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Abstract. This paper presents a novel approach to camera motion parametrization
for the structure and motion problem. In a model-based framework, the hypothesis
of (relatively) continuous and smooth sensor motion enables to reformulate the
motion recovery problem as a global curve estimation problem on the camera
path. Curves of incremental complexity are fitted using model selection to take
into account incoming image data. No first estimate guess is needed. The use of
modeling curves lead to a meaningful description of the camera trajectories, with a
drastic reduction in the number of degrees of freedom. In order to characterize the
behaviour and performances of the approach, experiments with various long video
sequences, both synthetic and real, are undertaken. Several candidate curve models
for motion estimation are presented and compared, and the results validate the
work in terms of reconstruction accuracy, noise robustness and model compacity.
Keywords: Structure from motion, camera modeling, model selection, motion
curves, model-based estimation.

1 Introduction

The structure and motion estimation problem is one of the central concerns of computer
vision. It can be formulated in several ways, depending on the requirements of the
underlying applications. Real-time constraint, stereo imaging, availability of a complete
image sequence or of a human operator are important elements that can make some
solutions better than others. In our primary application, i.e. video post-production, fast
and precise algorithms dedicated to camera motion recovery and 3D reconstruction are
key tools for tasks such as special effects generation and augmented reality. Here, the
visual quality of the result and the ease of use are important constraints but an operator
can feed the algorithm with high level a priori knowledge of the scene described in the
images.

Camera motion is very constrained in professional video imaging: the motion is
generally very fluid, even for highly composite motions. Some sequences can be very
complex, including various compositions of translations and rotations, while others are
pure translations along a line or panoramic-like rotations. Curiously, most of the current
algorithms for shape and motion recovery do not take advantage of such constraints.
Some approaches based on filtering have also suggested the use of motion models to
predict the camera position at one frame from previous ones [6] [4] [7]. Model selection
between motion models have been proposed in [O] [10] [IlL1]. In these approaches, the
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different models to choose from describe the motion between two images. Regular
video sequences in post-production may span several seconds, with 25 or 30 frames per
second, and the number of motion parameters to be estimated would remain very high,
even with the simplest motion models. A better solution in such cases would be to model
the complete motion of the camera, in the entire sequence, regardless of the number of
images.

A natural way of modeling such motion is to represent the camera trajectory as a
3D curve. Translation and rotation can be separated and modeled independently. The
remaining problem is to fix the curve complexity: a parametric curve with many pa-
rameters will properly fit very complex motions, but will overfit simpler motions. On
the other side, simple curves will perform well only for simple motions, so we need
to estimate the real complexity of the unknown camera motion and the corresponding
motion parameters simultaneously. An alternative modeling strategy would be to clas-
sify the most usual types of motion, such as uniform camera traveling or panoramic
motion, then model each of them separately and test every hypothetic motion model.
This approach has two disadvantages: it requires the estimation of all different models,
and remains highly irrelevant for unusual, erratic or noisy motion.

Both aspects of modeling the trajectories and estimating the motion complexity are
addressed in the present work. With a parametric estimation viewpoint, we can describe
the shape and motion problem using models, linear or not, that make a direct link between
observed data in the images, the underlying scene structure and the camera motion. The
structure and motion problem then becomes a parametric estimation problem, in which
the free parameters of the models have to be estimated to optimally fit the observed data.
In this framework, we have designed a sequential estimation procedure and coupled it
with a model selection step to compute the optimal complexity for the estimated motion.
Different kinds of motion curves can be integrated in the procedure, and we present
several general models based on polynomials.

The motions we consider are supposed to be smooth camera motions, and we show
that the approach allows in that case an impressive reduction of the number of free
parameters in the system, as well as accurate motion recovery. Under the term smooth
motion, we do not consider C'*° functions but only continuous motions with reasonable
acceleration. The technique can handle some trembling and fast changes in the camera
motion.

In section2] we briefly outline the estimation procedure allowing the computation of
the trajectory models. A Bayesian selection procedure is proposed in section[3to set the
complexity of the curves. Section Blreviews the motion curves we have tested. Finally,
section[3d presents estimation results on both simulated and real sequences and section
discuss them.

2  Overview of the Method

The problem of shape and motion recovery we address can be summarized as follows: we
observe K geometric primitives of dimension d in each of 1" images, through primitive
tracking. Different parametric models are proposed to recover structure and motion,
sharing the same shape model but with more or less complex motion models. With a
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Bayesian estimator coupled with an adapted model selection criterion, we proceed to
compute the optimal model and associated parameters that best interpret the data.

2.1 Scene Description

Our applicative context has led us to consider as primitive features points, segments and
rectangles. Moreover, we allow the user to define additional relations of parallelism,
orthogonality, collinearity and coplanarity (see Fig[I)).

primitives:
11 segments,
10 rectangles.
relations:
6,7,11,20 : coplanar,
2,3,4,5 : coplanar,
17,18,19 : orthogonal,
9,13 : orthogonal,
2,20 : orthogonal,
13,15,19 : parallel,
11,12,17 : parallel.

Fig. 1. A scene, as described by the user. The primitives are drawn on a key frame and relations
are specified beside.

Geometric reduction. These constraints, along with inner constraints of specific prim-
itives like rectangles or corners, make the raw description of the scene in terms of points
or separate shapes over-determined. To cope with it, a specific geometric reduction al-
gorithm is used to derive the minimal set of unconstrained parameters from the initial
primitives and their relationships (see [[1] for a detailed explanation). This reduction
procedure is complementary to the motion modeling scheme we develop in the present
work.

2.2 The Projection Model

In video imaging, a pinhole camera model gives a generally good approximation of the
real camera. It performs the following perspective projection for a 3D point P:

p o (RA(P=T))

u= f(z+up) . = ®R(P-T)
with z
o=y +uo)r My = BETH]

We will assume that intrinsic parameters are known and constant, with the exception of
the focal length. This assumption is reasonable, as the parameters can be either obtained
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in camera specs, or computed through off-line calibration. The center of projection
(up, vp) and the aspect ratio r are fixed by the user and a rough approximation of the
focal length value f is supposed known. The remaining parameters are the translation
vector T and the rotation matrix R, that represent the change of coordinates from a
reference coordinate system to the camera coordinate system.

Independently from the projection model, the camera moves at each frame ¢, so the
translation vector T, and the three pose angles 6 that determine the rotation R; = R(6;)
are changing through time. (T, ;) reflect the camera motion from one frame to the next:
they are directly used as motion parameters in most structure and motion algorithms. In
the present approach, T; and 8 are modeled with the 3D curves proposed in Sect/[dl

2.3 Primitive Tracking

The primitives specified in the firstimage frame are tracked in the images of the sequence,
with a correlation and matching procedure (see Fig2). Some of them are lost due to

Fig. 2. Tracking for the House Sequence: frames 1, 8, 15, 21.

occlusion, loss of track or when they get out of the camera field of view. The relationships
between primitives are not enforced in that step, but the inner shape of rectangles is
preserved. The 2D tracks obtained are not complete, and are corrupted by noise. This
step will be avoided (i.e. simulated) in the synthetic experiments. Details on the actual
algorithm dedicated to the tracking step can be found in [2].

2.4 Bayesian Estimation

In order to compute the parameters of the scene and the camera motion from noisy 2D
tracks, the problem is formulated in a Bayesian estimation framework [S].

Maximum a posteriori. We use the Maximum a Posteriori estimator (MAP):

éMAP é arg maxe p(@|{Xk,t}MI)
= argmine [— log p({Xk,: }|OMI) — log p(O|M1I)]

to obtain the set of shape and motion parameters © that best explains the observed data
{X} ¢}, where X}, , are the coordinates of the primitive & in the image frame ¢. The prior
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information [ represents the context of the problem and the model M represents the
final parametric model for both shape and motion, that depends on the set of parameters
O to be estimated.

We set p({ X1+ }|©M1I) to be a Gaussian distribution centered on the true primitive
coordinates with covariance matrices { Ay, ; }, and the prior p(©|M1I) is supposed to be
a uniform distribution p(@|M1I) = [], % on a bounded domain. The final function to
minimize is a non-linear weighted least-square function:

J(0) = (Xt — Xi1(0) A 1 (Xpes — X14(0))
k.t

where X %,t(©) represents the non-linear models for the primitive k projected in the
image ¢. To find the parameters © that minimize J (©), we use the Levenberg-Marquardt
minimization algorithm, which has fast convergence with such non-linear least-square
functions. Like all local minimization algorithms, it needs a good first estimate of the
parameters, which can be problematic to provide.

Frame-by-frame minimization. To overcome the initial estimate problem, we proceed
on a frame-by-frame basis. The following relation holds:

P{ Xkt }t=0.. Ty +1|1OMI)
P({ Xkt }t=0..7,|OMI)

Thus, if we take the negative log of the formula, the function to minimize for data in the
frames 0 to Ty + 1 is the sum of the function already minimized for frames 0 to 7 and
the least square error on the new data at frame 7y + 1, so the MAP estimate éTo is an
efficient first guess for éTo-‘rl'

An initial guess for the parameters must be computed for ¢ = 0, when there is no
camera motion: the scene can be derived from an arbitrary flat reconstruction of the
projected points. The camera motion is then recovered gradually, and the procedure for
optimally adjusting the motion complexity will be naturally integrated in this sequential
framework.

P(O{ Xkt ti=0.. o1 MI) ~ P(O{ Xkt }i=0.. 7o M)

3 Selection of the Complexity

The MAP estimator gives, at every frame, the optimal parameter set for a given model.
To properly model camera motion, motion curves of different complexity must be tested
and the best one should be selected. Thanks to the frame-by-frame estimation, we can
start using the simplest curve model, then test more complex models while adding data
from new frames.

3.1 Model Selection Criteria

To select the best model, we need a selection criterion that ranks the concurrent models. In
statistical modeling, different kinds of criteria are used, relying on different information
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theories. The global idea is to choose the simplest model M that represents the relevant
data but not the noise. The criterion gives a quantitative balanced value of both the model
complexity and the error on the data D.

Ad hoc criteria can be employed, usually a simple function of the number p of
parameters @ in the model M, but such methods must be tuned and tested extensively.
From considerations on the likelihood, the Akaike Information Criterion AIC = L+ 2p
has been derived, where L = —2log p(D|©M1) is the inverse log-likelihood. Minimum
Description Length (MDL) is another well-known criterion, based on algorithmic theory
of information. The MDL criterion computes the code length necessary to describe the
model and the code length necessary to describe the remaining stochastic complexity
of the data [12]]. The Bayesian Information Criterion BIC = L + plog N, with N
the number of data measurements, is used for Bayesian inference and maximizes the
evidence p(D|M1).

All these criteria are very similar, and the distinctions between them on a practical
point of view is often subtle [3]. In statistical modeling, these criteria are asymptotic and
may differ for geometric problems [8]]. A transposition in the geometric context makes
different approximations related to the models in use, that can lead to slightly different
criteria [9] [L1]]. For parameters estimation, we used a Bayesian formalism. To maintain
coherence, we choose to use the evidence maximization for model selection as well.

3.2 Bayesian Evidence Criterion

The geometric BIC criterion is not directly adapted here and we must compute a
new approximating criterion for evidence. The outline of the computation is similar
to BIC derivation from evidence in [11], but asymptotic approximations are avoided
here. The evidence is p(D|MI) = [, p(D|OMI)p(O|MI)d6. Stating (O) =
—log(p(D|OMI)p(O|MI)), p(D|MI) = [, exp—P(O)dO. As O is the minimum

of ¢(0) and VVP(O) :A(z)l, a second order Taylor approximation of the function
®(O) at O gives:

p(D|MI) ~ [, exp—(0) — L(6 - 0)T45(0 — 6)dO
= (2m)P/2|Ag|'/? exp —B(O)

The expression of @(O) specific to our problem is given by #(0) = 1J(O)
+ 84T Jog(2m)+1 >kt log [ Ag¢[+ >, log i, where NyT represents the total number
of data coordinates over the T" frames of the sequence, and finally:

BEC = —2logp(D|MI) = J(O) + (N4T — p)log(2m) + 3, ; log | Ay |
+log |/iél| +23% . logr;

The quantities in the criterion are all set a priori or evaluated in the MAP estimation of
parameters, thus no further approximation is needed.
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3.3 Complete Procedure

To integrate the model selection step in the sequential estimation procedure, we have
to estimate all possible models, then compare them with the criterion. If the number
of possible models is important, the computational effort becomes rapidly untractable.
To avoid such problem, the models must be nested, in the sense that models of lower
complexity must be contained in models of higher complexity. Therefore, more complex
models are initialized from simpler models. At each frame, only the currently selected
model is memorized and more complex models can be computed from it. The motion
complexity is supposed to stay unchanged or increase from one frame to the next,
independently for translation and rotation parameters. Three different estimations are
then necessary to select the optimal model (see Fig ).

Concurrent

Models Estimation ~ Model selection

Xk,t+1

A A
o MAP, MAP | | BEC| o MAP

Fig. 3. The current model M ¢ and more complex models for translation Mt and rotation My are
estimated and compared at each frame.

4 Motion Curves

The sequential estimation and selection algorithm proposed here impose constraints on
the motion model we can consider: the motion curves must be nested, and more or less
complex curves should share parameters close together. Three families of curves are
proposed: a polynomial of high degree representing the complete motion, linear splines
that model the motion more locally, and a hybrid model made of piecewise polynomials
of various possible degrees.

4.1 Chebyshev Polynomials
In the first model, the parameters T(t), 0(t) are functions of a single polynomial of
degree K, L:
N
T(t) = Xn—oanbn(t)
M
O(t) - Zm:O b’mPrrL (t)
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where P, (t) is the Chebyshev polynomial of degree n. Therefore, the motion parameters
become {a,,, b, }, reducing the degrees of freedom from 67" to 3N +3 M + 6 parameters.

Chebyshev polynomials are preferred for several reasons. First, they are known to be
close to the minimax approximation polynomial for general functions. Next, Chebyshev
coefficients a,, smoothly decrease to zero when the degree n increases. The polynomials
values range from -1 to +1, so the coefficients are homogeneous to the approximated
values. Finally, the polynomial curve changes gradually when high order coefficients
are set to zero.

The complexity of the motion is represented by the degree of polynomials, and the
concurrent motion models to choose from in the model selection phase are simply poly-
nomials of higher or lower degree. The models are nested and the polynomial coefficients
common to simple and complex models are close together, the coefficients of simple
models directly giving a good first estimate for models of higher complexity.

4.2 Linear Splines

Camera motions can be viewed as a sequence of simple moves, and it is reasonable to hope
that changes on the motion estimation on one of the last frames should not induce changes
on the motion corresponding to the first frames. For such motion, piecewise polynomials
can be preferred to a global high degree polynomial. As the simplest piecewise models,
we use the linear spline:

5
—~

~
~

an(l - Tn) + an—&-l'rn lft S [t71;tn+1]
e(t) = bm(l — Tm) + bm+le lft S [tm,tm+1]

t—tn
tnt1—tn
{a,, b, } along with the two series of time intervals {[t,, tn+1]}, {[tm, tm+1]}. The

selection problem is not to find the proper degrees, that are fixed, but to determine how
many pieces to make and where to place them on the time interval of the sequence.

In the model selection procedure, concurrent models will be models with more or
less pieces. More complex curves are obtained by adding a new interval when adding
a new frame, whereas the intervals for simpler models remain unchanged. This model
family is nested, like Chebyshev polynomials: models of higher complexity just have
additional polynomial pieces. Intervals with the same pieces have the same coefficients,
regardless of the rest of the curve and polynomials of lower complexity are a good first
estimate for polynomials of higher complexity.

where 7, = . The definition is identical for 7,,. The motion parameters are

4.3 Piecewise Chebyshev Polynomials

Finally, a hybrid model between Chebyshev and piecewise curves has been tested. This
model is a disjoint succession of Chebyshev polynomials:

T(t) = S ganPalni)  ift € [ti b,
M; .
e(t) = ZTYL:O b"bajpm (Tj) lft € [tj7 tj+1 [’
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This model has the smoothness of Chebyshev polynomials on regular parts, and can
accommodate for composite motions. It is nested, and simple curves are good initial-
izations for more complex ones. For this family of models, there are two possibilities to
increase the complexity: we can add a degree to the last polynomial which describes the
current motion, or we can create a new polynomial to fit the motion independently of
the past frames. Therefore, this model necessitates to perform two additional estimation
and selection steps.

4.4 Other Curve Models

Other curve models could come to mind to describe the motion, like Bernstein polyno-
mials or cubic splines. However, these are generally suited for interpolation purposes,
and the modeling procedure proposed here is more related to approximation problems.
Some experiments with such interpolation curves led to poor results, mainly due to
instabilities of the curve coefficients when the complexity is modified.

5 Experiments

The technique proposed in this paper has been tested on both synthetic and real video
sequences, in order to characterize its performances. Cramer-Rao lower bounds for
accuracy have been computed on the simulated experiments. Finally, classical estimation
without motion model have also been performed.

5.1 Simulated Data

To perform the synthetic experiments, a 3D scene was created. The scene consists in two
sides of a Rubik’s cube, and the camera orbits the cube for 20 frames, then goes backward
along a straight line for 10 frames (see Fig ). The scene description is composed of 2

==

Fig. 4. Simulation settings: left: the scene observed at ¢ = 0; right: the camera path.
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rectangles, 8 segments as well as geometric constraints. The tracking part is completely
simulated by exact projection of the true 3D points and addition of Gaussian noise of
increasing magnitude.

Experiments have been performed with a Gaussian noise of zero mean and standard
deviation of 0, 1, 2, 3, 5, 7 and 10 pixels. For each configuration and each noise level,
three instances of synthetic data were generated for estimation and the results were
averaged. Errors in 3D shape, translation and rotation are computed with respect to
the true values, after an appropriate transformation that makes the scenes suitable for
comparison. This transformation places the origin of space at the center of the 3D scene,
rotates the coordinate system to match the scene eigenvectors and normalizes the standard
deviation of scene points from the origin. The final error curves have been obtained by
averaging the results with the three noisy sets. The complexity of the optimal curves are
defined as the total number of 3D parameter vectors needed to describe them. Theoretical
Cramer-Rao lower bounds (CRLB) have also been computed from the original scene.

The error curves in Fig[5lshow that the results are similar with the different models
and without model. The optimization procedure has always properly converged, as the
2D residual errors are very close to their theoretical bounds. Reconstruction errors are
also close to the Cramer-Rao bounds, especially for the motion.

The big difference here lie in the complexity of the motion models needed to achieve
such accuracy. The complexity of Chebyshev polynomials is the lowest, and remains
extremely stable as noise increase. The linear spline model is not very efficient, as its com-
plexity remains very high, but is also stable. Piecewise polynomials are in-between, with
larger complexity fluctuations: in practice, they often hesitate between a long Chebyshev
curve of high degree and numerous curves of degree 1 or 2. This stability is remarkable,
as it shows that the estimated complexity is really related to the complexity of the motion
itself and not to the noise. The corresponding motion curves are not an approximation,
as they manage to reach the same accuracy levels as model-free estimation.

5.2 Real Sequences

The capabilities on real video sequences of the algorithm has also been tested. The
following videos, borrowed from various laboratories, have been used:

— the "Sport" sequence (from Inria Syntim): the camera motion is a slow translation
in straight line,

— the "House" sequence (from Inria Movi): the camera undergoes a fast circular motion
around a model house,

— the "StainX" sequence (from Alias|Wavefront): the camera is moving towards the
scene in a translation/rotation motion,

— the "Begijnhof" sequence (from K. U. Leuven Visics): the camera is hand-held and
moving backward almost linearly, but not smoothly.

For every sequence, 10 to 20 features (points, lines and rectangles) have been tracked,
some of them only on a limited part of the sequence (see the features on the first images
on Tab[T). The structure of the scene and the camera motion have been computed with
the three motion models, and with the model-free algorithm. Reconstruction results are
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Fig. 5. Error and complexity results in the synthetic experiments, for increasing noise levels.

more or less subjective for real sequences, and error curves cannot be drawn. We can
still compare the visual 3D reconstruction obtained with the different motion curves
(see Fig[7)), but the only reliable metric is the 2D residual error. Its mean and standard
deviation values are given on Tabl[Il along with the complexities for the three models.
The visual correctness of the reconstruction can be assessed by mean of augmented
reality (addition of synthetic elements), as presented on Fig 6l

In all cases, the 3D structure reconstructions are visually correct and seem identical.
The camera motion also correspond to the qualitative descriptions given above. The
residual errors are low, and both mean and standard deviation values are very close
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Table 1. Residuals and complexity on the real sequences.

.’-:\ " _

House StainX Begijnhof

Number of frames: 20 70 42
2D residual error

no model: 3.438 3.394 4.357 2.783

Chebyshev: 3.470 3.412 4.579 2.778

linear: 3.490 3.547 4.392 2.732

piecewise: 3.464 3.546 4.371 2.643
2D standard deviation

no model: 2.972 3.367 2.461 2.159

Chebyshev: 3.095 3.429 2.570 2.202

linear: 3.376 3.469 2.527 2.198

piecewise: 3.056 3.478 2.498 2219
translation complexity

Chebyshev: 6 5 9 6

linear: 4 13 4 11

piecewise: 7 16 10 27

rotation complexity

Chebyshev: 5 4 9 24

linear: 3 12 9 21

piecewise: 7 17 12 27

for any given sequence: in terms of the reprojection error, the results are all identically
optimal.

The first important difference is the reduction of the motion complexity when we
use motion curves. Even with the longest sequences, the complexity remains very low,
and the accuracy is not jeopardized by the reduction. Moreover, the motion curves
provide a better robustness: in Figl]] the reconstructed path for the camera without
model is strongly perturbated by noise, whereas the visual motion in the video sequence
is perfectly smooth. These perturbations are removed with any of the motion models.

As in the synthetic experiments, Chebyshev polynomials have proven to give a very
compact motion model without loss of accuracy. Their approximation properties allow
very stable computations, and changes in the trajectory are correctly handled.

Linear splines perform better here. On almost linear motions, they go below Cheby-
shev polynomials (cf. the Sport sequence), but become limited for curved motions like
the orbit motion of the simulations or the House sequence.

Piecewise Chebyshev polynomials still suffer from their flexibility: they perform
well, but always with an increased complexity. It is hard to discriminate between the two
possible ways to grow in complexity here, and the final models will involve long pieces
of Chebyshev curves and small line segments or even points on the less regular parts.
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Fig. 6. Augmented reality with virtual penguins on the House sequence: images 1, 5, 9, 13 (top),
17, 21, 25, 30 (bottom).

Finally, the smoothness assumption shared by the three models is not a strong con-
straint. In the Begijnhof sequence, the camera motion is not smooth, as the camera oscil-
lates when the cameraman moves. The related motion models capture this phenomenon
with an increased complexity of the orientation curve, and the results are comparable in
2D and in 3D with an unconstrained structure and motion recovery.

6 Conclusions

We presented here an estimation framework for shape and motion recovery from video
sequences. The technique takes into account the continuity and smoothness of the camera
motion, through motion curves. The curves are optimally fitted to more or less complex
motions thanks to a sequential estimation and selection procedure.

As the motion curves drastically reduce the number of parameters to estimate, the
computations are greatly simplified and the estimation is more robust to tracking noise.
The accuracy of reconstruction is not decreased by the approximation introduced by the
curves. The two major roles of the introduced curves are to reduce the complexity of the
problem through a limited and relevant set of parameters and to factor out the tracking
noise from the recovery by imposing some regularity.

The polynomial functions proposed as curve models can describe any kind of motion.
Chebyshev polynomials are near optimal in the sense of function approximation, and
always perform well in practice for this problem. Their only weakness is for describing
sharp changes in the motion, generally related to a change in the nature of the motion
itself. We plan to investigate more subtle models to get over this limitation. Studying
descriptions of different kinds of camera motions could also help to refine even more the
models, particularly for erratic and trembling motions like hand-held camera motions.
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Fig. 7. Reconstructed scene from the StainX sequence, with the proposed motion models. The
spheres indicate the camera position at each frame.
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