
Providing the Semantic Layer for WIS Design

Richard Vdovjak and Geert-Jan Houben

Eindhoven University of Technology
POBox 513, 5600 MB Eindhoven, The Netherlands

{r.vdovjak,g.j.houben}@tue.nl

Abstract. Designing Web-based information systems requires the use
of a thorough design methodology. Particularly, when the content of the
system is gathered from different information sources available via the
Web, the specification of how data is to be retrieved requires appropriate
design tools. Concretely, a solution to the problem of how to facilitate
the design of integrating heterogeneous information sources is needed, in
order to be able to provide a uniform access to data gathered from dif-
ferent sources. In this paper we propose the use of the Hera methodology
extended with the Semantic Layer, which concentrates on the integra-
tion aspect. The presented integration framework provides a coherent
and meaningful (with respect to a given conceptual model) view of the
integrated heterogeneous information sources.

1 Introduction and Related Work

The WWW has become one of the most popular information channels of today.
This results into an ever-growing demand for new Web applications. The Web
is, however, becoming a victim of its own success. Ad hoc hacking without a
prior design, using no rigorous methodology is currently the common Web de-
velopment practice. This approach fails to meet the demand for high quality
data-driven Web applications such as Web-based Information Systems (WIS).

WIS applications use Web technologies to fulfill the needs of professional in-
formation systems. The specific role of modern WIS asks for a highly structured
and controlled approach to Web engineering [1]. Many WIS have a data-driven
nature, that requires a process of automatically generating hypermedia or mul-
timedia (Web) presentations for the data to be output.

To facilitate the engineering of these data-driven Web applications there is an
obvious need for a design framework. This framework should allow designers to
specify and reason about WIS in an appropriate level of abstraction depending
on the different stages of the engineering project (requirements analysis, design,
and implementation), but also on the different dimensions of the problem area
(e.g. ata integration and modeling, hyperspace navigation, user/platform adap-
tation, layout design etc.).

The specification of artifacts (models) of the different stages of the design
process can benefit a lot from technologies like RDF(S)[2,3], introduced with
the Semantic Web initiative [4], where the main idea is to allow for the data

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 584–599, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Providing the Semantic Layer for WIS Design 585

that resides on the WWW to be targeted not only for humans but to become
also machine-understandable. The goal is to achieve semantic interoperability,
which would facilitate creation of new services such as smart search engines,
automated information integration and exchange, presentation generation, etc.
We argue that semantic interoperability will have a positive impact on the design
and use of WIS, especially those constructed from several heterogeneous sources.

Existing methodologies for designing Web applications, such as RMM[5],
OOHDM[6], WebML[7], do not explicitly cover the integration phase. We be-
lieve that the integration issues (Conceptual Model design, Schema integration,
and Data integration) should be taken into consideration during the design of
those data-driven Web applications, for which the content is coming from het-
erogeneous data sources.

In previous work [8,9] we suggested a methodology inspired by RMM for the
design of automatically generated data-driven Web presentations for ad-hoc user
queries. This paper is a follow-up extending the methodology with the Semantic
Layer, so that it can be used as a basis for engineering WIS-like applications. We
focus on designing those WIS that are built from collections of heterogeneous
information sources. The paper addresses problems of information integration
(both schema and data), such as syntactic and semantic reconciliation of different
sources.

The rest of the paper is structured as follows. Section 2 presents the different
steps of our design methodology and the underlying software suite that provides
the means for executing the specifications resulting from the design process.
In section 3 we focus on the Semantic Layer and we cover in detail the issues
regarding the design of the models that create the foundation of this layer.
Section 4 introduces a software architecture that implements the Semantic Layer.
We conclude the paper by section 5 with a short summary and future work.

2 Hera Design Methodology

The Hera design methodology has its origins in RMM[5]. Similarly to RMM,
it distinguishes several steps to be followed during the design process of a Web
application1. Each design step produces as its outcome a specification with a
certain level of abstraction based on the separation-of-concerns principle. The
sequence of the main steps is depicted in figure 1.2

The first step, the Requirements Analysis clarifies and captures the needs
and demands that the client has for the future application, into a requirements
document, which serves as a “wish list” that has to be fulfilled by the designer(s)
and as a “check list” for testing, once the application is developed.
1 Although the methodology is general and can be applied to many (types of) Web
applications, here we primarily concentrate on data-driven Web applications of the
typical WIS nature.

2 Note that the arrows in the picture denote only the general flow; it is possible to
have feedback loops in the process.

586 Richard Vdovjak and Geert-Jan Houben

Requirements
Analysis

Conceptual
Design

Integration
Design

Application
Design

Adaptation
Design

Presentation
Design

(Search)
Agent

info
request

(meta) data

Conceptual
Model Application

Model

info request
(slice)

presentation

End User

RQL / RDF XSLT / XML

User
Model

Presentation
Model

Presentation
Engine

Application
Engine

Integration
Engine

Cuypers
Engine

Adaptation
Engine

info request HTML/WML

Hera Suite

Design Methodology

Integration
Model

Semantic Layer Application Layer Presentation Layer

Fig. 1. Design Methodology, and underlying set of data-processing engines

In the Conceptual Design step the application domain is captured into a
Conceptual Model (CM) consisting of a hierarchy of concepts, their properties,
and relations. Within an information system one usually distinguishes a data
repository, which contains the data that is available for querying: each answer
to a query results in the generation of a (Web) presentation. The purpose of the
CM is to describe which information is available inside this data repository.

Note that if the data is coming from different (possibly heterogeneous) sour-
ces, the data repository can be virtual (not materialized). In this case an Inte-
gration Model (IM) must be introduced, which selects sources and articulates
(translates) the relevant concepts from them into the CM. It is evident that the
design of CM influences the creation3 of IM (IM mappings depend on the CM),
but the dependency here is mutual. There is not much use of introducing con-
cepts into the CM if they cannot be populated with data instances if we do not
have appropriate data sources for them in the IM. So, it is often the case that
the CM design and IM creation are intertwined and accomplished in an iterative
manner.

In the Application Design step, the concepts from the CM are transformed
into slices. In analogy to RMM, we use the notions of slice and slice relationship
to model how the concepts from the CM will be presented. While the CM gives a
semantic description of the information that is available, the Application Model
(AM) [9] gives a navigational description of that information. Having in mind
that Web presentations will be generated for queries against this information,
the navigational description specifies (a blueprint for) the hypermedia nature
of those presentations. The AM does not yet include all the rendering details
covered in the next steps of the methodology, but it does allow for a first, log-
ical sketch of the presentation to be generated. This implies the translation of
3 We make a distinction between “creating” and “designing” in a sense that the first
can be to a large extent automated while the second is more “human dependent”.

Providing the Semantic Layer for WIS Design 587

concepts into “pages” and the establishing of a navigational structure between
those pages.

The era of “one size fits all” Web applications seems to be vanishing and
personalization and adaptation (one-to-one content delivery) is becoming an
issue for an increasing number of applications. A User Adaptation Model (UAM)
supporting the adaptation is built during Adaptation Design; in line with the
AHAM reference model [10] this UAM includes the specification of a user model
and adaptation rules. The design of UAM is intertwined and associated with the
Application Design, just like in the case of IM creation and CM design.

The Presentation Design step introduces a rendering independent Presenta-
tion Model (PM)[9], which focuses on layout, hyperlinking, timing and synchro-
nization issues. The Presentation Design elaborates on the Application Design
and bridges it with the actual code generation for the desired platform, e.g. TML,
WML, SMIL etc.

The Hera suite (the lower part of figure 1) is a collection of engines (software
programs), which can interpret the specifications (or models) provided by the
designer during the different phases of the design process.

The suite is split into several layers each of them processing a different model
and thus reflecting a different design phase.

– The Semantic Layer, which is the primary focus of this paper, integrates the
data that is available in a collection of heterogeneous external data sources
into one Conceptual Model (CM) with well-understood semantics. The Me-
diator as a main component of this layer, provides mediation services for the
Application Layers and offers also a connectivity for the “outside world” of
software agents.

– The Application Layer provides the logical functionality of the application,
in the sense that it exploits the structure of the CM to lay a foundation for
the hypermedia nature of the output in the form of the AM. The Application
Engine and the Adaptation engine are two main components of this layer:
the first generates a relevant (depending on the given query) “subset” of the
AM, which is then populated with data coming from the Semantic Layer; the
second interprets the adaptation rules and updates the UAM accordingly.

– The Presentation Layer of the framework is responsible for the transfor-
mation of the Application Model (possible including the User Adaptation
Model) into a chosen rendering platform (e.g. TML, WML or SMIL). In
order to achieve this, the Presentation Engine uses a relevant part (again
depending on the given query) of the implementation independent Presenta-
tion Model provided by the designer, which is populated with data coming
from the previous layer. This is then transformed by means of XSLT [11] to
a chosen rendering platform.

3 Designing the Semantic Layer

As already suggested in the previous section, the main purpose of the Semantic
Layer is to provide a semantically unified interface for querying (selected) het-

588 Richard Vdovjak and Geert-Jan Houben

erogeneous information sources. We do not aim at merging all possible sources
together to provide a cumulated view of all attributes. We argue that such an
approach offers weak semantics, where the understanding of the semantic struc-
ture of all integrated sources is effectively left up to the user who is issuing the
query against such a view. Instead, we chose to provide the user with a semantic
entry point in terms of the CM, which is interconnected with the underlying
sources by means of the IM.

Because of the Web nature of our target applications in combination with the
dynamically changing data in the underlying sources, we chose to base our inte-
gration framework on the lazy retrieval paradigm [12] assuring that the delivered
data is always up-to-date. To provide support for interoperability we combine
this retrieval with the technologies introduced with the Semantic Web initiative,
namely RDF(S)[3,2]. There are several reasons why we decided to use RDF(S):

– Compared to a traditional database schema, it deals better with the semi-
structured nature of Web data.

– RDF(S), a W3C standard for metadata, and its extensions such as DC[13],
CC/PP[14], RSS[15] etc. bring us closer to interoperability at least as far as
descriptive metadata is concerned.

– On top of RDF(S) high level ontology languages (e.g. AML+OIL[16]) are
(becoming) available, which allow for expressing axioms and rules about
the described classes giving the designer a tool with larger expressive power.
Choosing RDF(S) as the foundation for describing the CM, enables a smooth
transition in this direction.

When looking at integration as a (design) process, the following two prin-
cipal phases can be distinguished: designing the Conceptual Model and design-
ing/deriving the Integration Model. Further on, we detail these phases.

3.1 Conceptual Model Design

The Conceptual Model (CM) provides a uniform interface to access the data
integrated within a given Web application. It corresponds to a mediated schema
that is filled with data during query resolution. The application user is assumed
to be familiar with the semantics of terms within his field of interest, and the
function of the CM is to offer the user a uniform semantic view over the different
sources, that usually use different terms and/or different semantics.

The CM consists of hierarchies of concepts relevant within the given domain,
their properties, and relations. As already mentioned above it is expressed in
RDF(S).

Although RDF(S) seems to be a promising modeling tool it does not pro-
vide all modeling primitives we demand. Namely, the notion of cardinality and
inverse relationship is missing and there is also a lack of basic types. There are
more ways how to approach this problem, for example, in [17] it is shown how
to combine the data semantics, expressed in RDF(S), with the data constraints,
modeled in XML Schema [18]. As there is no clear W3C Recommendation on

Providing the Semantic Layer for WIS Design 589

this subject yet, we chose for the purist approach, i.e. to model both data con-
straints and data semantics in RDF(S) itself, by extending it with the mentioned
modeling primitives (the extensions are recognizable in the actual encoding with
the abbreviated namespace prefix “sys:”).

String

Portrait

Technique Artifact

Painting

Creator

Painter

Theme

Landscape Architecture

String

String

String

String Integer

Image

FurnitureSculpture Costume

creates

picture

Property

subClassOf

subPropertyOf

created_byexemplfied_by

exemplifies

depicted_by
depicts

name yearname

description

name

biography

paints

painted_by

Fig. 2. Conceptual Model

The running example that we use throughout the paper describes the design
of a virtual museum Web information system, which allows visitors to choose
(query) their favorite artist(s) and/or pieces, and to browse exhibitions (Web pre-
sentations) assembled from exhibits coming from different (online) museums and
art galleries, and possibly annotated with relevant descriptions from an online
art encyclopedia. All this data is offered from a single entry point, semantically
represented by a CM. In order to create a good CM it usually requires both the
domain expertise and modeling know-how. In this example, we let ourselves be
inspired by an existing CM. The Conceptual Model of our application roughly
corresponds to the actual museum catalog of the Rijksmuseum in Amsterdam4.

A part of this CM is depicted in a graphical notation in figure 2:

– Concepts are depicted as ovals; the more abstract ones such as Artifact and
Creator are on the top part of the model. From those, more concrete concepts
are inherited, e.g. Painting and Painter.

– Relationships are denoted with full arrows and are modeled as RDF proper-
ties. Similarly to concepts there are abstract relationships (properties) such

4 www.rijksmuseum.nl

590 Richard Vdovjak and Geert-Jan Houben

as created by, creates and their more concrete subrelationships (subproper-
ties) painted by and paints.

– Attributes, e.g. Creator.name: String, are treated as properties having as its
domain a concept, e.g. Creator, and as its range a basic type, e.g. String
(indicated with the rectangle).

<Technique rdf:about="Technique_ID01_Pointillism">

<name>

<sys:String>

<sys:data>Pointillism</sys:data>

<sys:String>

</name>

<description>

<sys:String>

<sys:data>

Pointillism is a painting technique in which

the use of tiny primary-color dots is used

to generate secondary colors...

</sys:data>

</sys:String>

</description>

</Technique>

<Painting rdf:about="Painting_ID01_ BanksoftheSeine ">

<name>

<sys:String>

<sys:data>Banks of the Seine</sys:data>

<sys:String>

</name>

<year>

<sys:Integer>

<data>1887</data>

</sys:Integer>

</year>

<exemplifies rdf:resource="#Technique_ID01_Pointillism"/>

<painted_by rdf:resource="#Painter_ID01_VincentvanGogh"/>

</Painting>

Fig. 3. Examples of RDF instances of the CM

Note that the graphical notation of the CM directly corresponds to an
RDF(S) graph. RDF(S) as such has not only graphical but also a textual (XML)
syntax. This XML-RDF(s) serialization is used in our software prototype to rep-
resent the CM.

During the actual run-time process of presentation generation the CM is on
request populated with instances (RDF statements), which represent the query

Providing the Semantic Layer for WIS Design 591

result coming from the Application Layer. Note that the source data gener-
ally comes from different (heterogeneous) sources and that the actual instance
retrieval is performed by the Integration Engine. Figure 3 presents in a XML-
RDF(S) syntax a concrete example of generated instances adhering to our CM,
as a response to the given query which propagated from the Application Layer.

3.2 Integration Model Design/Creation

The task of building the Integration Model is rather complex. It includes steps
like finding relevant information sources, parsing, understanding and articulating
the relevant parts of their schemas in terms of the CM. An articulation that
connects the CM with a concrete source is implemented as a set of mappings,
which relate (express) concepts from the source to (in terms of) concepts in
the CM. These articulations are then used during the data integration step to
provide the actual data response to a given query. Some of the above steps can
be automated, some still need a human interaction. In the following, we look at
them in more detail.

Source Discovery As it usually takes the human insight of the designer(s)
to create a (good) CM, finding relevant sources to populate the CM with data
is currently also mostly done by humans. When creating the CM, the designer
can be helped by available ontology engineering tools, which allow for export
in the RDF/S format. However, in the search for suitable sources the designer
is currently left alone in the vast space of the World Wide Web. We envision
that when the idea of the Semantic Web becomes reality (i.e. hen most of the
Web sources would provide a machine understandable semantics of their data
and services), search agents and information brokers will be capable of finding
(recommending) suitable sources to populate the CM.

Schema Integration An essential prerequisite to achieve interoperability is
to be able to identify and link together semantically similar data coming from
different sources. To fully automate this task is very difficult, especially in the
context of the semistructuredWeb sources. Even in the more structured database
world, this has been recognized as a not always solvable problem [19]. We try
to split this problem into two. The first one, easier to solve, deals with syntac-
tical issues. The second, more complicated one, deals with the reconciliation of
semantic discrepancies.

– Syntactic issues
Unlike the case of database integration, where the schemas of integrated
sources are assumed to be known explicitly, in the Web environment we
often have to do the pre-integration schema discovery. In other words, it is
needed to identify and make explicit what classes/concepts are provided by
the integrated sources. In the ideal world of semantically annotated sources,

592 Richard Vdovjak and Geert-Jan Houben

which export their schemas in RDF/S, this would be a question of parsing
an RDF file, so it can be fully automated.

XML-RDF
Broker 1

<!ELEMENT exhibition (painter*, painting*)>
<!ELEMENT painter (name, dateofbirth, school)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT dateofbirth (#PCDATA)>
...

Source DTD

<?xml version="1.0" encoding="ISO-8859-1"?>
<?var name="$1" ?>
<?fnc name="$GetDestID" ?>
<lmx:rules
xmlns:rdf="htp://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:lmx="http://www.ibm.com/xml/lmx/"
xmlns:sys="http://wwwis.win.tue.nl/~hera/rdf/sytem#">
 <lmx:pattern>
 <lmx:lhs>
 <painter>
 <name> $1 </name>
 </painter>
 </lmx:lhs>
 <lmx:rhs>
 <Painter rdf:about="$GetDestID">
 <name>
 <sys:String>
 <sys:data> $1 </sys:data>
 <sys:String>
 </name>
 </Painter>
 </lmx:rhs>
 </lmx:pattern>
</lmx:rules>

Mapping rule

<Painter rdf:about="Painter_ID01_vanGogh"
 <name>
 <sys:String>
 <sys:data> Vincent van Gogh </sys:data>
 <sys:String>
 </name>
</Painter>

Generated RDF

Fig. 4: The concept extraction from a DTD and its corresponding mapping to the CM

At the present however, most of the Web sources do not provide more than
an XML description of their content. In the following we consider sources
having at least this capability5.
Even if the sources are encoded in XML, assuming no particular XML struc-
ture, it is still difficult to automatically recognize concepts and in order to
do so, the insight of an application designer is often needed. The difficulty
here varies based on the way in which the sources are encoded in XML.

5 In case of HTML-only sources, a wrapping process is required to extract the source’s
content to an XML form.

Providing the Semantic Layer for WIS Design 593

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE results [
 <!ELEMENT results (entity-class*)>
 <!ELEMENT entity-class (entity-instance)*>
 <!ATTLIST entity-class name CDATA #REQUIRED >
 <!ELEMENT entity-instance (attr)*>
 <!ATTLIST entity-instance ID ID #REQUIRED >
 <!ELEMENT attr (#PCDATA)>
 <!ATTLIST attr attrID ID #REQUIRED >
]>
<results>
 <entity-class name = "Technique">
 <entity-instance ID="TechniqueInst1">
 <attr attrID= "Name">
 Pointillism
 </attr>
 <attr attrID= "Describtion">
 Pointillism is a painting technique in which
 the use of tiny primary-color dots is used
 to generate secondary colors...
 </attr>
 </entity-instance>
 </entity-class>
</results>

XML-RDF
Broker 2

Source DTD/XML

Mapping rule
<?xml version="1.0" encoding="ISO-8859-1"?>
<?var name="$1" ?>
<?var name="$2" ?>
<?fnc name="$GetSrcID" ?>
<lmx:rules xmlns:lmx="http://www.ibm.com/xml/lmx/"
 xmlns:rdf="htp://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sys="http://wwwis.win.tue.nl/~hera/rdf/sytem#">
 <lmx:pattern>
 <lmx:lhs>
 <results>
 <entity-class name="Technique">
 <entity-instance ID="$GetSrcID">
 <attr attrID="Name"> $1 </attr>
 <attr attrID="Describtion"> $2 </attr>
 </entity-instance>
 </entity-class>
 </results>
 </lmx:lhs>
 <lmx:rhs>
 <Technique rdf:about="$GetDestID">
 <name>
 <sys:String>
 <sys:data>$1</sys:data>
 <sys:String>
 </name>
 <description>
 <sys:String>
 <sys:data> $2 </sys:data>
 </sys:String>
 </description>
 </Technique>
 </lmx:rhs>
 </lmx:pattern>
</lmx:rules>

Fig. 5: The concept extraction from XML data and its corresponding mapping to
the CM

For example, assume that one of the online galleries that we integrate in
our virtual museum provides a description of the available data in the form

594 Richard Vdovjak and Geert-Jan Houben

of a DTD, a part of which is shown in figure 4 (top). The designer can
conclude directly from this DTD that the element painter together with
its subelement name is to be extracted as a relevant concept and mapped
to our CM. However, looking only at DTDs (XMLSchemas) is sometimes
not enough. Assume for instance that an online art encyclopedia encodes its
concepts as XML attribute values, providing only a general DTD as shown in
figure 5 (top). In this case, the designer must also examine the actual XML
data to conclude that the encyclopedia offers a concept called Technique,
which is to be linked to our CM.

– Semantic issues
After reconstructing the source schemas, the main problem is to choose the
right concepts occurring in the source schemas and to relate them to the
concepts from the CM (recall that unlike in classical database schema inte-
gration, we do not integrate all concepts from sources, but rather select the
relevant ones with respect to the defined CM).
The problem of relating concepts form the source schemas to the ones from
the CM can be mapped to the problem of merging or aligning ontologies.
The approaches to solve the problem are usually based on lexical matches,
relying mostly on dictionaries to determine synonyms and hyponyms; this is
however often not enough to yield good results.
In [20] the structure of ontologies is also taken into account when searching
for corresponding concepts. Neither of these approaches, however, delivers
satisfactory results especially if ontologies are constructed differently, e.g.
having a very different structure or differing in the depth of the class hierar-
chy. This is often the case in uncoordinated development of ontologies across
the Web and that is why ontology aligning is currently mostly a manual
process, where a domain expert identifies the concepts that are similar and
records the mappings between them. In our framework, we also currently
rely on the designer who provides such mappings6.
As mentioned above an articulation is implemented as a set of mappings,
which relate concepts from a source to the concepts from the CM. In case
of integrating an RDF source the mappings are mostly straightforward and
usually they are also expressible in RDF. However, if we want to integrate
an XML source we need something that transforms the source’s XML to the
RDF(S) of the CM. For this kind of transformation we use mapping rules
that extract the relevant portions of information 7 from the (XML) sources
and relate them to the CM.
These mappings are expressed in the form of LMX8[21] rules consisting of
a left-hand side, the “from part”, and the right-hand side, the “to part”.
The data that is to be transferred is specified by positioning variables de-
noted as $x. These are declared at the beginning as processing instructions

6 We intend to re-address this issue in the future by providing the designer with a
tool, which would suggest initial correlations.

7 It is often the case that only some attributes from the source concept are linked to
a concept from the CM.

8 Language for Mapping XML documents.

Providing the Semantic Layer for WIS Design 595

(together with functions such as GetDestId, which is used for a coordinated
assignment of IDs) to make the application aware of them. In figure 4 we
present an example of such a mapping rule together with the RDF instances
it yields. Another example is presented in figure 5; this rule maps the Tech-
nique element coming from the online art encyclopedia to the corresponding
concept in our CM. The result (an RDF instance) of this mapping is shown in
figure 3 (top). Given the mappings, the semantic reconciliation is performed
by the XML2RDF brokers described in section 4.

Data Integration Once the relevant high level sources have been identified
and mappings to the CM established, the user can ask a query. The integration
system must reformulate it into a query that refers directly to the source schemas
taking into account the source query capabilities. Then the results are collected
and presented to the user. Note that sometimes it is also the case that differ-
ent sources provide information about the same real world entities but refer to
these entities differently; this is also called a designation conflict. The integration
system has to determine such cases and consider them adequately.

The query processing, and the composition of results is a task performed by
the mediator described in section 4.

4 Implementing the Semantic Layer

The notion of mediator as introduced in [22] laid the foundation for building
mediating architectures that have the ambition to overcome the semantic het-
erogeneity and facilitate a seamless access to data coming from many heteroge-
neous sources. In order to provide the Semantic Layer, our prototype implements
such a mediating architecture. To address the issues mentioned in the previous
sections, the architecture is split from software point of view into separate in-
dependent (sub)layers (figure 6), each them responsible for a different task and
together creating a well-knit integration framework. We describe each of the
layers further.

– Source Layer
The Source Layer contains external data sources such as relational or ob-
ject databases, HTML pages, XML repositories, or possibly RDF (ontology)
based sources. This layer provides the content to be integrated. Our target
applications can be built from fairly general sources that can be distributed
across the Web. As already mentioned, we assume that the sources have the
capability of exporting their data in XML serialization. However, due to het-
erogeneity, we do not impose any particular structure the XML data sources
should comply to. This allows us to leave the XML wrapping process for the
source providers.
Note that by choosing RDF(S) as the foundation for the CM and by export-
ing it via the mediator to the outside world, one instance of our framework

596 Richard Vdovjak and Geert-Jan Houben

can qualify as a resource for another framework, hence providing compos-
ability 9.

<entity-class name = "Technique">
 <entity-instance ID="TchInst1">
 <attr attrID= "Name">
 <![CDATA[Pointillism]]>
 </attr> ...
 </entity-instance> ...
</entity-class>

XML-RDF
Broker

 RDF-RDF
Broker

 XML-RDF
Broker

Web
SourceO/RDB

HERA Application

Q
ue

ry
co

m
po

st
io

n

P
re

se
nt

at
io

n
B

ro
w

si
ng

U
se

r/
P

la
tfo

rm
ad

ap
ta

tio
ndata

req.

RDF-XML DATA

XML/RDF query
DATAXML query

DATA
XML query

DATA

(W
ra

p
p

ed
)

S
o

u
rc

e
L

ay
er

R
ec

o
n

ci
lia

ti
o

n
L

ay
er

M
ed

ia
ti

n
g

L
ay

er
A

p
p

lic
at

io
n

L
ay

er

O
n

to
lo

g
y

la
n

g
u

ag
e

External
App

X
M

L
1

O
/R

D
B

-X
M

L
W

ra
pp

er

R
D

F
 /

R
D

F
 S

ch
em

a

X
M

L

(Search)
Agent

Conceptual Model

RDF query

MEDIATOR
RDF Query Engine

D
T

D
/S

ch
em

a

RDF query
RDF-XML DATA

RDF query
RDF-XML DATA

RDF query
RDF-XML DATA

RDF query
RDF-XML DATA

RDF query
RDF-XML DATA

<painter rdf:instance="...">
 <name>
 Vincent Willem van Gogh
 </name> ...
 <dateofbirth>
 30-03-1853
 </dateofbirth> ...
</painter>
...

 R
D

F
S

R
D

F
(S

)<distance
 from= "5223PT"
 to="2541WE"
 km = "15"/>
 <distance
 from= "2342WS"
 to="2241RE"
 km = "150"/> X

M
L

2

D
T

D
/S

ch
em

a

X
M

L

H
T

M
L2

X
M

L
W

ra
pp

er

WSMobile PCPDA

info request

presentation

Integration Model

Articul
ation

Articul-
ation

Articul-
ation

Articul-
ation

Fig. 6: Architecture facilitating semantic integration of heterogeneous information
sources

– Reconciliation Layer
9 We acknowledge that implementing our architecture on newly appearing middle-
ware standards such as J2EE from Sun Microsystems could bring composability and
interoperability even further.

Providing the Semantic Layer for WIS Design 597

This layer is responsible for the semantic reconciliation of the sources with
respect to the CM and consists of XML2RDF brokers, which provide the
bridge between the XML instances from the previous layer and the mediator.
The designer tailors each XML2RDF broker to its source by specifying an
articulation that maps XML sources to the underlying CM. This articulation
is implemented as a set of mapping rules, which are used by the XML2RDF
broker while resolving a query coming from the mediator. Providing the ac-
tual response to a mediator’s query requires the broker to poll the source
for data and to create RDF statements, that is riplets (subject, textitpredi-
cate, textitobject).

– Mediating Layer
This layer is responsible for the query services and data integration, its
central component being the mediator. The mediator can be considered as a
secondary source which does not have a data repository; instead, it maintains
the CM. From the technical point of view the mediator contains a query
decomposition module and an RDF query engine [23]. After the mediator
receives a query from the Application Layer it proceeds as follows.
First, it decomposes the query into subqueries [24] and distributes them
among the brokers trying to push the processing of the query as much as
possible on the sources, while taking into account the source query capabil-
ities. The actual querying is triggered by a navigation request coming from
the Application Layer.
Then it collects the data from the brokers, applies a field matching algo-
rithm citeAEMCPE:96 to resolve possible designation conflicts, constructs
the response and sends it to the Application Layer.

– Application Layer
The Application Layer utilizes the Mediating Layer by asking queries against
the CM. For the Application Layer, the Mediating Layer is actually the
front-end of the Semantic Layer introduced in section 2. From the mediating
point of view it is not important whether the application generates (Web)
presentations for the end-user (e.g. s the Hera suite does) or it only processes
the pure information provided by this layer (e.g. s a search agent does): both
cases are served in the same manner by answering queries from the CM.

5 Conclusions and Future Work

Creating Web-based information systems requires the use of a thorough design
methodology. Specially, when the content of the system is gathered from differ-
ent information sources available via the Web, the specification of how data is
retrieved requires appropriate design tools. Concretely, a solution to the problem
of integrating heterogeneous information sources is needed in order to be able
to provide a uniform access to data gathered from the different sources. In this
paper we have extended the Hera design methodology with the Semantic Layer
concentrating on its integration aspect. The proposed integration framework
combines semantic metadata with on-demand retrieval. It offers a composable
semantic interface for (dynamic) access to heterogeneous information sources.

598 Richard Vdovjak and Geert-Jan Houben

In terms of the software, on-going experiments in the context of the Hera
project are verifying our ideas about integration specification with an implemen-
tation of the framework’s prototype. In the future we would like to extend our
framework with an algorithm that would deliver starting correlations between
source concepts and the concepts from the CM, which can be then improved by
the designer. Next, we also intend to extend the conceptual model with a high
level ontology language allowing for expressing inference rules.

References

1. Deshpande, Y., Ginige, A., Hansen, S., Murugesan, S.: Web Engineering: A New
Discipline for Web-Based System Development. Proc. of the First ICSE Workshop
on Web Engineering, ACM, 1999 584

2. Lassila, O., Swick, R. R.: Resource Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation, 1999 http://www.w3.org/

TR/1999/REC-rdf-syntax-19990222 584, 588
3. Brickley, D., Guha, R. V.: Resource Description Framework (RDF) Schema
Specification 1.0. W3C Candidate Recommendation, 2000 http://www.w3.org/

TR/2000/CR-rdf-schema-20000327 584, 588
4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific
American, 2001 May, http://www.scientificamerican.com/2001/0501issue/

0501berners-lee.html 584
5. Balasubramanian, P., Isakowitz, T., Stohr, E. A.: RMM: A Methodology for Struc-
tured Hypermedia Design. Communications of the ACM, Vol. 38, No. 8, 1995 585

6. Barbosa, S. D. J., Rossi, G., Schwabe, D.: Systematic Hypermedia Application
Design with OOHDM. Proc. of the Seventh ACM Conference on Hypertext, 1996
585

7. Bongio, A., Ceri, S., Fraternali, P.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Proc. of the Nineth International World Wide
Web Conference (WWW9), Elsevier, 2000 585

8. De Bra, P., Houben, G. J.: Automatic Hypermedia Generation for ad hoc Queries
on Semi-Structured Data. Proc. of the Fifth ACM Conference on Digital Libraries,
ACM, 2000 585

9. Frasincar, F., Houben, G. J., Vdovjak, R.: An RMM-Based Methodology for Hy-
permedia Presentation Design. Proc. of the Fifth East-European Conference on
Advances in Databases and Information Systems (ADBIS ’01), Springer-Verlag,
2001 585, 586, 587

10. De Bra, P., Houben, G. J., Wu, H.: AHAM: A Dexter-based Reference Model
for Adaptive Hypermedia. Proc. of the 10th ACM Conference on Hypertext and
Hypermedia (Hypertext ’99), ACM, 1999 587

11. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommandation, 1999
http://www.w3.org/TR/xslt 587

12. Ludscher, B., Papakonstantinou, Y., Velikhov, P.: A Framework for Navigation-
Driven Lazy Mediators. Proc. of ACM Workshop on the Web and Databases,
ACM,1999 588

13. Dublin Core Metadata Element Set, Version 1.1: Reference Description. DCMI,
1999 http://dublincore.org/documents/1999/07/02/dces/ 588

Providing the Semantic Layer for WIS Design 599

14. Klyne, G., Ohto, H., Reynolds, F., Woodrow, C.: Composite Capability/Preference
Profiles (CC/PP): Structure and Vocabularies. W3C Working Draft, 2001
http://www.w3c.org/TR/CCPP-struct-vocab/ 588

15. Beged-Dov, G., Brickley, D., Dornfest, R., Davis, I., Dodds, L., Eisenzopf,
J., Galbraith, D., Guha, R. V., MacLeod, K., Miller, E., Aaron Swartz,
A., van der Vlist, E.: RDF Site Summary (RSS) 1.0. RSS-DEV, 2001
http://purl.org/rss/1.0/spec 588

16. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider,
P. F., Stein, L. A.: DAML+OIL (March 2001) Reference Description. W3C Note,
2001 http://www.w3.org/TR/daml+oil-reference 588

17. Hunter, J., Lagoze, C.: Combining RDF and XML Schemas to Enhance Interop-
erability Between Metadata Application Profiles. Proc. of the Tenth International
World Wide Web Conference (WWW10), ACM, 2001 588

18. Biron, P. V., Malhotra, A.: XML Schema Part 2: Datatypes. W3C Recommanda-
tion, 2001 http://www.w3.org/TR/xmlschema-2 588

19. Kashyap, V., Sheth, A.: Schema Correspondences between Objects with Seman-
tic Proximity. Technical report DCS-TR-301, Department of Computer Science
Rutgers University, 1993, October 591

20. Mark, A. M., Noy, N. F.: Anchor-PROMPT: Using Non-Local Context for Semantic
Matching. Proc. of the Workshop on Ontologies and Information Sharing at the
Seventeenth International Joint Conference on Artificial Intelligence, 2001 594

21. Maruyama, H., Tamura, K., Tamuran, K., Uramoto, N.: In: XML and Java, LMX:
Sample Nontrivial Application. Addison-Wesley, 1999, 97–142 594

22. Wiederhold, G.: Mediators in the Architecture of Future Information Systems.
Computer Magazine of the Computer Group News of the IEEE Computer Group
Society, Vol. 25. IEEE, 1992, 38–49 595

23. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: The RDFSuite:
Managing Voluminous RDF Description Bases. Proc. of the Second International
Workshop on the Semantic Web (SemWeb ’01),WWW10, 2001 597

24. Duschka, O. M., Genesereth, M. R., Levy, A. Y.: Recursive Query Plans for Data
Integration. Journal of Logic Programming, Vol. 43, No. 1, 2000, 49–73 597

25. Elkan, C. P., Monge, A. E.: The field matching problem: Algorithms and applica-
tions. Proc. of the Second International Conference on Knowledge Discovery and
Data Mining, AAAI Press, 1996

	Providing the Semantic Layer for WIS Design
	Introduction and Related Work
	Hera Design Methodology
	Designing the Semantic Layer
	Conceptual Model Design
	Integration Model Design/Creation
	Source Discovery
	Schema Integration
	Data Integration

	Implementing the Semantic Layer
	Conclusions and Future Work

