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Summary Let I, = (0, l}“, and H, be the set of all functions from 

I, to I,,. For f E H,, define the DES-l-k 1 z e Tansformation associated with 

f by Fz,,f(&R) = (R @ f(L), L), where L,R E I,,. For f~,fl- ,... ,f, E 

H,, define $(f,, . . . , f~, f~) = Fz,,,~, 0 .. . 0 Fzn,f2 0 Fz,,f,. Our main 

result is that y5(fk, fj, f’) is nol pseudorandom for any positive integers 

i,j, k, where f’ denotes the i-fold composition of f. Thus, as immediate 

consequences, we have that (1) none of W, f, f), W, f, f2) and ?Cl(f2, f, f) 

are pseudorandom and, (2) Ohnishi’s constructions $(g, g, f) and $(g, f, f) 

are optimal. Generalizations of the main result are also considered. 

1. Introduction 

Random generation is of supreme importance for cryptography, and has 

recently received extensive investigation by many computer scientists [GGM] [S] 

[y]. As mentioned in [LR]: if polynomial-time computable pseudorandom invertible 

permutations are available, then we can design ideal secret-key block ciphers that are 

provably secure against the chosen plaintext attack. This paper also deals with the 

construction of pseudorandom (invertible) permutations. 

The set of positive integers is denoted by N For each n E n/, let I, = (0, l}“. 

Denote by sl @ s? the bit-wise XOR of two strings ~1, s? E I,, and by H, the set of all 
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Y2" functions from I ,  to  I,. The composition of two functions f and g in H,, denoted 

by f 0 g, is defined by f 0 g(z)  = f (g(z))  where z E I,. And in particular, f 0 f is 
denoted by f Z ,  f o f o f by f3, and so on. 

Associate with f E H, a function Fzn,f E Hz, defined by F,,,j(L, R)  = 

( R  8 f(L), L )  for all L, R E I,,. (Note that our definition for Fzn,f is n o f a f i o n e l l y  

different from that given in [LR] and [S]. However, the dflerence is nof essential, and 

does not affect the results to  be proved below.) F ~ , , J  is a permutation in Hz,, and 

called the DES-like f r a n s f o r m a f i o n  associated with f [NBS] [FNS]. Furthermore, for 

fl,fi,...,fa E H n ,  define $ ( f a , . . - i f z i f i )  = Fzn,f.  0 . . . 0 F z n , f o 0 F 2 n , f l .  w e s a y  that 

$(fs,. . . , fi, fi) consists of s rounds of DES-like transformations. 

In their wonderful paper [LR], Luby and Rackoff showed that permutations 

+(h,g,  f), where f , g l  h& H,, cannot be efficiently distinguished from an TER Hzn, 

here by ZERX we mean that z is drawn randomly and uniformly from a finite multi- 

set X. In other words, from three independent random functions f , g l  h E Hn, one 

can construct, by three applications of DES-like transformations, a permutation in Hz, 
which cannot be efficiently distinguished from a truly random function in Hzn. 

Ohnishi [O] observed that t w o  independent random functions are sufficient in Luby 

and Rackoff's construction. In particular, he showed that both $(g,f, f) and $(g,g, f), 
where f, gER H,, cannot be efficiently distinguished from an r E R  Hzn. See Appendix 

for more information on the proof of it. 

In the thesis, Ohnishi also showed that neither $(f,f,f) nor $(f,g, f )  are 

pseudorandom. This result was independently obtained by Rueppel in [R].' However, 

it still remains open whether or not permutations like $(f,f, fz) and $ ( f 2 , f l f )  are 

pseudorandom. T h e  technique used in [O] and [R], which is described in the final 

section of this paper, is not applicable to these cases. 

In the remaining part of this paper, we first introduce the notion of 

pseudorandomness. then show that for any f and for any i, j ,  k E M, there is a circuit 

that distinguishes d ( f k ,  f', f ' )  from an T E R  Hzn. Thus, as immediate consequences, we 

have that (1) none of +(f, f, f), $(f, f, f 2 )  and $ ( f 2 ,  f, f) are pseudorandom and, (2) 

Ohnishi's constructions dJ(g, f, f) and $(g,g, f) are optimal among the pseudorandom 

' At Eurocrypt'S8, Schnorr [S] er roneous ly  claimed that +( f , f ,  f), where ~ E R  Hnr 

cannot be efficiently distinguished from an T E R  Hz,. 
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permutations $(ft, fi, ji) where i ,  j, k E N and fi, f2, f3 E H, such that for any 

1 5 s, t 5 3, either f. = ft or fa is independent of ft. We also investigate generalizations 

of our main result. 

2. Notion of Pseudorandomness 

Let n E N. An oracle c i r c u i t  T, is an acyclic circuit which contains, in addition to  

ordinary AND, OR, NOT and constant gates, also a particular kind of gates - orucle  

gales .  Each oracle gate has an n-bit input and an n-bit output, and it is evaluated using 

some function from En. The output of T,, a single bit, is denoted by Tn[f[f! when a 

function f E H, is used to  evaluate the oracle gates. The size of T, is the total number 

of connections in it. Note that one can view an oracle circuit as a circuit with no inputs 

or as a circuit with inputs to which constants are assigned. 

A family of circuits T = (T, I n E N } is called a s ta t i s t ica l  test f o r  f u n c t i o n s  if 

each T, is an oracle circuit whose size is bounded by some polynomial in n. 

Assume that  S,, is a multi-set consisting of functions from H,, Let S = {S, 1 
n f N }  and H = (En n f JV ). We say that T is a d j s ~ ~ n g u i s ~ e r  for S if for some 

polynomial P and for infinitely many nl we have IPT{T,[s] = I} - f '~{Tn[h]  = l } \  2 
l / P ( n ) ,  where SER S,, and hER H,. We say that S is p s e u d o r a n d o m  if there is no 

distinguisher for it. (See also [GGM], [LR] and M.) 
In this paper we are only concerned with pseudorandom permutations, i.e., 

pseudorandom functions S = {S, 1 n E N } where each S, consists of permutations 

from H,,. I t  is convenient t o  say that an SERSn is pseudorandom whenever S is 

pseudorandom, and not pseudorandom (or can be d ~ ~ i n g u i s h ~ d  from an  rERH, )  

otherwise. 

3. Main Result 

This section proves our main result on permutations $(fk, f j l  f ' )  where f E H,, 
and i, j, k E N. For i ?  j ,  k E Nl let q z n ( i ,  j, k) be the multi-set consisting of all functions 

$(f',f',f') E H2n where f E H n ,  and let Q ( i , j , k )  = {92,(i,j1k) I n E N } .  

[Theorem 11 For a n y  i ,  j ,  k E A', there is  a d a s ~ i n g ~ z s ~ ~ r  T = {Tzn 1 n E #V ) for 

Q(i,j$ k), i .e . ,  * { i t  j ,  k) is nol  p y e ~ d o r a n ~ o ~ .  E a c h  Tzn has (ml +m2+1) oracle gates,  

where m~ = (i + j ) /d , .  m2 = f j  i- k ) / d  a n d  d = g c d ( i  + j, j + k). 
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Proof: Denote by 00,01,. . . , Oml+m2 the  (ml +mz + 1) oracle gates, by (X,,, X s 2 )  

and (Y,1, Y,2) the input to and output of 0, respectively, and by 0" the all-0 string in 

I,. The  structure of TZ,, is as follows. (See also Figure 1.) 

DESCRIPTION OF Tz, : 

(1) T h e  input to 00 is ( X O ~ , X Q ~ )  = (O",O"). 

(2) The input  to 01 is (X11,Xlz) = (O",Yol). And if ml > 1, 

then for each 1 < p 5 ml ,  the input to 0, is ( X p 1 , X p 2 )  = 

(on, X ( p - 4 2  63 Y(p-1p).  

(3) T h e  input to  Ornl+l is (X(rnl+I)l, X(rn,+l)Z) = (Yoz, 0"). And if 
mz > 1, then for each ml + 1 < t 5 ml i m2, the input t o  Ot is 

(Xtl ,  X t 2 )  = (x(t-l)l 8 ++, 0"). 

(4) Finally, T z n  outputs a bit 1 iff Ym12 = X(ml+m2)1 @ Y(ml+m2)2 .  

Figure 1: Structure of Oracle Circuit Tz, 
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Obviously, the size of TZn is of polynomial in n. Now we analyze the behavior of 

T2,, in the following two cases: CASE-1, where a function $(fk, f j ,  f i )  E Q 2 , , ( i , j r  k) is 
used to evaluate the oracle gates, and CASE-2, where a function drawn randomly and 

uniformly from Hz, is used to evaluate the oracle gates,. We show that in the former 

case, the probability that  T2, outputs a bit 1 is 1 and, in the labter case, the probability 

is less than 1/2"-'. Thus T = {Tzn I n E N }  is a distinguisher for q ( i , j ,  k). 
CASE1: Notice that +(fk, f j , f i ) ( L ,  R )  = (R$f'(L)$f'((L$fJ(R~3'(L))), L @  

f j ( R  @ f i ( L ) ) ) .  Thus the output of 00 is (Yo,, Yoz) = ( f i ( O n )  @ f k + J + ' ( O n ) ,  p+i(On)). 
The inputs to and outputs of Denote by - a string which we do not care. 

0 1 , 0 2 , .  . . , Om, are as follows: 

0 1  : (X11, X l Z )  = (O", f '(0") a3 fk+j+ ' (0")) ,  

(yll, y12)  = ( f k + j + ; ( o n )  8 f Z k + 2 j + i  (on),  w ) ;  

0 2  : ( X 2 1 >  XZZ) = (O", f '(0") f Z k + Z j + i  (on)), 

(YZl, YZZ) = (f" (on) ,  N ) ;  

? k + Z j + i  ( o n )  f 3 k + 3 J  +: 
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As a consequence of Theorem 1, we know that none of $(f, f ,  f), $(fl f, f 2 )  and 

$ ( f 2 ,  f, f), where ~ E R  H,, are pseudorandom. 

Next we discuss the optimality of $(g,g, f )  and $(g, f, f )  where f, gER H,. 

Apparently, Fzn,f can be distinguished from an TER Hz,. It was proved in [LR] that two 

applications of DES-like transformations cannot obtain a pseudorandom permutation. 

In particular, Luby and Rackoff showed that $(g,f), where f , g  E H,,, can be easily 

distinguished from an TER H2,. 

Thus, by putting together Theorem 1 and Ohnishi's observations mentioned above, 

we see that to get a pseudorandom permutation in Hzn, two independent random 

functions from H, and three applications of DES-like transformations are not only 

suficient but also necessary,  as far as our construction is restricted to the permutations 
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$(fl, fi, fl) ,  where i , j , k  E N a n d  f l , f 2 ,  f3 H, such that for any 1 5 s , t  5 3, 
either fa = ft or fa  is independent of f t .  In other words, under the above condition, 

pseudorandom permutations $(g, f ,  f) and $(g ,  g, f )  proposed by Ohnishi [O], where 

f, gER H,, , are optimal in the sense that they consist of the minimal rounds of DES-like 

transformations, and “consume” the minimal number of independent random functions 

from H,. 

4. Generalizations 

This section extends in two directions Theorem 1 to the case of generalized DES-like 

transfornations. 

Let ! E n/ with ! 2 2. Following [FNS, pp.1547-15491 and [S], we associate 

with an f E Hn a function Fi,,j E Ill,, defined by Ffn,j(Bll Bzl . . . , Bc) = 

(Bz @ f(&),  B3,. . . , Bil B I ) ,  where Bi E In. Call FLn,f the generalized DES-like 

transfornation associated with f .  

For f i l f 2 1 . . - l f s  E fin, define d(f8,...,f2,fi) = Ffn,/, 0 . . . 0 F i n , f 2  0Fin , f t .  It 
is easy to show that when 3 < 2t  - 1, d ( f i , .  . . )  f z l f l )  can be distinguished from an 

TER Hin. By modifying the proof for the Main Lemma of [LR], it can be shown that 

when s = 2L - 1, S ( f a , .  . . , fil fl) is pseudorandom where f l ,  f2,. . . f a € R  Hn. 

Now we prove an impossibility result on t9(fzi-1 . . . , f z ,  fl). For (2f - 1) 

integers i i , iz, .  . . , iz-1 E N, let Oin(i1, iz,. . . , 2 2 1 - 1 )  be the multi-set consisting of 

all functions B(fiWc-’, . . . , f i 3 ,  f i l )  E Hl,, where f E H,, and let @(;I, i2,. . . , i z i - 1 )  = 

{ @ t n ( i i ,  iz,. . . , h i - 1 )  I n E N } .  

Proof: 

proved in Theorem 1. The proof for the latter is similar to that for the former. 

There are two cases to be treated: ! = 2 and i? > 2. The former has been 

As in the proof of Theorem 1, denote by 00,01,02,. . . , Oml+mz the (ml +m2 + 1) 

oracle gates, by ( X S ~ , X s z , ,  . . , X a 0  and (Yal,Ydz, .  . . ,Ya,)  the input to and output of 

0, respectively, and by 0” the all-0 string in I,. 
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DESCRIPTION OF Tin : 
(1) The input to 00 is (X01,X02,. . . ,Xot) = (On, 0", . . . ,On). 
(2) The input to 01 is (X11,X12,. . . ,XI,) = (On,Yo3, 0", . . . ,On). 

And if ml > 1, then for each 1 < p 5 ml,  the input to 0, is 

(xp l :  xp21  . . . I x p f )  = (0") x ( p - 1 ) 2  @ V p - 1 ) 3 1 0 " , .  . . , On) 
(3) The input to  O m l + l  is (X(m1+I)l, X(m,+l)Z1.. . , X(rnl+l)f) = 

 YO^, 0", .. .,On). And if m2 > 1, then for each ml + 1 < t 5 
ml + m2, the input to Ot is ( X t l ,  Xt2, .  . . , X t r )  = (X(t-~) l  E9 

? t - 1 ) 2 ,  on,. . . t 0"). 
(4) Tfn outputs a bit 1 iff Ymlz = X(ml+rn2)l @ qrnl+mz)l. 

See also Figure 2 for the structure of Tin. Analysis necessary is also sirmlar to 

I Theorem 1, and omitted here. 

0" on 0% 0" 

. .. 
K 

i . . .  ... I . .  . .  . .  

0" ? 

Figure 2: Structure of Oracle Circuit Tl, 
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Further analysis of the proof for Theorem 2 reveals that even given (1 - 1) 

independent random functions from H,, it is not guaranteed that one can always obtain 

pseudorandom permutations in Hi,, by (21 - 1) applications of generalized DES-like 

transformations. This is formally stated below. 

Let il, iz,. . . , if+l E and let 6in(il, i z , .  . . , i i + 1 )  be the multi-set consisting of 

all functions fl(f1-1,. . . , f 3 , f 2 ,  f;"+',.. .,f:', f:') E HI, where f1, fz,. . . , fi-1 E Hn, 
and let 6 ( i l r i z , . .  . ,ii+1) = (&,,(il,i2, .. ., i i + l )  I n EN}. 
[Theorem 31 

I 

For any i ~ , i Z , .  . . , i f+1 E N, O(il , i2 , .  . . , ii+l) is not pseudorandom. 

5 .  Concluding Remarks 
Our consideration has been restricted to the case of $( ft , fi , f i )  where i ,  j ,  k E hf 

and fi, fz, f 3  E H, such that for any 1 5 8 ,  t 5 3, either fi = ft or f i  is independent of 

ft. It is worth while examining other cases, such as 4(f, f, f )  and $(f, f, f) where f is 

constructed from f with f # f" for any m E N. 
Also, it is not clear to us whether or not one independent random function f E H, 

can be used to construct a pseudorandom permutation, by more than three applications 

of DES-like transformations such as $(f, f ,  f ,  f2) and +(I2, f, f ,  f). 
Some partial impossibility results were implied bi [O], where Ohnishi showed 

that both ~ ( f b , . . . , f Z , f i , f O , f i , f 2 , . . . , f S )  and ~ ( f d , . . . , f 2 , f l , f l 1 f Z , . . .  , f a ) ,  where 

fi E H,, can be distinguished from an t E R H 2 ,  by an oracle circuit T 2 ,  with two 

oracle gates 01 and 0 2 .  The structure of 5?2, is as follows: (1) Choose X:, XZ E I,. (2) 

Input (XI, X 2 )  to  01. Assume that the output of 01 is (Y1, Yz). (3) Input (Yz, Y1) to 0 2 .  

Assume that the output of 0 2  is (21,Zz). (4) 5?zn outputs a bit 1 iff ( X 1 , X z )  = (Zz, ZI). 

To the end, we pose an open problem: Prove or disprove that from one random 

function in H,, one can obtain in some way a pseudorandom (invertible) permutation 

~II H2,,.' 

Acknowledgment 
This work was motivated by [LR], [O] and [S] as well as the Dec.1988 communication 

with Professor C. P. Schnorr. The authors also would like to thank Professor A. Maruoka 

of Tohoku University for making the reference [O] available. 

Schnorr believed that the answer to the problem would be affirmative. (private 

conversation at Eurocrypt'89, April 1989.) 



42 1 

References 

[FNS] H. Feistel, W. A. Notz and J. L. Smith: “Some cryptographic techniques for 

machine-to-machine data communications,” Proceedings of IEEE , Vol. 63, 

NO. 11, (1975), pp.1545-1554. 

[GGM] 0. Goldreich, S. Goldwasser and S. Micali: 

functions,” Journal of A C M ,  Vol. 33, No. 4, (1986), pp.792-807. 

“How to construct random 

[LR] M. Luby and C. Rackoff ‘(How to construct pseudorandom permutations 

from pseudorandom functions,” SIAM Journal on Computing, Vol. 17, No. 2, 

(1988), pp.373-386. (A preliminary version including other results appeared 

in Proceedings of Ihe 18th ACM Symposium on Theory of Compzlting, (1986), 

pp.356-363.) 

[NBS] Data Encryption Standard, Federal Information Processing Standards (FIPS) 

Publication 46, National Bureau of Standards, U.S. Department of Commerce, 

(1977). 

[O] Y. Ohnishi: “A study on data security,” Master Thesis (in Japanese), Tohoku 

University, Japan, (March, 1988). 

[R] R. A. Rueppel: “On the security of Schnorr’s pseudorandom generator,” 

Abstracts of EUROCRYPT’89, Houthalen, (April 10-13, 1989). 

[S] C. P. Schnorr: “On the construction of random number generators and random 

function generators,” Advances in Cryptology - EUROCRYPT’JJ , LNCS 

Vol. 330, Springer-Verlag, (1988), pp.225-232. 

[q A.C. Yao: “Theory and applications of trapdoor functions,” Proceedings of the 

23rd IEEE Symposium on Foundations of Computer Science, (1982), pp.80-91. 



422 

Appendix 

In [o], Ohnishi showed that both $(g ,  f ,  f) and $(g ,  g, f ) ,  where f, gER Hn, cannot 

be efficiently distinguished from an PERKzn. He obtained the result by carefully 

modifying the proof for the Main Lemma of [LR]. The major modification begins with 

the definition of B-gate; [LR,p.382]. Now we describe the definition for the case of 

$(gl g1 f) .  The case of d(gl f ,  f )  is similar. 

Let R = {0,1}3nm, and w = w l l ~ ~ ~ , w 3 n m  E R. For 1 5 i 5 rn, define 

X;(W),Y~;-I(W) and Y2i(w) as follows: 

Also let 
X ( w )  =< X l ( W ) ,  . . . ] X,(w) >: 
Y ( w )  =< Yl(W), . . . Y z m ( W )  > . 

The ith oracle gate is computed as follows: 

3-gate;: 

The input is L ; ( w )  0 R,(u), 

e + min{j : 1 <_ j 5 i ,  R;(w) = Rj (w)}, 

a + m i n { { 2 j - 1 : 1  < j ~ i l a ~ ( w ) = a ; ( w ) } u  

( 2 j  : 15 j 5 i - l]CY:(w) = /3j(")}}. 

a:(#) + L ( w )  CB X ~ ( W ) ,  

P,!(w) + % ( w )  CBY!(W), 

1 + m i n ( ( 2 j  - 1 : 15 j 5 i , & ( w )  = a j ( w ) } U  

(2 : 1 5 j 5 il P i ( w )  = P + N ,  
Ti(...) - 4 ( w )  @ Yf(W), 

The output is /3:(w) 7 I (w) .  

Note that the same function g is applied in both the second and the third rounds of 

DES-like transformations of +(g,g, f). So the key point is that each input to g should 

be compared with all previous inputs to it, no matter which round they appear in. 

The remaining portion of the proof proceeds in the same way as [LR], with some 

obvious modifications introduced by the above defined B-gate,. 
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