
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 782-786, 2002.
 Springer-Verlag Berlin Heidelberg 2002

On the Logical Modeling of ETL Processes

Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos

National Technical University of Athens, Dept. of Electrical and Computer Eng.
Computer Science Division, Iroon Polytechniou 9, 157 73, Athens, Greece

{pvassil,asimi,spiros}@dbnet.ece.ntua.gr

1 Introduction

Extraction-Transformation-Loading (ETL) tools are pieces of software responsible for
the extraction of data from several sources, their cleansing, customization and
insertion into a data warehouse. Research has only recently dealt with the above
problem and provided few models, tools and techniques to address the issues around
the ETL environment [1,2,3,5]. In this paper, we present a logical model for ETL
processes. The proposed model is characterized by several templates, representing
frequently used ETL activities along with their semantics and their interconnection. In
the full version of the paper [4] we present more details on the aforementioned issues
and complement them with results on the characterization of the content of the
involved data stores after the execution of an ETL scenario and impact-analysis
results in the presence of changes.

2 Logical Model

Our logical model abstracts from the technicalities of monitoring, scheduling and
logging while it concentrates (a) on the flow of data from the sources towards the data
warehouse and (b) on the composition of the activities and the derived semantics.

Elementary Activity

Not Null Selection Aggregate

myNot Null mySelection

Metamodel

layer

Template

layer

Schema &

Scenario

RecordSet

Supplier

LineItem

PartSupp

ISA

IN

myScenario

Fig. 1 The metamodel for the logical entities of the ETL environment

Activities are the backbone of the structure of any information system. In our
framework, activities are logical abstractions representing parts, or full modules of

On the Logical Modeling of ETL Processes 783

code. We distinguish between three layers of instantiation/specialization for the
logical model of ETL activities, as depicted in Fig.1: Metamodel, Template, and
Custom Layers.

Metamodel Layer. The most generic type of an activity forms the upper level of
instantiation (Metamodel layer in Fig. 1), covering the most general case of an atomic
execution entity within the ETL context.

In Fig. 2 one can see the high level abstraction of the operation of an elementary
binary activity. Data coming from the two inputs are propagated to the output, while
the rejections are dumped to the Rejected Rows file. The operation is tuned through
a set of parameters. Activities are depicted with triangles. The annotated edges
characterize the data consumer/provider semantics. The + symbol denotes that data
are appended to the Output; the ! symbol denotes that the rejected rows are
propagated towards the Rejected Rows file, whose contents they overwrite; the →
symbol denotes that data are simply read from Input 1; and the – symbol denotes
that the data from Input 2 that match the criteria of the activity are deleted from
Input 2, once they have been read by the activity.

→

Parameters

Input 1

Input 2

Elementary
Activity

−
!

Output

Rejected
Rows

+

Fig. 2 The basic idea behind the mechanism of Elementary Activities

An Elementary Activity is formally described by the following elements:

• Name: a unique identifier for the activity.
• Input Schemata: a finite set of one or more input schemata that receive data from

the data providers of the activity.
• Output Schema: the schema that describes the placeholder for the rows that pass

the check performed from the activity.
• Rejections Schema: a schema that describes the placeholder for certain rows that

do not pass the check performed by the activity.
• Parameter List: a set of pairs (name and schema) which act as regulators for the

functionality of the activity.
• Output Operational Semantics: an SQL statement describing the content passed

to the output of the operation, with respect to its input.
• Rejection Operational Semantics: an SQL statement describing the rejected

records.
• Data Provider/Consumer Semantics: a modality of each schema which defines

(a) whether the data are simply read (symbol → in Fig. 2) or read and
subsequently deleted from the data provider (symbol - in Fig. 2 and (b) whether

784 Panos Vassiliadis et al.

the data are appended to the data consumer (symbol + in Fig. 2) or the contents of
the data consumer are overwritten from the output of the operation (symbol ! in
Fig. 2).

Template Layer. Providing a single metaclass for all the possible activities of an ETL
environment is not really enough for the designer of the overall process. A richer
�language� should be available, in order to describe the structure of the process and
facilitate its construction. To this end, we provide a set of Template Activities
(Template Layer in Fig. 1), which are specializations of the generic metamodel class.
We have already pursued this goal in a previous effort [5]; in this paper, we extend
this set of template objects and deal with the semantics of their combination (see [4]
for more details).

Filters

SELECTION (φ(An+1,�,An+k))
UNIQUE VALUE (R.A)
NOT NULL (R.A)
DOMAIN MISMATCH (R.A,xlow,xhigh)
PRIMARY KEY VIOLATION (R.A1,�,R.AK)
FOREIGN KEY VIOLATION ([R.A1,�,R.AK],[S.A1,�,S.AK])
Unary Transformations
PUSH
AGGREGATION ([A1,�,Ak],[γ1(A1),�,γm(Am)])
PROJECTION([A1,�,Ak])
FUNCTION APPLICATION(f1(A1),�,fk(Ak))
SURROGATE KEY ASSIGNMENT (R.PRODKEY,S.SKEY,x)
TUPLE NORMALIZATION (R.An+1,�,R.An+k,ACODE,AVALUE,h)
TUPLE DENORMALIZATION (ACODE,AVALUE,R.An+1,�,R.An+k,h�)

Binary Transformations

UNION(R,S)
JOIN(R,S,[(A1,B1),�,(Ak,Bk)])
DIFF(R,S,[(A1,B1),�,(Ak,Bk)])

Fig. 3 Template Activities grouped by category

As one can see in Fig. 3, we group the template activities in three major groups.
The first group, named Filters, provides checks for the respect of a certain condition
by the rows of a certain condition. The semantics of these filters are the obvious
(starting from a generic selection condition and proceeding to the check of value
uniqueness, primary or foreign key violation, etc.). The second group of template
activities is called Unary Transformations and except for the most generic Push
activity (which simply propagates data from the provider to the consumer) consists of
the classical aggregation and function application operations along with three data
warehouse specific transformations (surrogate key assignment, normalization and
denormalization). The third group consists of classical Binary Operations, such as

On the Logical Modeling of ETL Processes 785

union, join and difference with the last being a special case of the classic relational
operator.

Custom Layer. The instantiation and the reuse of template activities are also allowed
in our framework. The activities that stem from the composition of other activities are
called composite activities, whereas the instantiations of template activities will be
grouped under the general name of custom activities (Custom Layer in Fig. 1).
Custom activities are applied over the specific recordsets of an ETL environment.
Moreover, they also involve the construction of ad-hoc, user tailored elementary
activities by the designer.

3 Exploitation of the Model

In order to perform operations like zooming in/out, consistency checking and what-if
analysis, each scenario is modeled as a graph, which we call the Architecture Graph
(see [4] from more details). Activities, data stores and attributes are modeled as nodes
and their relationships as edges.

Zooming in and out the architecture graph. We can zoom in and out the architecture
graph, in order to eliminate the information overflow, which can be caused by the vast
number of involved attributes in a scenario. In a different kind of zooming, we can
follow the major flow of data from sources to the targets.

Consistency Checks. We can perform several consistency checks on the architecture
graph, like the detection of activities having input attributes without data providers,
the detection of non-source tables having attributes without data providers, or the
detection of useless source attributes.

What-if analysis. We can identify possible impacts in the case of a change, by
modeling changes as additions, removals or renaming of edges and nodes. Still, out of
the several alternatives, only the drop node operation seems to have interesting side
effects. Moreover, even if atomic operations are of no significance by themselves,
they are important when they are considered in the case of composite operation
transitions.

References

1. H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data
Cleaning Tool. In Proc. ACM SIGMOD Intl. Conf. On the Management of Data,
pp. 590, Dallas, Texas, (2000).

2. V. Raman, J. Hellerstein. Potters Wheel: An Interactive Framework for Data
Cleaning and Transformation. Technical Report University of California at
Berkeley, Computer Science Division, 2000. Available at
http://www.cs.berkeley.edu/~rshankar/papers/pwheel.pdf

3. S. Sarawagi. Special Issue on Data Cleaning (ed.). IEEE Computer Society,
Bulletin of the Technical Committee on Data Engineering, 23(4), (2000).

786 Panos Vassiliadis et al.

4. P. Vassiliadis, A. Simitsis, S. Skiadopoulos. On the Conceptual and Logical
Modeling of ETL Processes. Available at
http://www.dbnet.ece.ntua.gr/~pvassil/publications/VaSS_TR.pdf

5. P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, T. Sellis. Arktos:
Towards the modeling, design, control and execution of ETL processes.
Information Systems, 26(8), pp. 537-561, December 2001, Elsevier Science Ltd.

	Introduction
	Logical Model
	Filters

	Exploitation of the Model
	References

