure 1 shows two images
which are obtained by changing the position of the image plane along the optical axis,
and keeping the lens position fixed with respect to the scene. Moving the image plane
necessarily involves scaling the images, which we avoid by employing a telecentric
optical model (see [14]) and registering the two images using auxiliary patterns. Images
are taken with an 8-bit camera containing two independently moving CCDs (kindly
made available to us by S. K. Nayar). The near and far focused images in Figure 1 have
focal depths of approximately 0.9m and 1.1m respectively. The focal length is 35mm
and the lens aperture is F/8. The scene has been chosen so as to test the performance
of the proposed algorithm when the usual equifocal assumption does not hold. It can
be noticed that the scene presents significant depth variations and several occluding
boundaries. In particular, at the occluding boundaries of the statues and in the folds of
the skirts, the planar approximation fails. Furthermore, the blurring radii are up to 4 − 5
pixels, so that the window size would have to be at least of 10 pixels, which would not
allow for fine depth retrieval. In Figure 2 we show the corresponding surface evolution
from the level set iteration. Figure 3 shows three steps of the radiance iteration during
the alternating minimization procedure. Then, in Figure 4 we show the final estimate of
the shape coded in gray level (256 values), where darker means closer to the viewer and
brighter means farther from the viewer. Three views of the final shape which has been
texture-mapped with the final radiance are also shown.
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Fig. 1. Original images: the left image is near-focused (0.9m). The right image is far-focused
(1.1m). As it can be noticed, in both images the blurring is quite large, the shape is non-trivial and
presents several discontinuities due to occluding boundaries. The blurring radii for both images
are about 3-4 pixels.

Fig. 2. Shape evolution:Twelve snapshots of the shape evolution: the surface is gradually con-
verging to the final shape, starting from a plane placed at depth 0.9m.
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Fig. 3. Three snapshots from the radiance iteration. Top: Initial radiance obtained from the near
focused image; Middle: Radiance obtained after one iteration; Bottom: Radiance after three
steps. It can be noticed that the radiance is gradually sharpening after each iteration, as is
particularly visible in the background. The final radiance is sharp everywhere.
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Fig. 4. Top: depth rendered in gray levels (256 values) where darker means closer to the viewer
and brighter means farther from the viewer; middle, bottom-left and bottom-right : three views
of the final estimated shape, texture-mapped using the final estimated radiance.
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5 Conclusion

In estimating shape from defocus, the equifocal assumption is a well-known limitation. It
introduces several disruptions in the reconstruction process such as image overlapping,
windowing effects, edge bleeding, etc. We present a novel approach to shape from
defocus based on an alternating minimization algorithm which does not make use of
the equifocal assumption so as to overcome the above limitations. The radiance of the
scene is estimated through an iterative scheme which provably converges to a minimum,
while the shape is estimated using a gradient descent flow, which is then implemented
numerically using level set methods. We show that the combination of these two steps
leads to a (local) minimum of the discrepancy between the measured image and the
modeled image. Also, by implementing the shape estimation with level set methods, we
implicitly impose smoothness on the estimated shape in a completely automatic fashion.
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