Addressing Performance Requirements
Using a Goal and Scenario-Oriented Approach

Zhiming Cai' and Eric Yu®

! Department of Computer Science, University of Toronto, Canada
zmcai@cs.toronto.edu
? Faculty of Information Studies, University of Toronto, Canada
yu@fis.utoronto.ca

Abstract. Performance requirements should be addressed as early as
possible during requirements analysis and architectural design. This
paper presents a goal-oriented and scenario-oriented approach for
qualitatively addressing and refining performance requirements. The
goal-oriented language GRL[1] is used to represent the refinement of
performance goals from abstract to concrete ones, eventually
operationalizing them into design alternatives. The Use Case Maps
(UCM)[4] notation is used to represent system operations at a high level
of abstraction using scenarios.

1 Introduction

Performance requirements and performance evaluation can have a global impact on
alternatives for target system [2]. The goal of performance modelling is to address
performance requirements and make the performance of system more predictable.
Performance modelling of the whole system at the requirements analysis and high-
level design stages can provide feedback into the decision-making process prior to
detailed design and implementation.

Group Communication Server (GCS) system described in [3] is a multi-user
system for document management. An approach called PERFECT in [3]
quantitatively evaluates the different proposals for concurrency architecture by
“virtual implementations”. An important challenge is to qualitatively address
performance of different architectures without implementation. Quantitative metrics
and qualitative treatments are complementary for performance modelling.

This paper proposes an approach “PeGU” for performance modelling by using
GRL (Goal oriented Requirement Language) and UCM (Use Case Map). The modeler
uses PeGU to qualitatively evaluate each of architectures over each possible
technology choice decision at an early stage. PeGU treats performance requirements
as softgoals and goals of GRL. GRL is a modelling language proposed at University
of Toronto for supporting goal-oriented modelling and reasoning of requirements.
Modelling both goals and scenarios is complementary and goal-scenario coupling
may aid in identifying further goals, additional scenarios and scenario steps. Use Case

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 706-710, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Addressing Performance Requirements Using a Goal and Scenario-Oriented Approach 707

Maps is used for representation of scenarios. The structure and the behavior can be
described in the same UCM diagram. The paths of execution are represented against
the background of the system components.

Performance
Requirement

oy ¥

Sub-softgoals/goals | , Scenarios of the
with scenarios h intended system

v]

Offspring-goals with | ¢ | Responsibilities

responsibilities of each scenario
Operational Operational

tasks with D SRS » elements of each
operational responsibility

Tasks, resources

with partitioning |< Alterhlf:lt“t’es of
of alternatives architecture

) |
v

Evaluation of
alternatives

Fig.1. Overview of PeGU

2 Overview of PeGU

2.1 High-Level Performance Requirement

The high-level performance requirements are qualitatively specified as GRL softgoals
and goals. The UCM and GRL modeling method are employed alternately in the
following steps. (see Fig.1.)

2.2 Scenario

UCM side — The scenarios of the intended system are outlined in large-grained
behaviour pattern according to system requirements;

GRL side — The high-level performance softgoals and goals are distributed to sub-
softgoals (goals) for different scenarios.

708 Zhiming Cai and Eric Yu

2.3 Responsibility and Offspring-Softgoals/Goals

UCM side — Along each scenario path, some localized actions which the system must
perform are viewed as responsibilities. With analyzing the paths of execution for the
scenarios, responsibilities are figured out for each path;

GRL side — Each performance requirement softgoal/goal is decomposed into
offspring, correlating with the responsibilities of each scenario.

2.4 Operationalization into Task

UCM side — The responsibilities of each scenario are refined into operational
elements, which specify concrete notation in the target system;

GRL side — The performance softgoals/goals are refined into operational tasks.
The different operations on UCM side are related to different tasks on GRL side.

2.5 Architecture Design

Alternatives for system architecture are designed in different possible ways. The
partitioning of the alternatives is indicated by GRL tasks and resources.

2.6 Evaluation

Evaluation for each alternative generally starts from leaf of the bottom layer and then
up through higher layers in GRL. The impact of decision on each operation of each
alternative is evaluated and propagated to above elements. Evaluation may result
change and optimizing of architecture design.

We will use the example of Group Communications Server (GCS) in [3] to
illustrate how PeGU models and evaluates performance requirements qualitatively
and deals with trade-offs among a number of factors.

Performance
[GE5]

Response
Time[3C3]

Fig.2. High-level performance requirements of GCS

3 PeGU Methodology - Applying to GCS

1. We define Performance[GCS] softgoal as a top level requirement of GCS. The
contributing factors to overall performance are response time and space usage.
Performance[GCS] is thus refined into two sub-softgoals:
ResponseTime[GCS] and Space[GCS] as shown in Fig.2. in GRL graphical
notation. ResponseTime[...] means seeking decreased or low response time for
specific user requests; Space/...] means decreased or low space usage. Here,
Performance[GCS] and its subgoals are related by an AND “contribution” link.

Addressing Performance Requirements Using a Goal and Scenario-Oriented Approach 709

The Space[GCS] has correlation-link with Response Time[GCS] because the
relationship between ResponseTime and Space is not an explicit desire, but is a
side-effect.

Fig.3 shows scenarios of GCS in UCM notation: Update Document, Notification,
Send New Document, Subscription, UnSubscription and Get New Document. The
responsibilities upd, noti, new, sub, uns and get specify the actions for each
scenario. The timestamp points Tarr, Tupd, Tnot, Tnew, Tsub, Tuns and Tget,
represent the start and end points for response-time requirement of each scenario.

The high-level performance softgoals in GRL are distributed to sub-softgoals
on the scenarios, as in Fig.4. ReponseTime[upd] Softgoal means good response
time for scenario update. Other softgoals are similar for other scenarios.

Group Communication Server System Tupd

[
L upd yawm | Update
Tnot g L
- ot yaym | Notification
new Tnew |]
/A 1Send New Document
sub Tsub g

AN | Subscription

Tarr
.T uns Tuns g
MsgArr FAY 1 UnSubscription
get LS] Get New D t
yaum | et New Documen

Fig.3. Scenarios of GCS

Response
Time([get]

Response Response
Time[upd Time[noti]

Fig.4. GCS performance softgoals on the scenarios

The execution of each path can be considered as several segments or activities in
UCM. Some concrete behaviours can be extracted from the abstract
responsibilities. The performance requirement for each scenario can be refined
further in GRL, correlating with segments and activities of each path in UCM.

4. As the operational elements for the responsibilities of each scenario become
concrete in UCM, the operationalization of each performance softgoal and goal
can be made in GRL. The tasks and resources are exploited and connected to the
softgoals.

710 Zhiming Cai and Eric Yu

After the concrete operational elements are worked out both in UCM and GRL,
the different architectural design options can be considered. The partitions of
each alternative are coupled with related tasks for different softgoals.

Fig.5 shows the softgoal refinement after (3)(4)(5) and evaluation of response-
time for the concurrent architecture of “Thread-per-disk” in GRL notation. The
labels of the softgoals connected to labeled tasks are propagated from bottom to
up. For instance, ResponseTime[upd] is undecided as ResponseTime[
PreMsgUpd] is undecided though ResponseTime[WriteDisk(upd)] is
satisfied, but with And-contribution. ResponseTime[GCS] softgoal is
eventually considered as undecided since response-time on most (4/6) scenarios
are undecided after the propagating. The designs and evaluations for other
architectures can be done in a similar way.

= = U —nny
aree)

L eE e T

by

i Sty 45,

4 7
Fois iy e A

_rratng

Fig.5. Refinement of performance softgoals and evaluation for architecture of “Thread-per-
disk”

References

—_

. GRL On-line at: http://www.cs.toronto.edu/km/GRL/

2. Nixon, B.A., Management of Performance Requirements for Information System.

IEEE Transactions on SE, 26(12): 1122-1146,2000

. Scratchley, W.C. and Woodside, C.M., Evaluating Concurrency Options in

Software Specifications. Seventh International Symposium on Modelling, Analysis
and Simulation, College Park Maryland, USA, 1999.

. UCM On-line at: http://www.usecasemaps.org/pub/UCMtutorial/

	Introduction
	Overview of PeGU
	High-Level Performance Requirement
	Scenario
	Responsibility and Offspring-Softgoals/Goals
	Operationalization into Task
	Architecture Design
	Evaluation

	PeGU Methodology - Applying to GCS
	References

