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Abstract. 

In this paper we describe simple identification and signature schemes which enable any user 
to prove his identity and the authenticity of his messages to any other user without shared 
or public keys. The schemes are provably secure against any known or chosen message attack 
if factoring is difficult, and typical implementations require only 1% to 4% of the number of 
modular multiplications required by the RSA scheme. Due to their simplicity, security and speed, 
these schemes are ideally suited for microprocessor-based devices such as smart cards, personal 
computers, and remote control systems. 

1. Introduction 

Creating unforgeable ID cards based on the emerging technology of smart cards is an im- 
portant problem with numerous commercial and military applications. The problem becomes 
particularly challenging when the two parties (the prover A and the verifier B )  are adversaries, 
and we want to make it impossible for B to misrepresent himself as A even after he witnesses and 
verifies arbitrarily many proofs of identity generated by A.  Typical applications include passports 
(which are often inspected and photocopied by hostile governments), credit cards (whose numbers 
can be copied to blank cards or used over the phone), computer passwords (which are vulnerable 
to hackers and wire tappers) and military command and control systems (whose terminals may 
fall into enemy hands). We distinguish between three levels of protection: 

1) Authentication schemes: A can prove to B that he is A ,  but someone else cannot prove 
to B that he is A .  

2) Identification schemes: A can prove to B that he is A ,  but B cannot prove to someone 

3) Signature schemes: A can prove to B that he is A ,  but B cannot prove even to himself 

Authentication schemes are useful only against external threats when A a n d  B cooperate. 
The distinction between identification and signature schemes is subtle, and manifests itself mainly 
when the proof is interactive and the verifier later wants to prove its existence to a judge: In iden- 
tification schemes B can create a credible transcript of an imaginary communication by carefully 
choosing both the questions and the answers in the dialog, while in signature schemes only real 
communication with A could generate a credible transcript. However, in many commercial and 
military applications the main problem is to detect forgeries in real time and to deny the service, 
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else that he is A.  

that he is A .  
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access or response that the forger wants. In these cases the transcript and judge are irrelevant, 
and the two types of schemes can be used interchangeably. 

2. Interactive Identification 

2.1 Background 

The new identification scheme is a combination of zero-knowledge interactive proofs (Gold- 
wasser, Micali and Rackoff [1985]) and identity-based schemes (Shamir [1984]). It is based on the 
difficulty of extracting modular square roots when the factorization of n is unknown. A related 
protocol for proving the quadratic residuosity of numbers was presented by Fischer Micali and 
Rackoff at Eurocrypt 84 (it did not appear in the proceedings), but the new protocol is faster 
and requires less communication. The main contribution of this paper is to show the relevance of 
such protocols to practical identification and signature problems. 

The scheme assumes the existence of a trusted center (a government, a credit card company, 
a computer center, a military headquarters, etc.) which issues the smart cards to users after 
properly checking their physical identity. No further interaction with the center is required either 
to generate or to verify proofs of identity. An unlimited number of users can join the system 
without degrading its performance, and it is not even necessary to keep a list of all the valid users. 
Interaction with the smart cards will not enable verifiers to reproduce them, and even complete 
knowledge of the secret contents of ail the cards issued by the center will not enable adversaries to 
create new identities or to modify existing identities. Since no information whatsoever is leaked 
during the interaction, the cards can last a lifetime regardless of how often they are used. 

2.2 The Scheme 

Before the center starts issuing cards, it chooses and makes public a modulus n and a pseudo 
random function f which maps arbitrary strings to the range [O, n). The modulus n is the product 
of two secret primes p and q, but unlike the RSA scheme, only the center knows the factorization 
of the modulus and thus everyone can use the same n. The function f should be indistinguishable 
from a truly random function by any polynomially bounded computation. Goldreich Goldwasser 
and Micali [1984] describe a particular family of functions which is provably strong in this sense, 
but we believe that in practice one can use simpler and faster functions (e.g., multiple DES) 
without endangering the security of the scheme. 

When an eligible user applies for a smart card, the center prepares a string 1 which contains 
all the relevant information about the user (his name, address, ID number, physical description, 
security clearance etc.) and about the card (expiration date, limitations on validity, etc). Since 
this is the information verified by the scheme, it is important to make it detailed and to double 
check its correctness. The center then performs the following steps: 

Compute the values uj  = f(1,j) for small values of j. 

Pick k distinct values of j for which uJ is a quadratic residue 
smallest square root s, of vJT' 

Issue a smart card which contains I ,  the k s, values, and their indices. 

1. 

2. (mod n) and compute the 
(mod n). 

3. 

Remarks: 

1. To simplify notation in the rest of this paper, we assume that the f is t  k indices j = 
1 ,2 , .  . . , k are used. 



2. For non-perfect functions f, it may be advisable to randomize I by concatenating it to 
a long random string R which is chosen by the center, stored in the card, and revealed 
along with I .  
In typical implementations, k is between 1 and 18, but larger values of k can further 
reduce the time and communication complexities of the scheme. 

n should be at least 512 bits long.’ Factoring such moduli seems to be beyond reach with 
today’s computers and algorithms, with adequate margins of safety against foreseeable 
developments. 

The center can be eliminated if each user chooses his own n and publishes it in a public key 
directory. However, this RSA-like variant makes the schemes considerably less convenient. 

The verification devices are identical standalone devices which contain a microprocessor, a 
small memory, and 1/0 interface. The only information stored in them are the universal modulus 
n and function f .  When a smart card is inserted into a verifier, it proves that it knows s1,. . . , sk 
without giving away any information about their values. The proof is based on the following 
protocol: 

1. 

2. 

3. 

4. 

5. 

A sends I to B. 

B generates u, = f(1, j) for j = 1,. . . ,k. 
Repeat steps 3 to 6 for i = 1,. . . , t: 

3. 

4. 

5. A sends to B :  

A picks a random ri E [O,n) and sends z; = r: 

B sends a random binary vector (ei1,. . . , e ; k )  to A. 

(mod n) to B. 

y, = r, n s, (mod n). 
e . j = l  

6. B checks that 

Z; = yt  uj  (mod n). 
e ; j = 1  

Remarks: 

1. 

2. 

The verifier B accepts A’s proof of identity only if all the t checks are successful. 

To decrease the number of communicated bits, A can hash z, by sending B only the first 
128 bits of f(z;) in step 3. B can check the correctness of this value in step 6 by applying 
f to the right hand side of the equation and comparing the Erst 128 bits of the results. 

A can authenticate a particular message m (e.g., an instruction to a remote control system 
or a program sent t o  a remote computer) without having to extract new square roots by 
sending B the first 128 bits of f(rn,z,) in step 3. If B knows m, he can easily check this 
value in step 6. A is fully protected against modifications and forgeries of his messages 
by the pseudo random nature of f ,  but this is not a real signature scheme: without 
participating in the interaction, a judge cannot later decide if a message is authentic. 

3. 

2.3 Security 

Lemma 1: If A and B follow the protocol, B always accepts the proof as valid. 
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Proof: By definition 

y; u j  = rf (sfuj) = ri 2 = 2; (mod n). 
c;a=l e;j=l 

Lemma 2: Assume that A does not know the s j  and cannot compute in polynomial time the 
square root of any product of the form nj,l ufi (mod n) (c ,  = -1 ,O or il, not all of them 
zero). If 3 follows the protocol (and A performs arbitrary polynomial time computations), B will 
accept the proof as valid with probability bounded by 2 - k f .  

k 

Proof (Sketch): A can cheat by guessing the correct e;j vectors and sending 

z; = r; v, (mod n) and yi = r;. 
e . . = l  
.I 

However, the probability of this event is only 2 - k  per iteration and 2 - k f  for the whole protocol. 
To increase this probability, A must choose the z; values in such a way that for a non-negligible 
fraction of them he can compute the square roots y: and y; of 

Z i /  n ~j (mod n) 

for two vectors e:j and e b .  The ratio y:/y: (mod n). This 
contradicts the assumption, since A himself can simulate B's random questions and thus compute 
in expected polynomial time a value we assumed he cannot compute. 

(mod n) is of the form n;==,s? 

Lemma 3: For a fixed k and arbitrary t ,  this is a zero-knowledge proof. 

Proof (Sketch): The intuitive (but non-rigorous) reason the proof reveals no information 
whatsoever about the s j  is that the z; are random squares, and each y; contains an independent 
random variable which masks the values of the s,. All the messages sent from A to B are thus 
random numbers with uniform probability distributions, and cheating by B cannot change this 
fact. 

To prove this claim formally, in the full paper we exhibit a probabilistic algorithm which 
simulates the communication between A and B without knowing the s, with a probability distri- 
bution which is indistinguishable from the real distribution. The expected running time of this 
algorithm is t * 2 k  times the sum of the expected running times of A and B. By assumption, this 
running time is polynomial. 

Remarks: 

1. Throughout this paper, 2 k t  is assumed to be much smaller than the time required to factor 
the modulus n. 

The quadratic residuosity protocol of Fischer Micali and Rackoff is a special case of this 
protocol with k = 1. The main practical advantage of the new protocol is that for the 
same security we can use only the square root of the number of iterations, which reduces 
the time and communication complexities of the protocol and its applications. 

An adversary who records polynomially many proofs of identity cannot increase his chance 
of success: If he reuses a recorded z,, he can playback the recorded answers only if the 
questions happen to  be the same. Since A uses each z; only once, the probability of 

2. 

3. 
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success is still z - ~ ~ .  
In the parallel version of this protocol, A sends all the z;, then B sends all the e;;, and 
finally A sends all the yi. This version is not zero-knowledge for technical reasons, but its 
security can be formally proven by the techniques developed in Section 3. 

The 2-kt  probability of forgery is an absolute constant, and thus there is no need to pick large 
values of k and t as a safeguard against future technological developments. In most applications, 
a security level of 2-” suffices to deter cheaters. No one will present a forged passport at an 
airport, give a forged driver’s license to a policeman, use a forged ID badge to enter a restricted 
area, or use a forged credit card at a department store, if he knows that his probability of success 
is only one in a million. In all these applications, the forged ID card (rather than the transcript 
of the communication) can be presented to a judge as evidence in a trial. Even if the only penalty 
for a failed attempt is the confiscation of the card, and smart cards cost only $1 to manufacture, 
each success will cost about one million dollars. For national security applications, we can change 
the security level to Z-30: Even a patient adversary with an unlimited budget, who tries to 
misrepresent himself 1000 times each day, is expected to succeed only once every 3000 years. 

4. 

2.4 Complexity 

To attain a ZdZo level of security, it suffices t o  choose k = 5 ,  t = 4 (for 2-”, increase these 
values by 1). The average number of modular multiplications required to generate or verify a 
proof of identity in this case is t ( k  + 2 ) / 2  = 14. The number of bytes exchanged by the parties 
during the proof is 323, and the secret s, values can be stored in a 320 byte ROM. Even better 
performance can be obtained by increasing k to 18 (a 1152 byte ROM). If we use e,j vectors with 
at most three 1’s in them, we have a choice of 988 possible vectors in each iteration. With t = 2 
iterations, the security level remains about one in a million, but the number of transmitted bytes 
drops to 165 and the average number of modular multiplications drops to 7.6 (which is two orders 
of magnitude faster than the 768 multiplications required by the RSA scheme). Note that the 
2 x 18 e;j matrix is so sparse that €3 has to generate at most 6 out of the 18 v, values to verify 
the proof. 

The time, space, communication and security of the scheme can be traded off in many possible 
ways, and the optimal choices of k, t and the e;i matrix depends on the relative costs of these 
resources. Further improvements in speed can be obtained by paralielizing the operations. Unlike 
the RSA scheme, the two parties can pipeline their operations (with A preparing z;+i and yi+i 
while B is still checking zi  and y;), and use parallel multipliers to compute the product of uj 
or s, values in log k depth. Since the protocol uses only multiplication (and no gcd or division 
operations which are hard to paralIelize), each iteration of the protocol is in NC, and thus the 
scheme is suitable for very high speed applications. 

3. Signatures 

3.1 The Scheme 

B’s role in the interactive identification scheme is passive but crucial: The random ei; matrix 
he sends contains no information but its unpredictability prevents cheating by A.  To turn this 
identification scheme into a signature scheme, we replace B’s role by the function f and obtain 
the following protocol: 
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To sign a message m: 

1. 

2. 

3. A computes 

A picks random r l ,  . . . ,rt E [O, n) and computes zi = r: 

A computes f(m, 21,. . . zt) and uses its first kt bits as ci, values (1 5 i 5 t ,  1 5 j _< k). 
(mod n). 

yi = ri sj (mod n) for i = 1 , .  . . ,t  
e . . = l  .I 

and sends I,m, the e i i  matrix and all the y; to B. 

To verify A's signature on m: 

1. 

2. B computes 

B computes w j  = f ( 1 , j )  for j = 1,. . . , k. 

z, = y: n uj  (mod n) for i = 1,. . . , t .  
e i j = l  

3. B verifies that  the first kt bits of f (m,z l , .  . . ,z t )  are eij. 

3.2 Security 

The formal proof of security in this extended abstract assumes that n is sufficiently large and 
that f is a truly random function. Consequently, there can be no generic attack which breaks the 
scheme for any n and f unless factoring is easy. Practical implementations which use particular 
moduli no and psuederandom functions fo may still be vulnerable to specialized attacks, but 
they mearly show that n o  is too small or that fo is demonstrably non-random. When no is at 
least 512 bits long and  fo is sufficiently strong (e.g., multiple DES with a fixed cleartext and 
variable key), such attacks are quite unlikely. 

Lemma 4: If A and B follow their protocols, B always accepts the signature as valid. 

Proof: By definition, 

Lemma 5: A chooses a particular signature among all the possible signatures for the message m 
with uniform probability distribution. 

Proof: Given a signature (c ; j  matrix and y; values), it is possible to recreate r:, . . .,I: 
(mod m) uniquely, and rl ,  . . . , rk in exactly 4k ways. Since A chooses the r; at random, the 
various signatures are chosen with equal probabilities. 

Lemma 6: Let AL be  any polynomial time probabilistic algorithm which accepts n, ui ,  . . . ,vk 
and the signatures of arbitrary messages ml , m2,. . . of its choice, and produces a valid signature 
of another message rno of its choice. If the complexity of factoring and Zk* grow non-polynomially 
with the size of n, AL cannot succeed with non-negligible probability for random functions f.  

Proof (Sketch): By contradiction. Using a simple combinatorial argument, we can prove 
that a polynomial time variant AL' of AL can compute a square root of some product &, ~7 
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(mod n) (Cj = - 1 ,  0 ,  or +1, not all of them zero) with a similar probability of success. 

To turn AL’ into a factoring algorithm for n, pick random s1,. . . , s k  and define u, = S; 

(mod n). Execute AL’ with n,ul,. . . , v k  as input, and use the s, to supply the signatures of 
ml, m2,. . . requested by AL’. The output of AL’ is a square root Q of n,”,, u; (mod n), but 
another square root S (= n,”,, sfj  (mod n)) is already known. By Lemma 5 ,  AL’ cannot find 
out which one of the four possible roots is S by analysing the given signatures of ml,m2,.. .. 
Consequently, gcd(Q - S,n) is a proper factor of n with probability 1/2. By repeating this 
procedure several times, we can make this probability arbitrarily close to 1. 

It is easy to forge signatures for arbitrary messages mo in time T with probability T . 2-k* 
by guessing the e j j  matrix T times. A refinement of Lemma 6 shows that when the complexity 
of factoring is considerably higher than Zkt,  this attack is essentially optimal: 

Lemma 7: Let AL be any probabilistic algorithm of the type described in Lemma 6. If AL 
runs in time T and succeeds with probability (1 + E ) T ~ - ~ *  for random functions f, then n can be 
factored with non negligible probability in time T Z  . 2 k t .  

Proof: Will be given in the full paper. 

Corollary 8: If k and t are chosen so that the ratio between the complexity of factoring and 
Zk’ grows non-polynomially with the size of n, then the T 2 - k t  probability of forgery is tight for 
polynomial time attacks. 

Discussion 
The sequential version of the interactive identification scheme is zerc-knowledge and thus 

B cannot deduce any information whatsoever about the s j  from his interaction with A. The 
parallel identification scheme and the signature scheme, on the other hand, cannot be proven 
zero-knowledge for very subtle technical reasons. In fact, strong signature schemes cannot be zero- 
knowledge by definition: If everyone can recognize valid signatures but no one can forge them, 
B cannot generate by himself A’s messages with the same probability distribution. However, 
corollary 8 shows that the information about the sj ’s  that B gets from signatures generated by 
A is so implicit that it cannot be used to forge new signatures, and thus the signature scheme is 
provably secure (if factoring is difficult) even though it is not zero-knowledge. 

3.3 Complexity 

In the proposed signature scheme, an adversary knows in advance whether his signature will 
be accepted as valid, and thus by experimenting with Z k t  random ri values, he is likely to find a 
signature he can send to B. Consequently, the product kt must be increased from 20 to at least 
7 2  when we replace the identification scheme by a signature scheme. 

The private key can 
be stored in a 576 byte ROM, and each signature requires 521 bytes. The average number of 
modular multiplications for this choice is t ( k  + 2 ) / 2  = 4 4 .  

By doubling the key size t o  1152 bytes (k = 18), we can reduce the size of each signature 
to 265 bytes (t  = 4) without changing the T7’ security level. By optimizing the order of the 
multiplications to compute the t subset products simultaneously, we can reduce their average 
number to 32. This is only 4% of the number of multiplications required in the RSA signature 
scheme. Other points along the tradeoff curve for the 2-72 security level are summarized in Table 
1. 

A choice of k = 9, t = 8 attains the desired 2-72 security level. 
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Table 1: Tradeoffs for k and f at the Z-72 Security Level 

A unique feature of the new identification and signature schemes is that it is possible to 
change their level of security after the key has been chosen. Consider, for example, an access 
card with k = 18 sj values: The fast screening procedure at the entrance to the building will be 
controlled with t = 1 (2-'* security level), access to the computer room will be controlled by 
t = 2 (2-36 security level), while any usage of the computer will leave signed audit trails with 
t = 4 (Z-" security level). The only dangerous case is the simultaneous usage of the same sj 
values in a parallel identification scheme with a large t and in a signature scheme with a small t 
(an unlikely combination), which is susceptible to an active playback attack. 

Since the verification devices store only small amounts of publicly available information, 
it is possible to standardize them: One device can store several values of n and f and thus 
check a variety of personal, financial and occupational ID cards provided by many independent 
organizations. This possibility is particularly important in department stores which have to 
recognize many types of credit cards or in check cashing situations which require three ID cards 
of many possible types. 

The proposed schemes can be generalized in a variety of ways. For example, the square roots 
can be replaced by cubic or higher roots, the e,, matrix can be made non-binary, and the usage 
of r; and s, values can be made more symmetric in the generation of each y; value. A more 
radical generalization is suggested by Goldreich, Micali and Wigderson's recent discovery of zero 
knowledge proofs for NP problems: It is now possible to use any instance of any NP complete 
problem as the basis for identification and signature schemes. Shamir later improved the time 
and communication complexities of these proofs, but their practical significance is still unclear. 
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