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Short version 

&tract, Several properties of authentication codes depend on a mathematical 

structure, called below a lraud scheme, which is much simplcr than the one 

originally given. Relying on this fact, we present a powerful lower bound, which is 

a sort of mould to painlessly derive a whole range of information-theoretic bounds 

to fraud probabilities in authentication coding. 

1. btroduct ion. A Shannon-theoretic frame for authentication theory has been put 

forward by G. Simmons ([I]). The main attacks to an authentication code are 

impersonation and substitution, but several variants of these can be considered. In 
the literature, information-theoretic bounds to fraud probabilities are provided 

which require a lot of boring computations to be repeated each time. We will show 

that one can dispose of all this drudgery. 

An authentication code is a finite random triple XYZ (X: source slate or source 

message, Y :  authenticated message or codeword, Z: encoding rule or key). Under 

each key (encoding rule), decoding is assumed to be deterministic; instead 

probabilistic encoding (splitting) is allowed. Key and source state are independent 

random variables. In the authentication matrix x of the code one has x(z,y)=l iff 
key z authenticates codeword y, that is iff there exists a source state x which is 

encoded to y under key z. (Capital letters denote random variables, the 

corresponding small letters denote their values.) 
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A deterministic code is completely described by giving the encoding matrix, the key 

probability distribution and the source state probability distribution. In the case of 

splitting, there are entries in the encoding matrix which contain several codewords, 

and so one must further specify the random "splitting strategy" for each such entry. 

Since a zero-error decoding scheme is prescribed, each codeword call appear at 

most once in each row of the encoding matrix. So, the number of ones in each row 

of x is at least IXI (exactly IXI for codes without splitting, slXl for s-balanced codes, 

i.e. codes such that each entry of 

In the case of an impersonation attack the mischievous opposer chooses a codeword 

y hoping it  to be authenticated by the current key Z. The probability of fraud for 

the opposer's optimal strategy is: 

(1) 

In the case of substitution the opposer grabs the legal codeword c and replaces it by 

a fake codeword y hoping that y be decoded to a source state different from g(Z,c) 

(g denotes deterministic decoding and so g(z,c) represents the unique source state 

which is encoded to codeword c under key 2). The relevant fraud probabilities are: 
Ps(c) = maxy Prob[X(Z,y)=l, g(Z,y)rfs(Z,c) IY=c) 

Ps = C, Prob(Y=c) Ps(c) 

(The vertical bar denotes probabilistic conditioning.) In the case of codes without 
splitting, Ps(c) can be written more simply as: 

Ps(c) = maxy#c Prob (x(Z,y)= 1 IY=c) 

The most popular lower bounds to PI are Simmons bound which involves the 

mutual information I(Z;Y) (in terms of Shannon entropies I(Z;Y), which is a 

measure of stochastic dependence, is defined as H(Y)+H(Z)-H(YZ)): 

contains s codewords). 

PI = maxy Prob(X(Z,y)=l 1 

and thc combinatorial bound for determiriistic codes: 

2. Fraud sc hemes. We find it convenient to define a more abstract notion than 

authentication codes, namely fraud schemes (T,p). Let two finite (non-empty) sets 

be given, the set of tokens and the set of fakes (in the applications, tokens will stand 
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for keys, or conditional keys, fakes for fraudulently inserted codewords). Let T be 

a random token and let p be a binary matrix row-indexed in the set of tokens and 

column-indexed in the set of fakes; when p(t,f)=l we say that token t is deceived by 

fake f. The only requirement we make on (T,p) is that for each token fraud is 
possible (in each row of p there is at least a one). We find it convenient to allow for 

"impossible" (zero-probability) tokens and "unusable" fakes (whose column is all- 

zero). A row-balanced scheme is one where the number of ones is the same for each 

positive-probability row of p, i.e. each "possible" token is deceivcd by the same 

number of fakes, k, say. 

Further we define the fraud probability as: 
(2) 

Notice that each authentication code XYZ yields a fraud scheme by simply setting 

T=Z, p=x. If XYZ is s-balanced, (T,p) is row-balanced with k=slXI. Of course 

different codes can yield the very same scheme, while, if one is given the scheme 

(T,p) to start with, it may well happen that this scheme cannot be embedded into 
any authentication code XYZ with Z=T, p=x, 1x122. So, in spite of the formal 

coincidence of (1) and (2). the notion of a fraude scheme is strictly more general 

than that of an authentication code. What one can always do, however, is to 

complete (T,p) to a random couple TF such that p(t,f)=l iff Prob(F=flT=t)fO. To 

P = rnaxf Prob(p(T,f)=I ) 

do this, convert p into a stochastic matrix by replacing the ones in each row of p by 

positive numbers which sum to one. For any such completion TF one has 
(3) p 2 2 -I(T;F) 

To prove this inequaIity one can literally repeat any of the standard proofs of 
Simmons bound to impersonation, e.g. those in [2,3]. As the "Simmons bound" (3) 
holds for any admissible completion TF, one soon obtains a result formally identical 

with the strengthened Simmons bound for impersonation given in [2]: 

(4) p 2 -inf I(T;F) 

the infimum being taken w.r. to all random couples TF yielding the given fraud 

scheme (T,p). The information theorist might appreciate the fact that inf I(T;F) as 

in the exponent of (4) is the rate-disrorfion function for source (sic) 2, distortion 
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matrix equal to the binary complement of p ,  and distortion level equal to zcro, 

R(Z,C(p),O). Conditions for qual i ty  in this bound will be discussed in the full 

version of this paper. We shall be contented here with the following fact: 

Equality criterium. For row-balanced authentication schemes, bound (4) holds with 

equality iff Prob( p(Z,f)=l] does not dcpcnd on f, where f spans the set of usable 

fakes. In this case P = 

(The fact that Prob{p(Z,f)=l) does not depend on f means that any usable fake f, 

and consequently anyfi-aud slrutegy, is equally good, or cqually bad, from the point 

of view of the opposer.) 

Inequality (3) gives actually a whole class of bounds, out of which (4) is the best. 

Even weak bounds can be, however, meaningful. For example, in the case of row- 

balanced schemes, one can take (3) with the stochastic matrix obtained from p by 

filling the free entries with the constant i;. A simple computation shows that in this 

case: I(T;F) = H(F) - log k 5 log IF1 - log k. So, for row-Dafancedfraud schemes 

one gets the following counterpart of the comhinatorial bound for deterministic 

codes: 

k 
(IF1 is the number of usable fakes). 

1 

k 
( 5 )  P 2 1 F I  
Comparing with the equality criterium, we see that, rather surprisingly, this naive 

conibinatorial bound is a right bound for good row-balanced schemes (for schemes 

which attain the severe bound (4) with equality). 

Up to now, the reader can have the unpleasant impression that we are just changing 

names: instead of key, codeword, impersonation, we say token, fake, fraud. In a 

way, this is it: old material used to a higher degree of abstraction, It is precisely this 

higher degree of abstraction, however, which will allow us to appreciate the real 

bearing of the result: in a way, impersonation is a much more general notion than 

usually realized. The next section 3 is meant to convince the reader of this fact. 

3. Amlications. 

The most obvious application is impersonation; for a meaningful application, 

however, we go directly to substitution. Take T with the distribution of ZIY=c. 
Construct p=xc from x by specifying which codewords do cause a fraud when used 
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by the opposer. To this end set to zero the entries in x for which g(z,y)=g(z,c), 

including the column corresponding to c. Then 
Ps(c) = maxy Prob(X(Z,y)=l, g(Z,y);tg(Z,c) IY=c] = 

= maxy Prob(Xc(Z,y)=lIY=c) = maxy Prob{p(T,y)=l) 

and so one obtains the powerful bound which was first given in [3]: 
PS(C) 2 2-R(Z,C(xc)lO I Y=c) 

For s-balanced codes XYZ, xc is clearly row-balanced, and so (5 )  becomes: 

Assume XYZ is deterministic and set Prob(  Y*=ylZ=z,Y=c) = 

Prob{ Y=ylZ=z,Y#c) ; as the authentication matrix derived from the conditional 
distribution of ZY* given Y=c is precisely xC, (3) and Jensen's inequality give: 

PS(C) 2 2 -I(Y*;ZIY=c) * ps > - 2 -I(Y*;ZIY) 

the latter being "Simmons bound for substitution". 

We could multiply our examples, by taking into account the various attacks 

introduced in literature. By now, however, our point should be clear. In all cases 

what one has to do is to resort to the fraud scheme (T,p), where T gives the 

distribution of the key conditional to the information possessed by the opposer, and 

p specifies, for each value t of T, which are thc codcwords that can be used 

successfully as 'fakes", that is which are the codcwords that do cause a fraud against 

the system. Once this is donc, the abstract bounds of Section 2 are painlessly 

converted into bounds for the attack under consideration. 

Jl e fc r c n ces, 
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