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Abstract. In this paper, a Bayesian self-calibration approach is pro-
posed using sequential importance sampling (SIS). Given a set of feature
correspondences tracked through an image sequence, the joint posterior
distributions of both camera extrinsic and intrinsic parameters as well
as the scene structure are approximated by a set of samples and their
corresponding weights. The critical motion sequences are explicitly con-
sidered in the design of the algorithm. The probability of the existence of
the critical motion sequence is inferred from the sample and weight set
obtained from the SIS procedure. No initial guess for the calibration pa-
rameters is required. The proposed approach has been extensively tested
on both synthetic and real image sequences and satisfactory performance
has been observed.

1 Introduction

Automatic retrieval of the intrinsic parameters of a (relatively) moving camera
from an observed image sequence has been of great interest to researchers in com-
puter vision since the early 1990s. Subsequent to the pioneering work on camera
self-calibration reported by Maybank and Faugeras [1,2], numerous algorithms
have been proposed to calibrate cameras with constant (see [3] for a review)
or varying intrinsic parameters [4,5,6,7]. Although significant efforts have been
made to solve the self-calibration problem, several challenges still remain: sen-
sitivity to observation noise, initialization of the algorithms, and processing of
critical motion sequences (CMS) [8,9,10,11]. The first two challenges are common
difficulties arising in nonlinear problems such as the camera self-calibration prob-
lem. In some situations, these two factors interact with each other and make the
problem more complex. For example, large observation noise might create more
local minima (or maxima) and can easily trap iterative optimization methods
such as Levenberg-Marquardt and steepest-descent algorithms in local minima,
preventing them from converging to the global optimal solution. Hence a good
initial guess of the calibration parameters is needed.
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In addition to the difficulties due to noise sensitivity and initialization, the
existence of CMSs makes camera self-calibration even more difficult in prac-
tice. CMSs are sequences of camera motions resulting in inherent ambiguities
in camera self-calibration and therefore ambiguities in uncalibrated Euclidean
reconstruction [8]. Any practical self-calibration method must take into account
the processing of CMSs since CMSs frequently occur in applications. Previous
research [9] has shown that ambiguous Euclidean reconstructions from a CMS
are conjugated and hypothesis verification can be used to detect and determine
the type of CMS. Nevertheless, in the presence of noise, some camera motion
sequences which are not CMSs can also result in ambiguous Euclidean recon-
struction. Moreover, it has been recently reported in [12] that camera motion
sequences “close” to CMSs in the sense of producing ambiguous Euclidean re-
constructions can be far away from any type of CMSs in the motion sequence
space in the sense of L2 norm. If hypothesis verification is applied to this kind
of sequence, it will be classified as one type of CMSs, and the true solution of
the motion sequence, which is actually outside of CMSs, will be lost. Therefore,
hypothesis verification is not sufficient in these circumstances.

In this paper, we focus on the main problem of self-calibration: estimation of
the field of view (FOV) with all the other intrinsic parameters known. The un-
known FOV can be either constant or varying throughout the image sequence.
We develop a self-calibration algorithm, which is capable of processing CMS
and yielding reasonable calibration estimates without any specific requirements
of initialization. The new approach is developed based on the sequential impor-
tance sampling (SIS) technique. The SIS procedure is recently introduced by [13]
to estimate the state parameters of a non-linear/non-Gaussian dynamic system.
In SIS, the joint posterior distribution of the state parameters given the obser-
vations is approximated by a set of samples and their related weights. The SIS
procedure has been used for solving the structure from motion (SfM) problem.
An SIS-based SfM algorithm has been developed in [14] and it was shown to
be robust to feature tracking errors and to be able to handle motion/structure
ambiguities. However, in that case, all the intrinsic parameters of the camera
are assumed to be given. In the paper, we still use the SIS method to attack
the camera self-calibration problem because of its capability of solving problems
involving non-linear systems.

2 Theoretical Background

2.1 Self-Calibration of a Moving Camera

In many practical situations, the calibration of the camera used to capture the
sequences is not available, i.e. the intrinsic parameters of the camera such as the
field of view (or the focal length relative to the film size), the position of principal
point, skew factor and lens distortion are not known beforehand. To reconstruct
accurate 3D Euclidean structure and motion, these intrinsic parameters have to
be found.

Assume that a perspective projection camera model is considered and the
lens distortion can be ignored or is already known, the following calibration
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matrix is of interest:

A =


fku fku cot θ u0

0 fkv

sin θ v0
0 0 1


 (1)

where f is the focal length of the camera in world coordinate units. ku and
kv are the lengths in pixels of the unit length of the world coordinate system
in the vertical and horizontal directions, respectively. u0 and v0 are the pixel
coordinates of the principal point in the image plane. θ is the angle between the
vertical and horizontal axes in the image plane. Usually it is very close to π/2.
Note that by writing the calibration matrix in the above form, we have moved
the image plane to the front of the lens and have aligned the coordinate axes in
the image plane with those in the world coordinate system.

A 3D point W has projection m in the image plane. Following the notation
of Faugeras in [15], let w = [X,Y, Z]T be the world coordinates of W and
m = [u, v]t be the pixel coordinates of its projection m. Let the homogeneous
coordinates of any vector v = [v1, v2, · · · , vn]T be ṽ = [v1, v2, · · · , vn, 1]T . Hence,
in the homogeneous coordinate system, we have w̃ = [X,Y, Z, 1]T and m̃ =
[u, v, 1]T . m̃ and w̃ are related by a 3 × 4 projection matrix P̃

λm̃ = P̃w̃ (2)

where λ is called projective depth and does not play any role in the location of
m in the image plane. Hence (2) is often rewritten as

m̃ � P̃w̃ (3)

by ignoring λ, where the symbol � means that the two quantities are equal up
to a scale factor. The projection matrix P̃ can be decomposed as

P̃ = A[R| −Rt] (4)

where A is the calibration matrix and (R, t) is the displacement of the camera,
containing both rotation and translation.

The problem of self-calibration is to estimate the calibration matrixA purely
from an observed image sequence without any knowledge or control of the motion
of the camera. In this paper, we will focus on the estimation of an unknown
constant or varying FOV when all the other intrinsic parameters are given.
We also assume that the camera moves continuously and takes many camera
positions.

2.2 Critical Motion Sequences

In the research on solving the camera self-calibration problem, it has been ob-
served that not all camera motion sequences lead to unique camera intrinsic
parameters and 3D Euclidean scene reconstruction. Camera motion sequences
that produce ambiguous calibrations are called critical motion sequences.

Identification of CMSs with various assumptions on the calibration has been
systematically investigated in the literature. In [7], Sturm listed all CMSs when
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the calibration parameters are constant. The CMSs for known calibration pa-
rameters, except for a varying FOV, can be found in [11]. Kahl also discussed
CMSs when some intrinsic parameters can vary [10]. Other references on iden-
tification of CMSs can been found in [16,17,18]. Recall that we assume that the
camera moves continuously and takes many camera positions. According to [10,
11], there are three types of CMSs for varying FOV that contain many camera
positions:

– arbitrary translation with arbitrary rotation only about the optical axis
– translation along an ellipse or a hyperbola with the optical axis tangent to

the ellipse or hyperbola
– translation along the optical axis with arbitrary rotation about the camera

centers (at most two)

When the FOV is constant, only the first type of motion in the above CMS
list is critical when many camera positions are present [8,11]. When the camera
motion is not continuous, there are more critical motion sequences existing for
the self-calibration of a camera with only an unknown FOV. Analyzing CMSs
related to discontinuously moving cameras is beyond the scope this paper.

We mainly deal with the self-calibration ambiguities caused by the first kind
of CMSs, since this kind of motion sequences are frequently encountered in prac-
tice. Because camera motion includes translation and rotation, the assumption
of continuous camera motion implies that the rotation of the camera is also
continuous if the camera rotates. Since the third type of CMSs contain at most
two rotations about the camera centers, it rarely happens to a continuously ro-
tating camera. Although the second type of CMSs is not explicitly considered
in this paper, we have shown by experiments that it is possible to remove the
self-calibration ambiguities caused by the type of CMSs if we assume that the
3D scene is rigid and non-planar.

To handle the first type of CMSs, we need to find out the transformations
between true and false Euclidean reconstructions. Since the false Euclidean re-
construction is actually a projective reconstruction, it is different from the true
Euclidean reconstruction by a projective transformation, TΦ [19].

Assume that a false Euclidean reconstruction has been found. Let ∆f (0)

be the ratio of the focal lengths of true and false Euclidean reconstructions
in the initial time instant, i.e. ∆f (0) = f(0)

e

f
(0)
Φ

where f (0)
e and f

(0)
Φ are the true

and false focal lengths at the initial time instant, respectively. Let tΦ and te
be the translation vectors associated with the false and true reconstructions,
respectively. Let (αe, βe) and (αΦ, βΦ) be the translation direction angles as-
sociated with te and tΦ. The unit vector in the translation direction is given
by (sin(α) cos(β), sin(α) sin(β), cos(α))T . At any time instant, the true and false
projection matrices are related by

P̃e = P̃ΦTΦ = AΦ[R| −RtΦ]
[
T11 03

0T3 κ

]
= AΦ[RT11| − κRtΦ] (5)
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where

T11 =


∆f (0) 0 0

0 ∆f (0) 0
0 0 1


 and R =


 cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 (6)

and θ is the rotation angle about the optical axis. Hence RT11 = T11R and (5)
can be written as

P̃e = AΦ[T11R| − κRtΦ] = AΦT11[R| −R(κRTT−1
11 RtΦ)] (7)

Hence,
te = κRTT−1

11 RtΦ = κT−1
11 tΦ (8)

After some straightforward algebra, we have

αe = arccos
∆f cosαΦ√

(∆f cosαΦ)2 + sin2 αΦ

, βe = βΦ (9)

Furthermore, the resulting rotation angles are all the same for different am-
biguous reconstructions since the rotation matrix does not change when the
false focal length is replaced by the true one. If the focal length is free to vary,
the relationship between the true and false focal lengths at time i is given by
f
(i)
e = ∆f (0)f

(i)
Φ .

Regarding the transformations among the 3D structures, we have the follow-
ing relationship.

w̃e = T−1
Φ w̃Φ =

[
T−1

11 03

0T
3 κ−1

] [
SΦ

1

]
=
[
T−1

11 wΦ

κ−1

]
and we = κT−1

11 wΦ (10)

The transformations of motion and scene structure reconstructions reveal the
relationships among different reconstructions. It will be employed in the design
of a novel self-calibration algorithm in the next section.

2.3 Sequential Importance Sampling

The SIS method has been recently proposed for approximating the posterior
distribution of the state parameters of a dynamic system [13]. Usually, the state
space model of a dynamic system is described by observation and state equa-
tions. Denote the measurement by yt and the state parameter by xt. The ob-
servation equation essentially provides ft(yt|xt), the conditional distribution of
the observation given the state. Similarly, the state equation gives qt(xt+1|xt),
the Markov transition distribution from time t to time t + 1. Let Xt = {xi}ti=1
and Yt = {yi}ti=1. Samples drawn from πt(Xt) = P (Xt|Yt), the posterior distri-
bution of the states given all the available observations up to t, are needed to
compute the ensemble statistics such as mean or modes. However, to directly
draw samples from a complex, high-dimensional distribution is very difficult in
practice. An alternative way to the approximation of the posterior distribution
is by a set of samples called properly weighted samples and their corresponding
weights [13].
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Suppose {X (j)
t }mj=1 is a set of random samples properly weighted by the set of

weights {w(j)
t }mj=1 with respect to πt and let gt+1 be a trial distribution. Then the

recursive SIS procedure to obtain the samples and weights properly weighting
πt+1 is as follows.

SIS steps: for j = 1, · · · ,m,
(A) Draw Xt+1 = x(j)

t+1 from gt+1(xt+1|X (j)
t ). Attach x(j)

t+1 to form X (j)
t+1 =

(X (j)
t ,x(j)

t+1).
(B) Compute the “incremental weight” ut+1 by

u
(j)
t+1 =

πt+1(X (j)
t+1)

πt(X (j)
t )gt+1(xt+1|X (j)

t )

and let w(j)
t+1 = u

(j)
t+1w

(j)
t .

It can be shown [13] that {X (j)
t+1, w

(j)
t+1}mj=1 is properly weighted with respect

to πt+1. Hence, the above SIS steps can be applied recursively to get the properly
weighted set for any future time instant when the corresponding observations
are available. The choice of the trial distribution gt+1 is very crucial in the SIS
procedure since it directly affects the efficiency of the proposed SIS method.
In our approach, we used gt+1(xt+1|Xt) = qt+1(xt+1|xt). It can be shown that
in this case ut+1 ∝ f(yt+1|xt+1), which is the conditional probability density
function of the observations at t + 1 given the state sample xt+1 and it is also
known as the likelihood function of xt+1 since the observations are fixed.

3 Bayesian Self-Calibration Using Sequential Importance
Sampling

In this section, we design a camera self-calibration algorithm assuming that the
camera has an unknown constant or varying focal length or equivalently FOV
with all the other parameters given. Our goal is to find an algorithm that does not
have any specific requirement for initialization and is able to detect and handle
the CMSs. The performance of the algorithm should degrade gracefully as the
noise level in the observations increases. SIS is used as the main computational
framework because of its capability for solving problems involving non-linear
systems.

3.1 Parameterization of the Camera Motion

Before discussing the parameterization of sensor motion, we introduce two 3D
Euclidean coordinate systems used in our research. One coordinate system is
attached to the camera and uses the center of projection of the camera as its
origin. It is denoted by C. The Z axis of C is along the optical axis of the camera,
with the positive half-axis in the camera looking direction. The X-Y plane of
C is perpendicular to the Z axis with the X and Y axes parallel to the borders
of the image plane. Also, the X-Y -Z axes of C satisfy the right-hand rule. The
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other coordinate system is a world inertial frame, denoted by I. I is fixed on the
ground. The coordinate axes of I are configured in such a way that initially, I
and C coincide. When the camera moves, C travels with the camera and I stays
at the initial position.

Ψ

ZC

CX

YCΨ
X

Y

x

y

C

C

CZ

O

Ψz
O

( α , β )

γ

γ 0

Fig. 1. Imaging model of a moving camera with an unknown FOV

Since the focal length (or FOV) is unknown, γ is used to represent the un-
known focal length (or FOV). It is noted that the ranges of focal length and
FOV are [0,∞] and [0, π], respectively. Since a sampling based procedure is to
be used, a naturally bounded variable is preferred. Hence, instead of focal length,
the vertical FOV of the camera is to be estimated in the algorithm. Let γ denote
the unknown FOV. Based on the above discussion, the state vector describing
both extrinsic (motion) and intrinsic (FOV) parameters could be defined as

x = (ψx, ψy, ψz, α, β, γ). (11)

Here (ψx, ψy, ψz) are the rotation angles of the camera about the coordinate axes
of the inertial frame I and (α, β) are the elevation and azimuth angles of the
camera translation direction, measured in the world system I. γ is the FOV of
the camera. For simplicity, we still call x, the motion parameter: remember that
the FOV is now included in x. If the FOV is free to change, one more component
is added to the motion parameters.

x = (ψx, ψy, ψz, α, β, γ0, γ) (12)

where γ0 represents the FOV of the camera at the initial time instant and γ
denotes the FOV at other time instants.

State space model. Given the above motion parameterization, a state space
model can be used to describe the behavior of a moving camera.

xt+1 = xt + nx and yt = Proj(xt,St) + ny (13)

where xt is the state vector and yt is the observation at time t. Proj(·) denotes
the perspective projection, a function of camera motion xt and scene structure
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St. nx denotes the dynamic noise in the system, describing the time-varying
property of the state vector. If no prior knowledge about motion is available, a
random walk will be a suitable alternative for modeling the camera motion.

3.2 Processing Critical Motion Sequences

If a motion sequence is critical, the self-calibration algorithm should be able to
detect the presence of CMSs. In our approach, CMS detection can be modeled as
a hypothesis testing problem and the posterior probability of the non-criticalness
of the motion sequence can be estimated. In the hypothesis testing problem, a
binary variable IC is introduced to indicate the presence of a CMS:

IC =
{
1, the motion sequence is critical
0, the motion sequence is not critical (14)

This hypothesis testing problem can be naturally embedded in the SIS pro-
cedure. In the current case of interest, only one class of CMS exists: motion
sequences that do not contain any rotation about an axis parallel to the image
plane. Therefore, if the motion sequence is critical, motion samples with rotation
only about the optical axis are enough to interpret the trajectories of the feature
points. On the other hand, if the motion sequence is not critical, motion samples
with rotation about axes parallel to the image plane have to be used to interpret
the feature trajectories. Hence, two sets of samples are involved in the SIS proce-
dure. The set of samples with only rotation about the optical axis is denoted by
XC since it can explain the feature trajectories in the image plane introduced by
the CMS. The other set of samples is denoted by XG because it will be used to
explain the feature trajectories caused by general motion sequences other than
CMSs. In the initialization stage of SIS, samples are generated in these two sets.
Because no knowledge of the criticalness of the motion sequence is available at
the beginning, equal numbers of samples are used in the two sets. The weights
of the samples can be computed directly using the formula derived in [14].

During the motion of the camera, the criticalness of the motion sequence
can change. A critical motion sequence up to time t can become non-critical
at time t + 1 if rotation about axes parallel to the image plane is present at
time t + 1. However, a non-critical motion sequence can never become critical.
If the indicator IC is viewed as the state of a dynamic system, this dynamic
system can be characterized by a Markov chain. If the probability that a critical
motion sequence becomes non-critical at time t is PC→G(t), the state transition
probabilities of the Markov chain are:


P (IC(t+ 1) = 0|IC(t) = 1) = PC→G(t)
P (IC(t+ 1) = 1|IC(t) = 1) = 1 − PC→G(t)
P (IC(t+ 1) = 0|IC(t) = 0) = 1
P (IC(t+ 1) = 1|IC(t) = 0) = 0

(15)

To take this fact into account in SIS, when drawing new samples for time t+ 1
from samples for time t, the samples in XC need to be transferred to XG with
probability PC→G(t). This can be done by adding rotation components about
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axes parallel to the image plane, which can be drawn from a trial distribution.
PC→G(t) is unknown and no knowledge about it is available. Intuitively, 0.5 could
be a good value for PC→G(t) for all t since it gives the maximum uncertainty
to the occurrence of the transformation of the motion sequence from critical to
non-critical.

In the SIS procedure, the sample-weight set describes the posterior distribu-
tion of the motion parameters:

P (Xt|Yt) =
∑
IC

P (Xt, IC |Yt)

= P (Xt|IC = 1,Yt)P (IC = 1|Yt) + P (Xt|IC = 0,Yt)P (IC = 0|Yt)
The samples in XG are properly weighted by their corresponding weights with
respect to P (Xt|IC = 0,Yt), the posterior distribution of the motion parameters
conditional on the motion sequence is not critical. The posterior probability of
the presence of the critical motion sequence, πt(IC = 1) = P (IC = 1|Yt), can be
obtained using the following theorem.

Theorem 1. Assume that {XC ,XG} is properly weighted by {WC ,WG} with re-
spect to P (Xt|Yt). XC is the sample set related to the hypothesis that a critical
motion sequence is present and WC is the associated weight set. Then πt(IC = 1),
the posterior probability of criticalness of the given motion sequence, is given by

πt(IC = 1) = lim
m→∞

∑
wc∈WC wc∑

wc∈WC wc +
∑
wg∈WG wg

(16)

where m is the number of samples.

The proof of the theorem is very straightforward and it is omitted due to the
page limitation.

3.3 The Algorithm

Based on the discussion in the last section, a Bayesian camera self-calibration
algorithm using SIS can be designed. Before the algorithm is presented, one more
issue needs to be addressed.

Samples in XC are to be transferred to XG with a certain probability. Let the
sample-weight pairs before this transfer be SC = (XC ,WC) and SG = (XG ,WG).
The transfer is done by reducing the weights of the samples in SC to half of the
original values such that the number of samples belonging to SC after resampling
has been decreased by half . Then, the samples of SC are put into SG with the
remaining half weights. Therefore, the new sample-weight sets after the transfer
step become

S̃C = (XC ,
WC
2

) , S̃G = ({XC ,XG}, {WC
2
,WG}) (17)

After the transfer of samples, resampling is done to the samples in S̃C to prepare
samples for the next time instant. For samples in S̃G , two procedures will be
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utilized. Resampling is applied to the samples from SG . A crucial procedure,
called uniforming, is applied to the samples transferred from SC to S̃G . As we
mentioned in the last section, due to the fact that only a finite number of samples
are used to describe the posterior distribution of the parameters, the empirical
distribution of the FOV is not uniform. Uniforming is used to explore the fact
that the posterior distribution of the FOV should be uniform in [0, π] if the
motion sequence is critical no matter how the FOV is distributed according
to the empirical samples and weights. Let XC→G = {x(j)}kj=1 be the samples

transferred with weights WC→G = {w(j)

2 }kj=1 in S̃G . These sample-weight pairs
are denoted by SC→G = (XC→G ,WC→G) = (XC , WC

2 ). Assume that m samples
are used in the SIS procedure. Uniforming applied to SC→G can be done in the
following way:

Uniforming. For j = 1, · · · , k,
(A) Uniformly draw Γ = {γ(i)}nj

i=1, samples of FOV from [0, π] where

nj =
mw(j)

2(
∑
wc∈WC wc +

∑
wg∈WG wg)

For i = 1, · · · nj
(B) Compute the associated focal length in units of the height of the film:

f (i) = (2 tan γ(i)

2 )−1. Motion sample x(j) is used as a seed to produce more
samples. Let the focal length associated with the FOV in x(j) be f (0). By using
the transformation among ambiguous motion estimates derived in section 2, the
camera motion parameters related to the current focal length f (i) can be found
directly using (9). A new motion sample can be formed as

x(i)
j = (0, 0, Ψz, α

(i)
j , β, γ(i)) (18)

where Ψz and β are the corresponding components in x(j). Hence, X (j)
U =

{x(i)
j }nj

i=1 are the new samples obtained from seed x(j).
If the focal length is free to vary, the associated sample value of γ0 needs to

be changed properly. The new samples can be written as

x(i)
j = (0, 0, Ψz, α

(i)
j , β, γ

(i)
0 , γ(i)) (19)

where

γ
(i)
0 = 2arctan

f
(0)
0 f (0)

f (i) , f (0)
0 =

(
2 tan

γ
(0)
0

2

)−1

(20)

and γ(0)
0 is the value of FOV in the seed sample x(j).

(C) {X (j)
U }kj=1 contains the samples by uniforming the sample-weight pair

SC→G .
Based on the above discussion, the SIS procedure for Bayesian self-calibration

proceeds as follows.
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Bayesian Camera Self-Calibration Using SIS

1. Initialization. Draw samples of the motion parameters {x(j)
0 }mj=1 from the

initial distribution π0. π0 describes the distribution of the motion parameters
x0 before the camera moves. The absence of camera motion does not imply
that x0 = 0. Although the rotation angle vector ψ and the translational
vector are zero, the translational angles can be uniformly distributed. Hence,
in {x(j)

0 }, the components of the rotation angles are all set to zero and the
samples of α, β and γ (and γ0 if the focal length is free to change) are drawn
from the uniform distribution in [0, π], [0, 2π] and [0, π], respectively. Since all
the samples are drawn from the exact posterior distributions, equal weights
are assigned to these samples. Since at the moment, rotation angles are all
zeros, all the current samples belong to XC and XG contains no samples.
For t = 1, · · · , τ :

2. Sample transfer. Two pairs of sample-weight sets are available: (XC ,WC)
and (XG ,WG). Transfer all samples in XC to XG , and assign half weight to
each sample. Denote the sample-weight pair transferred from SC to SG by
SC→G = (XC , WC

2 ). The new sample-weight pairs after sample transfer are
S̃C = (XC , 2WC

2 ) and S̃G = {SC→G ,SG} = ({XC ,XG}, {WC
2 ,WG}).

3. Resampling and uniforming. Resample the samples in S̃C according to
their associated weights. X̂C is used to represent the set containing the re-
sulting samples. For samples in S̃G , uniforming and resampling are applied to
samples belonging to different sets. Uniforming is performed on the samples
in SC→G . The samples originally in XG are then resampled. The sample set
produced by these two procedures is denoted by X̂G . Since resampling and
uniforming have been executed, all the samples in X̂C and X̂G have equal
weights. Let {x̂(j)

t−1}mj=1 denote the current samples.
4. Sample generation.

For j = 1, · · · ,m:
Draw x(j)

t from the distributions of x̂jt−1 + nx. The following distributions
can be used for the dynamic noises in the translation direction angles. nκ ∼
U(−δκ, δκ), κ ∈ {α, β} where δα and δβ can be chosen as positive numbers.
The distributions of the dynamic noises in the rotation angles depend on
x̂jt−1. If x̂

j
t−1 is in X̂C , disturbances are only added to the Z component of

the rotation angles with nψz ∼ N (0, σz). Otherwise, dynamic disturbances
can be added to all the three components of the rotation angles and the
associated distributions can be nψι ∼ N (0, σι), ι ∈ {x, y, z} where δx, δy and
δz can also be chosen as some small positive numbers.

5. Weight computation. Compute the weights of the samples,{w(j)
t } using

the weight computation formulas derived in [14] (See equations (5), (6) and
(7) in [14] for details). Notice that in this case, the computation of the posi-
tions of terminal points of the epipolar line l involves not only the extrinsic
parameters of the camera motion, but also γ, the field of view. The resulting
samples and their corresponding weights (X (j)

t , w
(j)
t ) are properly weighted

with respect to πt(Xt). If more image frames are available, go back to step 2.
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Inference of Depth Distribution. By using the SIS procedure proposed above,
the posterior distribution of the camera extrinsic and intrinsic parameters can
be approximately described by the resulting samples and their corresponding
weights. The inference of the posterior distribution of the depths, πt(zt), can be
accomplished as follows. In [14], two algorithms are presented to find the poste-
rior distribution of feature depths when all the camera calibration parameters are
known. The discussion about the inference of πt(zt) based on the results obtained
on πt(Xt) is still valid here since nothing has changed except that the unknown
FOV γ is included in the motion vector x. Hence, the posterior distribution
of the depths can be directly inferred using the samples and weights properly
weighted with respect to the posterior motion (both extrinsic and intrinsic) dis-
tribution. Both algorithms developed in [14] can be used to find samples and
weights properly weighted with respect to the posterior distribution of feature
depths in this case except that the known constant value focal length used in
[14] needs to be replaced by the values of FOV in motion samples.

4 Experimental Results and Performance Analysis

By using the proposed algorithm for Bayesian self-calibration, constant or vary-
ing FOV can be recovered and furthermore, the motion of the camera and the
scene structure can be reconstructed.

4.1 Constant Field of View

Two experimental results using synthetic image sequences are presented first.
The synthetic feature trajectories are corrupted by additive white Gaussian noise
(AWGN). In the first experiment, the standard deviation (STD) of the AWGN
is 0.5 pixel. We consider this case as a nominal case.

A Nominal Case Study. In this case, rotation about the X axis is present, hence
the motion sequence is not critical.
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Fig. 2. (a) shows the probability of non-criticalness of the motion sequence in the
nominal case and (b) shows the MMSE estimates of the feature depths.

Figure 2 (a) shows the probability of the non-criticalness of the motion se-
quence. The horizontal axis of Figure 2 (a) is the time axis and the corresponding
value on the vertical axis indicates the probability of the non-criticalness of the
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motion sequence up to that time. It can be seen that this probability starts with
a relatively low value at the beginning of the sequence. The reason is as follows.
At the beginning of the sequence, the rotation about the X axis is small. Due to
the observation noise in feature correspondences, the sequence looks like a criti-
cal motion sequence. Along with the increase in the rotation angle about the X
axis, the probability of non-criticalness of the sequence approaches 1 eventually.
This indicates that this motion sequence is not critical.
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Fig. 3. Camera motion and calibration distributions in the nominal case

The motion distributions are shown in Figure 3. The ground-truths (including
FOV) are indicated by the bold solid lines in Figure 3. Figures (a,b,c) show the
distributions of the rotational angles ψx, ψy and ψz, respectively. The following
two figures give the distributions of the translational angles α and β. In each
figure, the distribution of the corresponding motion parameter at each time
instant is shown from the top of the figure to the bottom. (ψx, ψy, ψz) are in the
range [−π, π]. α is in [0, π] and β in [0, 2π]. All the other motion distribution
results in this paper can be interpreted in the same way. We can see that the
resulting posterior distributions of motion parameters have peaks very close
to the ground-truths. Figure 3(f) shows the ground-truths and the posterior
distributions of the field of view. Figure 2 (b) shows the ground-truths and the
minimum mean square error (MMSE) estimates of the depths of the feature
points. Since they are very close, it is difficult to distinguish one from the other.

A Critical Motion Sequence. Critical motion sequences were also generated to
test the proposed algorithm. One example is included here. In this example, the
virtual camera only translates along the horizontal axis without any rotation.

Figure 4 (a) shows the probability of non-criticalness of this motion sequence.
It can be seen that the probability of non-criticalness of the camera stays at zero
throughout the sequence, indicating that this motion sequence is critical. The
ground-truth and posterior distribution of the FOV are shown in Figure 4 (b)
and it can be seen that the FOV is nearly uniformly distributed.
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Fig. 4. (a) shows the posterior probability of non-criticalness of the motion sequence.
Since in the experiment the motion is pure translation, it can be seen that this prob-
ability is very close to zero, indicating that the motion sequence is critical. and (b)
is the distribution of the FOV and it can be seen that the FOV is nearly uniformly
distributed.

4.2 Freely Varying Field of View

Now let us look at examples when the FOV of the camera can freely vary.

Circular Camera Motion. We let the virtual camera move along a circle. At the
same time, the field of view of the camera is enlarged.

Figure 5 (a) - (g) shows the ground-truths and posterior distributions of the
motion parameters. Figure 5 (h) shows the probability of non-criticalness of the
motion sequence. It can be seen that this probability increases to 1 when more
image frames are used and the rotation angles about the X axis increases. The
MMSE estimates of depths are shown in Figure 5 (i).

Elliptical Camera Motion. In this example, we tested the proposed algorithm
using an image sequence produced by a virtual camera moving along an ellipse
with the optical axis of the camera tangent to the ellipse. Recall that this type
of motion sequence was found critical [10,11], when the FOV can varying. The
feature points are spread randomly in the 3D space and they are not on a plane.
The feature correspondences are corrupted by AWGN with one-pixel of STD. By
using the proposed approach, the posterior motion distribution of the camera
can be approximated by a set of samples and their weights.

Figure 6 shows the refined estimates after applying the Levenberg-Marquardt
non-linear optimization, using the result from the SIS algorithm as an initial
guess. In Figure 6, the horizontal axis of each plot is the time axis. The solid
lines show the ground-truths of the motion and calibration parameters of the
camera and the dashed lines are the estimates of the parameters. It can be seen
that the final results are very close to the ground-truths. Hence, it has been
experimentally shown that it is possible to remove the calibration ambiguity
introduced by the motion along an ellipse, which is the second type of CMS
mentioned in Section 2.2.

3D Face Modeling Using Uncalibrated Camera. In this example, an image se-
quence containing 17 frames was captured using SunCamera II, which is an
adjustable CCD color camera. The vertical FOV of SunCamera II is 33 degrees,
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Fig. 5. The ground-truths and the posterior distributions of the camera motion and
calibration parameters in the case of circular motion with varying focal length. (a)-(c)
are the plots for camera rotation angles. (d) and (e) are the plots for camera translation
direction angles. (f) is for the FOV of the camera at the initial time instance. (g)
is for the varying FOV at different time instances. (h) shows the probability of non-
criticalness of the motion sequence and (i) is the MMSE estimate of the feature depths.

which is equal to 0.576 radian. By using the proposed Bayesian self-calibration
algorithm, the FOV of the camera can be accurately estimated and a 3D face
model can be reconstructed. The MMSE estimate of the vertical fov is 0.5804
radian, which is very close to the ground-truth.

In Figure 7, (a) shows the texture map of this face sequence and (b)-(d) are
the reconstructed 3D face model viewed from different angles.

5 Conclusions

In this paper, we have presented an algorithm for camera self-calibration using
SIS. Our efforts have concentrated on the main problem of self-calibration: es-
timation of the FOV with all the other intrinsic parameters known, where the
unknown FOV can be either constant or varying throughout the image sequence.
The proposed algorithm is capable of processing the CMSs and quasi-CMSs
and it does not have any specific requirements for initialization. The proposed
method has also been tested extensively and satisfactory experimental results
are obtained. A future research direction could be the extension of the algorithm
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Fig. 6. The ground-truths and the estimates of the camera motion, calibration and
structure parameters after non-linear optimization in the case of elliptical motion. (a)-
(c) are the plots for camera rotation angles. (d)-(f) are the plots for camera translations.
(g) shows ground-truth and estimate of the field of view of the camera. (h) is depth
estimate.

Fig. 7. The texture map and reconstructed 3D model from an uncalibrated face se-
quence

to self-calibration with more unknown camera intrinsic parameters such as the
position of the principle point and the aspect ratio.

References

1. Faugeras, O., Luong, Q., Maybank, S.: Camera self-calibration: Theory and exper-
iments. In: European Conference on Computer Vision, Santa Margherita Ligure,
Italy. (1992) 321–334



Bayesian Self-Calibration of a Moving Camera 293

2. Maybank, S., Faugeras, O.: A theory of self-calibration of a moving camera. In-
ternational Journal of Computer Vision 8 (1992) 123–151

3. Fusiello, A.: Uncalibrated Euclidean reconstruction: a review. Image and Vision
Computing 18 (2000) 555–563

4. Enciso, R., Vieville, T.: Self-calibration from four views with possibly varying
intrinsic parameters. Image and Vision Computing 15 (1997) 293–305

5. Pollefeys, M., Koch, R., van Gool, L.: Self-calibration and metric reconstruction
inspite of varying and unknown intrinsic camera parameters. International Journal
of Computer Vision 32 (1999) 7–25

6. de Agapito, L., Hayman, E., Reid, I.: Self-calibration of a rotating camera with
varying intrinsic parameters. In: British Machine Vision Conference, Southampton,
UK. (1998)

7. Kahl, F., Heyden, A.: Euclidean reconstruction and auto-calibration from continu-
ous motion. In: International Conference on Computer Vision, Vancouver, Canada.
(2001) II: 572–577

8. Sturm, P.: Critical motion sequences for monocular self-calibration and uncali-
brated Euclidean reconstruction. In: IEEE Conference on Computer Vision and
Pattern Recognition, San Juan, PR. (1997) 1100–1105

9. Sturm, P.: Critical motion sequences and conjugacy of ambiguous Euclidean re-
constructions. In: Scandinavian Conference on Image Analysis, Lappeenranta,
Finland. (1997)

10. Kahl, F., Triggs, B., Astrom, K.: Critical motions for auto-calibration when some
intrinsic parameters can vary. Journal of Mathematical Imaging and Vision 13
(2000) 131–146

11. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo
systems with variable focal length. In: British Machine Vision Conference, Not-
tingham, UK. (1999) 63–72

12. Pollefeys, M., Van Gool, L.: Do ambiguous reconstructions always give ambiguous
images? In: International Conference on Computer Vision, Vancouver, Canada.
(2001) II: 187–192

13. Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J.
Amer. Statist. Assoc. 93 (1998) 1032–1044

14. Qian, G., Chellappa, R.: Structure from motion using sequential Monte Carlo
methods. In: International Conference on Computer Vision, Vancouver, Canada.
(2001) II: 614–621

15. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT
Press (1993)

16. Kahl, F., Triggs, B.: Critical motions in Euclidean structure from motion. In: IEEE
Computer Vision and Pattern Recognition, Fort Collins, CO,. (1999) II:366–372

17. Kahl, F.: Critical motions and ambiguous Euclidean reconstructions in auto-
calibration. In: International Conference on Computer Vision, Corfu, Greece.
(1999) 469–475

18. Kahl, F., Astrom, K.: Ambiguous configurations for the 1D structure and motion
problem. In: International Conference on Computer Vision, Vancouver, Canada.
(2001) I: 184–189

19. Hartley, R.: Projective reconstruction and invariants from multiple images. PAMI
16 (1994) 1036–1041


	Introduction
	Theoretical Background
	Self-Calibration of a Moving Camera
	Critical Motion Sequences
	Sequential Importance Sampling

	Bayesian Self-Calibration Using Sequential Importance Sampling
	Parameterization of the Camera Motion
	Processing Critical Motion Sequences
	The Algorithm

	Experimental Results and Performance Analysis
	Constant Field of View
	Freely Varying Field of View

	Conclusions

