
FFT-Hash 11, Efficient Cryptographic Hashing 

C.P. SCHNORR 

Fachbereich Mathematik / Informatik, Universitgt Frankfurt 

Abstract. We propose an efficient algorithm that hashes messages of 
arbitrary bit length into an 128 bit hash value. The algorithm is designed 
to make the production of a pair of colliding messages computationally 
infeasible. The algorithm performs a discrete Fourier transform and a 

polynomial recursion over a finite field. Each hash value in {0,1}126 
occurs with frequency at most 2-120. This hash function is an improved 
variant of the algorithm FFT-hash I presented in the rump session of 
C RY P T O  '9 1. 

1 The hash algorithm 

Ouerview. We present a novel design for a cryptographic hash algorithm. It 
may serve as an alternative to  the MD4 / MD5 algorithm of Rivest. These novel 
hash algorithms are not based on any encryption scheme. We need to have more 
cryptographic hash algorithms since improved methods of cryptoanalysis may 
exhibit more weaknesses in the proposed hash functions. Our design goal is to  
make it impossible to produce a collision using less than F4 operations. Our al- 
gorithm can easily be implemented in software using addition and multiplication 
either modulo 2'' or modulo 2" . It uses the discrete Fourier transform in order 
to diffuse information in an ideal way. We also use a polynomial transformation 
of high degree over a finitefield. Such transformations generate local randomness, 
see Niederreiter, Schnorr (1992), this proceedings. 

P a d d i n g  t h e  message. Let the message be given as a bit string mlm2 . . .mt of 
i bits. The message must be padded so that its length in bits becomes a multiple 
of 128. We recommend to  append to  the message a single "1" bit followed by 
a suitable riurriber of "0" bits followed by the binary representatiori of t .  Let 
the padded message M111M2..  . IlM,, consist of n blocks M I , .  . . , Mn that  
each is 128 bits long. 

The i n i t i a l  va lue .  Ho is given in hexadecimal as 

Ho = 0123 4567 89ab cde f fedc bag8 7654 3210 E (0, 1}12' . 
R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 45-54, 1993. 
0 Spnnger-Verlag Berlin Heidelberg 1993 



46 

Algorithm f o r  the hash function h 

OUTPUT h( M )  := H, 

Requirements f o r  function g : ( 0 ,  1}256 -+ (0, 1}12". 

We wish to make the function h collision-free. This means that it is infeasible 
to find distinct messages Ml 11 Mz . . - 11 M,,, Mi ( 1  M; . . . 11 M,!,, such that H ,  = 
HA,. Specifically the construction of two colliding messages should require about 
264 steps which is the time bound for the birthday attack. 
To achieve this goal the following problems must be infeasible to solve for given 
w, H' E (0, l}? 

Problem 1 Find message blocks M ,  M' E ( 0 ,  1}128 such that y(H, M )  = 

Problem 2 Find M E (0, 1}12'such that g ( H ' ,  M )  = H .  
g ( H ' ,  'W).  

Description of the function g : { 0 , 1 p  - {o ,  1) 128 

Let p be the prime p = 65537 = 216+1. We represent elements in Z, = Z/pZ 
by the residues in lhc interval [0, 2 '7 .  We associate with adouble byte ( X I ,  . . . , ~ 1 6 )  E 
{0, 1}16 the integer C?, ~ ~ 2 ' ' ~  E 22,. Identification of a bit string in 
(0, 1}16 (0 ,  1}l6 C 

Zp, (0, C Z; for all n. Conversely we associate with a E [0,2l6] the 
integer a', a' = a(mod 216) in [0, 2lS - 11, corresponding to a double byte in 
(0, I l l6 .  Here a = 216 and a = 0 both yield a' = 0. 

Due to the inclusion (0, 1)256 c Z:6 it is sufficient t o  compute a function g : 

with the primitive root 24 of order 8.  We have 

wi th  its corresponding imteger yields natural inclusions 

Zi6 -{O, 1}l2'. We will use the discrete Fourier transform FTd : Z; -22, 8 

FTa(ao, .  . .,a?) = ( b o ,  . . , , b7)  with 

Algorithm for g : Zk6 - { O ,  1}8-16 



41 

INPUT (eo,  . . . , e15) E (0, 1}16.16  c Zi6 

1. FOR i = 0,. - - , 15 DO e; := e; + e:-le:-2 + ei--3 + 2' (modp) 

where e' = e if e # 0 and e+ = 1 if e = 0 . 

(The indices i, i - 1, i - 2, i - 3 are taken modulo 16) 

OUTPUT e,(rnod216) for i = 8 , .  . . , 15 

Comparison t o  the algorithm FFT-Hash I presented in the rump session of 
CR Y P T 0 '9 I .  
The previous version of the above algorithm g performed instead of Steps 1 - 

3 the following steps: 

REPEAT Steps 1,2 twice 

1. (ea, e 2 , .  . . , e14) := FTS(e0, e 2 , .  . . , ei4) 

2.  FOR i = 0, .  . . ,15 DO e; := e;  + el-lei-2 + ee , -3  + S'(modp) 

END loop 

This version has been broken by BOSSELAER and DAEMEN and independently 
by M .  GIRAULT. A weakness of this algorithm is that the information contained 
in an input element e j  with 8 5 j 5 15 must in some cases not be diffused to all 
final elements e o ,  . . . , e15. E.g. if j is odd then e, has no impact on the Fourier 
transform in Step 1. Moreover if e j - 1  = e j+ l  = 0 holds just before the execution 
of ej := ej +ej-1ej-2+ee,- ,  +2j(modp) in Step 2 then the first round of Steps 
1 and 2 will diffuse ej only to those e; for which ei -3  = j holds during the 
execution of e; := e; + e;-le;-z + ee , -3  + 2'(modp). A critical point is that the 
transformation is almost linear in e; if e;-l and e;+l are 0. The new function g 
does not suffer from this weakness. 

Counter measures against the Bosselaer-Daemen/Girault attack 

above attack, measure 4 slows the attack down. 
Each of the measures 1, 2 and 3, when taken separately, protects against the 



1. Replace the term ee,-3 in FFT-Hash I by e i -3  

2. Replace the FTa on the elements ei with even index i by a full Fourier 
transform FTIG on all 16 elements 

3 .  Eliminate zero-multipliers in the polynomial recursion, e.g. replace the re- 
cursion in Step 2 of FFT-Hash I by 

e, := e i  + ef-lel-2 + + 2' (modp) , 

4. Invert the order of Step 1 and Step 2 in FFT-Hash I. 

In FFT-Hash I1 we have essentially combined all these four counter measures. 
Step 2 of this algorithm performs a full Fourier transform except for the stage 
that mixes even and odd elements. We think that this stage is not needed because 
this mixing is done in Steps 1 and 3 .  

T h e  funct ion g is easy to inver t .  This is because Steps 1 - 3 can easily be 
inverted. We can complement the output elements ek, . . . , e i5  by any elements 
e o ,  . . . , e7. We obtain a corresponding input for g by inverting Steps 1 - 3 on 
e o ,  . . . , e 7 ,  el,, . . . , ei5. If this inversion yields elements in the interval [0, 216- 11, 
we have found an inverse-image of ( e&,  . . . , e i5)  for g. Since g is easy to invert it is 
not collision-free. The fast inversion algorithm for function g does not necessarily 
constitute a weakness for the hash function h since it does not produce inverse 
images having the prefix Ho E (0, 1}128. 

Design principles f o r  ihe function g. The polynomial recursion in Steps 1 and 3 
is at both ends of the procedure. It forms a shell for the linear transformation in 
Step 2.  Each of Steps 1 and 3 generates a polynomial transformation so that crew 
is a polynomial of degree at  least F;+3 in e;ld, . . . , epkd where F,+3 is the i + 3-th 
Fibbonacci number. Thus the degree of eT:w is at  least Fs = 2584. We believe 
that the problems 1 and 2 are intractable in worst case for this polynomial 
transformation. That is it seems difficult to enforce a particular pattern for 
the second half of the output of this transformation by manipulating only the 
first half of the input. The function g is a polynomial transformation with the 
property that all output coordinates are polynomials of degree at least 229976 
i n  the input coordinates. 

We use the Fourier trausform to mix in a perfect way the information contained 
in the numbers e 0 ,  . . . , e15. It is of interest that the function g transforms message 
bits and hash bits in a similar way. 



49 

T h e  cost f o r  evaluating g.  
Evaluating the Fourier transform FTd requires 3 . 8  additions and 3 . 8  shifts 

modulo p .  The two evaluations of FTa cost 48 additions modulo p and 
48 shifts modulo p .  Steps 1 and 3 require 64 additions and 32 multiplications 
modulo p .  We neglect the costs for adding the bit 2' and for setting up the 
FOR-loop. We obtain the following total costs 

112 additions modp 

32 multiplications modp 

*shifts modp 

192 operations modp . 

Varzalions of the function g preserving the invertability. The provable proper- 
ties of Section 2 rely on the invertability of the Steps 1 - 3 in the algorithm for 
g .  I t  is interesting to study a ciass of functions g with this invertability. We can 
replace Steps 1 and 3 of the algorithm for g by the following step 

e ,  := ei  + f ( e 0 ,  . . . , ei-1,  e , + l ,  . . . I e15, i )  mod p for i = 0, . . . , 15 

where f is an arbitrary function. For any such function f the Steps 1,2,3 in 
the algorithm for g remain invertible. It may be possible that there are better 
choices for the function f enhancing security and efficiency than our choice 
f ( e o , .  . . , e i - ~ , e i + l , .  . . , e 1 5 , i )  = ?,-1Fi-2 +ei-3+2' . Alternatively we can also 
use the recursion 

e; := e; @ f ( e o , .  . . ,e;-l,  e i + l , .  . . , e 1 5 , i )  m o d p  for i = 0 , .  . ., 15 

where f is an arbitrary function and @ : Z i  ---+ Z,, (z, y )  H z @ y  is the bitwise 
addition which is defined as follows. Let x, y E Zp have binary representations 
( T O , .  . . , . ~16)  and ( y o , .  . . , y 1 6 ) ,  i.e. z = C 2 ' z ;  , y = C 2 ' y ;  . Then we put 

x @ y  = ci=o 2' (zi +y,  mod 2) mod p .  It is of interest to note that the function 
@ is associalive. The associativity of @ implies that Steps 1 and 3 in the 
algorithm for g remain invertible. 

i i 
16 

Transforming g into a function that is most l ikely  collision-free. That there is a 
simple heuristic that transforms g into a function ij that is most likely collision- 
free. We obtain t j  from g by inserting a Step 4 into the computation that adds 
the input elements e F p  to e; for i = 8 , .  . , ,  15, i.e. 

Step 4. ei := ei + eyp(modp) for i = 8, .  . ., 15. 



50 

2 Provable properties of the function g 

We show in the next proposition that no information is lost during the compu- 
tation of g . Moreover this computation cannot create any redundancies. 

Propositionl. 
ruiions ( e o , .  . . , e15) E Zp . 

Steps 1 - 3 act us bijective transformations on the configu- 
16 

Proo f .  The Fourier transform FTS : Z: - IL; is bijective. Its inverse is given 

by 

F T ; ' ( ~ J ~ ,  . . . , t ~ 7 )  = (ao,. . .,a,) 

7 

U;  = 8-' C 2-4'Jbj (modp) for i = 0 , .  . . , 7  . 
j =O 

The inverse is correct since 24 is a primitive root of order 8 in Zp i.e. 24'd = 
1 modp, 24.4 = -1 modp. 
Moreover a single step 

e y w  := e; + ef-let-2 + e;-3 + 2' (modp) 

can be inverted as 

0 

By Proposition 1 no collision of messages is possible within the evaluation of 
the function 9, i.e. distinct messages yield distinct configurations in the same 
step. If the input (eo, . . . , e15) for g is uniformly distributed over Z:6 then 
the final configuration (eo ,  . . . , e15) in the program for g is also uniformly 
distributed over ZL6. 

Next we study the probability distribution of g( I I ,  M )  when ( H ,  M )  ranges 

uniformly over (0, l}256. We first prove an upper bound for the probability of 
any output  value for g. Moreover we show that the distribution of g ( H , M )  
is close to the uniform distribution on {0,1}'2d. The following theorem is 
interesting since it excludes the construction of collisions for g corresponding 
to most likely outputs. Note that it is impossible to verify the statement of the 
theorem by empirical testing. 

Theorem 2. If the p a i r  ( H ,  M )  is  uniformly distributed over { O ,  1}256 then 

we have f o r  all u E (0, 1 } 1 2 8  thaf prob [S(H,  M )  = a] 5 2-120e-2-'j M 2-120. 



51 

Proof .  Let out : Zi6 - (0, 1}12" be the function that associates with a final 

configuration (eo,.  . . , e15) E Zj6 the output ( e Q , .  . . , e i 5 )  E {0, 1}'2a of g. 

For every a = (e:, . . . , e/L5) we have 

# out-'(a) 5 (216 + ly32' 
where t = # { i ( 8  1. i 5 15, e: = 0) .  Since pairwise distinct inputs ( H ,  M )  for 
g are mapped into pairwise distinct final configurations we see that 

where the probability space is the set of all (H, M )  E (0, 1}256 . 

Let X, Y be probability distributions over some finite set S. We measure the 
distance of X and Y by the 1-norm 

We have that 0 5 IIX - Ylll 5 2 and 1l.X - YIJ1 = 0 if and only if X = Y. 
The norm satisfies the triangular inequality: 

T h e  norm cannot increase by the application of a function f: 

Here f ( X )  is the probability distribution on Image (f) given as 

Let Us denote the uniform distribution on the set S. If S' C S we have 

Theorem3. i . e .  i f  ( H ,  M )  ranges uni- 
f o rmly  over (0 ,  1}256 the 1-norm distance of g ( H , M )  from the uniform dis- 
iribution on (0, i s  at most 10-3. 

119 (ci~o,,~,5,) - C7~0,1)12~I11 5 



52 

Proof. Let g : Zi6 - 1zi6 be the bijective function that associates to an initial 
configuration the corresponding final configuration in the computation of g. We 
have that 

We see from (2) and (3) that 

< 2  - ( 1- (21?J16) - +(1-&J) ( 5 )  

x2 ( 1 - e -  16/2") NN 4.88. . 

Let out : Zi6 -{O, 1}128 be the function that associates with a final configu- 

ration ( e o , .  . . ,e15) E Zi6 the output (eb, .  . . , ei5) E (0, 1}128. We have that 

out ( U i o , l 1 2 5 s )  = Uio,l}ix.  We finally get 

We next consider the discrete Fourier transform FTa. If a, ranges uniformly 
over Zp and the ak for k # j are all fixed then each component 6j of 
( b o  , . . . , b,) = FTa(a0, . . , ,a7) ranges uniformly over Z, for i = 0, . . . , 7. This 
holds because no coefficient 24'j of FTa is zero in Zp. We next consider 
pairs of components. 

Lemma4. 

ranges unifornly over 23; 
pair ( b j ,  b i )  from ( b o ,  . . . , 67) = FT.(ao,. . . , a7) ranges uniformly over Zp. 

Let  0 5 i, T , j , j  5 7 and ( j  - j)(i - T) # O(mod8). If ( a j ,  UT) 

and the a t  for k 4 {jlj} are all f ixed then the 
2 



53 

Proof. Consider the matrix [16'j]o<i,j<15 - -  representing the linear transformation 
FTa. I t  is sufficient to prove that the 2 x 2 matrix 

corresponding to rows z,i and columns j , j  of this matrix is regular. The 
determinant of this matrix is 

This determinant is zero modulo p iff ( i  - T ) ( j  - j )  = O(mod8) 0 

We see from Lemma 4 that independent pairs of input components (aj  , ar) for 
FTd yield independent pairs of output components ( b ; ,  bi) for most ( i ,  i, j ,  j ) ,  
in particular for all i , i  with i - i  odd. The condition that i - i  is odd seems to 
be sufficient for our purpose since any two output coordinates e i e w , e y w  with 

k # of Step 2 

depend on two distinct output components e2i1 e25 of 

where i - i is odd. If e.g. k and are even then epw, erW depend on 

e2i l  €25 with i = k / 2  and with i = lC/2 and i = F / 2  + 1 .  

Lemma 4 can be extended from pairs ( i , ? ) ,  ( j , j )  to triples, quadruples of 
components and so on. Since independence of components is unlikely to cancel 
out later on in the computation of g this shows that the function g has highly 
desirable statistical properties. 



54 

Appendix : A program for h 

(Let i = i02~ + i12 + i:! E [O,?] with i j  E ( 0 , l )  and let 
rev(i) = i22’ + 4 2  +- io be the number i in reversed notation. Let 
i ( j ,  0) ( i ( j ,  1), resp.) be obtained from i by setting ij := 0 (ij := 1, 
resp.). We abbreviate ei = eio) and e: = e;(mod2I6). Lower in- 
dices i of e y )  are taken modulo 16.) 

INITIATION (eg, eg, . . . , el5) := 0123456789abcdeffedcba9876543210 E (Z.,)” 

(in hexadecimal notation) 

FOR k =  1, ..., n DO 

ei := ei + ef-lel-2 + ej-3 + 2’ mod (2“ + 1) 

where e’ = e if e # 0 .  and e’ = 1 if e = 0 

ei := ei + ef-lef,2 + ei-3 + 2’ mod (216 + 1) 

END for 6 

OUTPUT ek, . . . , ei5,  


	The hash algorithm
	Provable properties of the function g

