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1. INTRODUCTION 

The history of cryptology shows that most secret-key cipher systems that 
have been broken were broken by exploiting the departure of the plaintext 
statistics from those of a completely random sequence. The technique of 
“homophonic substitution” is an old technique for converting an actual 
plaintext sequence into a (more) random sequence. At EUROCRYPT ‘88, 
Gunther [I] introduced an important generalization of homophonic sub- 
stitution, which we will call “variable-length homophonic substitution”. 
The purpose of this paper is to give an information-theoretic treatment of 
Gunther’s type of homophonic substitution. 

In Section 2, we give a rather careful discussion of Shannon’s concept 
of a “strongly-ideal” cipher system, as this provides the motivation for any 
type of homophonic substitution. Section 3 gives the precise definition of 
variable-length homophonic substitution together with the necessary and 
sufficient condition for such substitution to be perfect, i.e., to create a 
completely-random sequence. Section 4 shows that perfect homophonic 
substitution can be achieved by the introduction of less than 2 bits of 
entropy into each source letter that is coded, and Section 5 shows that such 
perfect homophonic substitution can be realized using less than 4 random 
bits per letter coded. Section 6 indicates certain obvious generalizations of 
the previous results and mentions their implications for source coding (or 
“data compression”). 

The information-theoretic results used in this paper are quite basic and 
may be found in any good textbook on information theory, e.g., the book by 
Gallager [2]. 

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 382-394, 1990. 
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2. STRONGLY-IDEAL AND UNBREAKABLE CIPHER SYSTEMS 

The purpose of "homophonic substitution" can be explained by 
considering a secret-key cipher system as diagrammed in Fig. I. For ease of 
notation, let Xn and Yn denote the plaintext and ciphertext sequences [XI, 
X2, ..., &I and [YI, Y2, ..., Yn], respectively. As customary and as Fig. 1 
suggests, we assume always that the secret key Z is statistically independent 
of the plaintext sequence Xn for all n. We shall call the cipher non-  
expanding if the plaintext digits and ciphertext digits take values in the 
same D-ary alphabet and there is an increasing infinite sequence of positive 
integers nl, n2, n3, ... such that, when Z is known, Xn and Yn uniquely 
determine one another for all n E S = (ni, n2, ng, ... 1. We shall also call a 
sequence of D-ary random variables comuletelv random if each of its digits 
is statistically independent of the preceding digits and is equally likely to 
take on any of the D possible values. The following proposition is proved in 
the Appendix by elementary information-theoretic arguments. 

Proposition 1: If the plaintext sequence encrypted by a non-expanding 
secret-key cipher is completely random, then the ciphertext sequence is also 
completely random and is also statistically independent of the secret-key. 

Fig. 1 : A secret-key cipher system 

Shannon [31 has defined the kev-eauivocation function f(n) of a secret- 
key cipher system to be the conditional entropy of the key given the first n 
digits of ciphertext, i.e., f(n) = H(Z I Yn). The key-equivocation function f(n) 
is thus a measure of the number of values of the secret key Z that are 
consistent with the first n digits of ciphertext. Because f(n) can only decrease 
as n increases, Shannon called a cipher system ideal if f(n) approaches a 
non-zero value as n tends toward infinity, and strontrlv ideal if f(n) is 
constant, i.e., if H(Z IYn)  = H(Z) for all n, which is equivalent to the 
statement that the ciphertext sequence is statistically independent of the 
secret key. 



384 

Corollarv 1 to ProDosition 1: If the plaintext sequence encrypted by a 
non-expanding secret-key cipher is completely random, then the cipher 
system is strongly ideal (regardless of the Probability distribution for the 
secret key). 

Virtually all useful non-expanding ciphers have the property, which 
we call "non-degeneracy", that changing the value of the secret key Z, 
without changing the value of the plaintext sequence X*, will change the 
value of the ciphertext sequence for all n sufficiently large, except for a 
negligibly small fraction (often 0) of possible key values for any gwen value 
of Xn. Equivalently, a non-expanding cipher is non-degenerate if 

holds for all sufficiently large n and all probability distributions for Xn when 
all possible values of the secret key Z are equally likely. But, as shown in the 
Appendix, 

HWIX") =H(X"IY") 

holds for all n in a non-expanding cipher when the plaintext sequence XI, 
X2, ... is completely random. The following conclusion is immediate. 

Corollary 2 to Prouosition 1: If the plaintext sequence encrypted by a 
non-expanding secret-key cipher is completely random and all possible key 
values are equally likely, then the conditional entropy of the plaintext 
sequence given the ciphertext sequence satisfies 

H(Xn I Y") = H(Z) 

for all n suffiaently large. 

This corollary implies in particular that, in a ciphertext-only attack, the 
cryptanalyst can do no better to find Xn than by guessing at random from 
among as many possibilities as there are possible values of the secret key Z. 
In other words, the cipher system is unbreakable in a ciphertext-only attack 
when the number of possible key values is large. 

The foregoing has shown that virtually any non-expanding secret key 
cipher can be used as the cipher in an unbreakable cipher system, provided 
that the plaintext source emits a completely random sequence. But it is 
precisely the goal of "homoponic substitution" to convert a source not of 
this type into such a source. When the homophonic coding is "perfect", it is 
then a trivial task to build unbreakable secret-key cipher systems in the form 
shown in Fig. 2. 
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Y1, Y2, ... 
4 

1, x2, ... u1, u2, ... 
Non-Expanding 2 Homophonic 4 Message 

Encrypter Coder Source 

Fig. 2: Use of homophonic substitution within a secret-key cipher system 

3. VARLABLE-LENGTH HOMPHONIC SUBSTITUTION 

Here and hereafter, we will look upon the plaintext source of the 
previous section as the result of coding the actual message source, whose 
output sequence we denote by U1, Uz, U3, ..., into the D-ary sequence Xi, Xz, 
X3, ... . We assume that the random variables Ui take values in an alphabet 
of L letters where 2 I L c 013. Until further notice, we assume that the source 
is memorvless and stationary or, equivalently, that U1, U2, U3, ... is a 
sequence of independent and identically-distributed (i.i.d.) L-ary random 
variables. The coding problem for the actual message source then reduces to 
the coding problem for the single random variable U = U1. To avoid 
uninteresting complications, we assume hereafter that all L values of D 
have non-zero probability. 

Note that, when L = DW for some positive integer w and when all L 
possible values of U are equally likely, the simple coding scheme of 
assigning a different one of the DW D-ary sequences of length w to each 
value of U makes the codeword XI, X2, ..., XW completely random. 
Conventional homoDhonic substitution attempts to achieve this same 
result when the values of U are not equally likely by choosing (if possible) 
an appropriate w with DW > L, partitioning the DW D-ary sequences of 
length w into L subsets, placing these subsets in correspondence with the 
values of U in such a manner that the number of sequences in each subset is 
proportional to the probability of the corresponding value of U, and then 
choosing the codeword for a particular value u of U by an equally-likely 
choice from the subset of sequences corresponding to u. (Successive letters 
from the message source are independently coded in this manner.) When 
such a partitioning of the D-ary sequences of length w is possible, the 
codeword XI, X z  ..., Xw is equally likely to be any of the D-ary sequences of 
length w so that the sequence X i ,  X2, ..., Xw is completely random. The 
different codewords that represent the same value u of U are traditionally 
called the "homophones" for U, but we shall soon use this terminology in a 
slightly different and more fundamental sense. It is easy to see that 
conventional homophonic substitution for which X i ,  X2, ..., XW is 
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u1, u2 ,  ... 
4 

v2*.- Homophonic x1, x2,... D-ary 
Prefix-Free 

Encoder Channel 

completely random is possible if and only if each value ui of U has 
probability ni/DW for some integer nil in which case ni is the number of 
homophones that must be assigned to ui. 

Memoryless 
Stationary 

L-ary Message 
Source 

Variable-lenPth homouhonic substitution, introduced by Gunther Ell, 
generalizes the conventional scheme in that the D-ary sequences used can 
have different lengths, and the seqences in the subset corresponding to a 
given value u of U can be selected with unequal probabilities as the 
codeword for u. The length W of the codeword Xi, Xz .../ Xw for U can thus 
be a random variable. For an arbitrary probability distribution for U, 
Gunther 111 gave an algorithm for such variable-length homophonic 
substitution with D = 2 that makes the resulting binary codeword Xi ,  Xz, ..., 
Xw completely random. He also noted that, when L = 2" so that the 
"natural coding" of a value of U would be a binary sequence of length n, his 
algorithm sometimes gave a n  expected codeword length E[W] less than n so 
that his algorithm also performed "data compression". 

Fig. 3 diagrams a coding scheme of sufficient generality to include 
conventional homophonic substitution and variable-length homophonic 
substitution, as well as conventional source coding (or "data compression"). 
By the homouhonic channel of Fig. 3, we mean a memoryless channel 
whose input alphabet {ul,uz /..., u~ 1 coincides with the set of possible values 
of U, whose output alphabet { v ~ , v z , v ~ ,  ...} is either finite or countably 
infinite, and whose transition probabilities P(V=Vj I U=ui) have the property 
that for each j there is exactly one i such that P(V=vi I U=ui) f 0. We shall 
consider those vj for which P(V = v. I U = ui) > 0 to be the homophones for 
ui rather than considering the codewords into which these vj are encoded 
to be the "homophones." By the D-arv prefix-free encoder of Fig. 3, we 
mean a device that assigns a D-ary sequence to each vj under the constraint 
that this codeword is neither the same as another codeword nor forms the 
first part (or "prefix") of a longer codeword. This provision, which is 
satisfied by Giinther's coding scheme [l], ensures that, when Xi, XzI ... is a 
sequence of codewords, the end of each codeword can be recognized without 
examining any following symbols in the sequence. It is well-known in 
information theory ( c f .  [2, p.491 ) that such coding is general in the sense 
that for any D-ary uniquely-decodable code there is a D-ary prefix-free code 
with exactly the same codeword lengths. 

Fig. 3: A general scheme for homophonic substitution 
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When the homophonic channel of Fig. 2 is deterministic in the sense 
that all non-zero transition probabilities are 1 (so that we might as well say 
V = U), then Fig. 3 depicts the usual source coding (or "data compression") 
situation considered in information theory. When the homophonic 
channel is non-trivial but the binary encoding is triviallv prefix-free because 
all codewords have the same length m (i.e., the code is a "block code"), then 
Fig. 3 depicts conventional homophonic substitution. In the case where 
both the homophonic channel is deterministic and the binary encoding is 
non-trivially prefix-free, then Fig. 3 depicts variable-length homophonic 
substitution as introduced by Giinther [I]. 

r 

v1 

v2 

v3 

P(U=Ul) = 114 U V 

P(U=U2) = 314 u2 

Fig. 4 gives two examples of the general homphonic-substitution 
scheme illustrated in Fig. 3, both for the same binary Le., L=2) message 
source. We will soon see that both schemes in Fig. 4 are perfect. The upper 
system exemplifies conventional homophonic substitution into binary 
sequences of length w = 2. The lower system illustrates Gunther's variable- 
length homophonic substitution. Note that the variable-length scheme has 
an expected codeword length of E[W] = 3/2 digts compared to E[Wl = 2 for 
the conventional scheme. This reduction of coded symbols is an advantage 
offered by perfect variable-length homophonic substitution even when 
perfect conventional homophonic substitution is possible. 

V - P(u=Ul) = 114 

v 3  P(U=U2) = 314 

Binary Prefix-Free 
Encoders 

Binary Memoryless 
Homophonic Channels Message Source 

Fig. 4: Two examples of perfect homophonic substitution for the 
same binary memoryless message source 



We will call a homophonic-substitution scheme perfect if the encoded 
D-ary sequence Xi, X2, ... is completely random. For the memoryless (source 
and channel) case considered in Fig. 3, this is equivalent to the condition 
that the codeword Xi, X2, ...,Xw for V = V1 be completely random. Hereafter, 
all entropies are assumed to be in bits and all logarithms are understood to 
be to the base 2. 

ProDosition 2: For the homphonic-substitution scheme of Fig. 3, 

H(U) I H(V) d E[Wl log D (1) 

with equality on the left if and only if the homophonic channel is 
deterministic, and with equality on the right if and only if the homophonic- 
substitution scheme is perfect. Moreover, there exists a D-ary prefix-free 
coding of V such that the scheme is perfect if and only if P(V = v) is a 
negative integer power of D for all possible values v of V. When this 
condition is satisfied, the scheme is perfect if and only if P(V = Vi) = D-wi 
holds for all values Vi of V where wi is the length of the D-ary codeword 
assigned to Vi, 

Proof: It is well-known in information theory that H(V) I E[W] log D holds 
for every D-ary prefix-free coding of U (6. [2, p.501) and that equality can be 
achieved if and only if P(V = v) is a negative integer power of D for all 
values v of V. Moreover, equality (when possible) is achieved by and only 
by a D-ary prefix-free code that assigns a codeword of length w to a value v 
of V with P(V = v) = D-W. It is further well-known, (6. [2, p.471) that Xi, X2, ..., 
Xw is completely random for, and only for, such a code. It remains only to 
verify the left inequality in (1). Because the output V of the homophonic 
channel uniquely determines the input U, i.e., H(U I V) = 0, and because 
H(U,V) = H(U) + HW I U) = H(V) i H(U 1 V), it follows that 

H(V) = H O  + H(VIU). (2) 

The fact that H(V i v> 2 0 now gives the left inequality in (1). This inequality 
holds with equality if and only if H(V I U) = 0, i.e., if and only if the channel 
input U also uniquely determines the channel output V, which is 
equivalent to saying that the homophonic channel is deterministic. 

From the facts that, in the two homophonic-substitution schemes of 
Fig. 3, values of V with probability 1/4 are assigned binary (D = 2) codewords 
of length 2 and the single value of V with probability 1/2 is assigned a binary 
codeword of length 1, it follows from Proposition 2 that both schemes are 
perfect. 

When P(V = Vi) = D-wi for a positive integer Wi holds for all values Vi 

of V, it is well-known (6. [2, p.481) that a D-ary prefix-free code in which the 
codeword for Vi has length Wi may be simply constructed as follows: Choose 
any distinct D-ary sequences of length 1 to be codewords for those vi (if any) 
with P(V = Vi> = IF1, choose any distinct D-ary sequences of length 2 not 
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having any already-chosen shorter codeword as a prefix to be the codewords 
for those Vi (if any) with P(V = Vij) = D-2, etc. 

4. OPTIMLTM HOMOPHONIC SUBSTITUTION 

We will call a D-ary homophonic-substitution scheme (as in Fig. 3) for a 
given message source oDtimum if it is perfect and minimizes the expected 
length E[W] of the D-ary codeword assigned to the homophonic channel 
output V when the input is the message source output U. Let CD(U) denote 
the set of a l l  homophonic channels with the property that the output letters 
all have probabilities that are negative integer powers of D when the input 
is U. Proposition 2 shows that finding an optimum homophonic- 
substitution scheme reduces essentialIy to finding a homophonic channel 
in C D ~ )  that minimizes the output entropy V and thus we shall also call 
such a homophonic channel oDtimum. We shall soon see that the 
optimum homophonic channel is essentially unique. For simplicity, we 
will take D = 2 in the remainder of this section and the next; the required 
generalization will be indicated in Section 6. 

We begin by noting that the channels in C2W) are characterized by the 
fact that, for each value u of U, the probabilities of the homophones for u 
form a decomposition of P(U = u) as a sum of negative integer powers of 2. 
For example, the upper and lower homophonic channels in Fig. 4 are both 
in Q(U) and decompose PKJ = u2) = 3/4 as 1/4 + 1/4 + 1/4 and 1/2 + 1/4, 
respectively. We next note that if the channel is optimum then the 
decomposition of PKJ = u) for every u must consist of distinct negative 
powers of 2. The reason for this is that two terms equal to 2-" would 
contribute 2(-2-n log 2 -n) = n 2-n+1 to the entropy H(V), whereas their 
replacement b a single term equal to their sum 2-n+1 would contribute only 
-2-"+l log 2-n+y= (n-1)2-n+lr which is always smaller. Our assumptions that L 
2 2 and that all L possible values of U have non-zero probabilities ensures 
that 0 < P(U = u) < 1 for all u. But any real number r satisfying 0 c r < 1 either 
has no decomposition as a finite sum of distinct negative powers of 2, in 
which case its decomposition as an infinite sum of distinct negative powers 
of 2 is unique, or it has such a finite decomposition together with a unique 
decomposition as an infinite sum of distinct negative powers of 2 in which 
the smallest term in the former sum is replaced by an infinite sum of 
successive negative powers of 2. For example, 3/8 can be decomposed as 1/4 
+ 1/8 or as 1/4 + 1/16 + 1/32 + 1/64 + ... . This finite decomposition (if 
possible) of P(U = u) always contributes less to H(V) than does the infinite 
one because the contribution of the successive powers of two is 

00 

-C 2-" log (2-") = (k + 2)2-k 
n=k+l 

and s always greater than -2-k log (2-k) = k2-k. We have thus proved the 
following characterization of optimum homophonic channels. 
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ProDosition 3: A homophonic channel in C2(U) is optimum if and only if, 
for every value u of U, its transition probabilities P(V = v I U = u) for the 
homophones of v cause the probabilities P(V = v) = P(V = v I U = u>P(U = u) 
of these homophones to equal (in some order) the terms in the unique 
decomposition of P(U = u) as a finite sum of distinct negative powers of 2 
when P(U = u) = i/2n for some positive integers i.and n, and as an infinite 
s u m  of distinct negative powers of 2 otherwise. 

It follows from Proposition 3 that the lower homophonic channel in 
Fig. 4 is optimum, and hence that E[W] = H(V) = 3/2 is the minimum value 
of E[Wl for perfect homophonic-substitution for the message source of Fig.4. 
Proposition 3 also answers in the negative the question raised by Gunther 111 
as to whether his algorithm for perfect homophonic substitution is always 
optimum. It is easily checked that, for some message sources, in Gunther's 
algorithm the same value u of U can result in two differenct codewords of 
the same length or, equivalently in our language, two of the homophones 
for u can have the same probability. 

It remains only to find a tight upper bound on H(V) for an optimum 
homophonic channel. Let 

PW = u) = ;r: 2-" 
n d  

where the sum on the right is the decomposition of P(U = u) created by an 
optimum homophonic channel. 

Then 
H(V I U = U) = C (2-*/P(U = u)) log (2-"/P(U = u)) 

Il€I 

llEI 
< - c 2-n log 2-" 

where the inequality is strict because the sum it bounds increases 
monotonically with P(U = u) but P(U = u) < 1. Thus, 

m 

H ( V I U = u ) <  C n2-n< C n2-"=2 (3) 
re1 n=l 

where the second strict inequality results from the fact that I must be a 
proper subset of the positive integers. Multiplying by P(U = u) in (3) and 
summing over u gives 

H(V I U> < 2. 
Using (4) in (2) and making use of Proposition 2, we obtain our desired 
bounds on H(V). 

(4) 

Proposition 4: For an optimum binary homophonic-substitution scheme, 

H(U) 5 H(V) = E[Wl c H(U) + 2. 

The somewhat remarkable conclusion from this proposition is that an 
optimum homophonic channel never increases the entropy of its input U 
by more than 2 bits, regardless of how large H(U) might be! It is easy to see 
that the upper bound in Propositon 4 is as tight as possible by considering 
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the the binary source with P(U = ul) = 2-n and P(U = u2) = 1 - 2-n. As n 
increases, H(U) tends to 0 but the entropy H(V) = 2U-2-n) of the output of the 
optium homophonic channel for U tends to 2 bits. 

5. REALIZATION OF OPTIMUM HOMOPHONIC SUBSTITUTION 

The question now arises as to how one can conveniently realize the 
"awkward" transition probabilities that are required in an optimum 
homophonic channel such as the lower channel of Fig. 4. We assume that 
the only source of randomness available to the implementer is a binary 
symmetric source (BSS), i.e., a device whose output sequence R1, R2, R3, ... is 
a completely-random binary sequence. 

The simple way to realize the transition probabilities of an optimum 
homophonic channel is best explained by an example. Suppose that P(U = u) 
= 13/32 = 1/4 + 1/8 + 1/32. By Proposition 3, the transition probabilities to the 
three homophones for u are the "awkward" numbers (1/4)/(13/32) = 8/13, 
(1/8)/(13/32) = 4/13 and (1/32)/(13/32) = 1/13. The key point is that these three 
probabilities are proportional to 1/4, 1/8 and 1/32 and hence also 
proportional to 1/2, 1/4, and 1/16. Now consider the random experiment 
illustrated in Fig. 5 in which a binary rooted tree is traversed, starting at the 
root, until a leaf is reached; the experiment halts if the leaf has been 
assigned to one of the three homophones v1, v2 or v3, otherwise it returns 
to the root for another traversal. In any one traversal, the probabilities of 
reaching vl, v2 and v3 are proportional to 1/2, 1/4 and 1/16. Thus the 
probabilities of the experiment halting on v1, v2 and v3 must also be 
proportional to 1/2, 1/4 and 1/16 so that these probabilities can only be 8/13, 
4/13 and 1/13, respectively. 

v3 

Fig. 5: A rooted tree which, if traversed continually from the 
root until a labelled leaf is reached, results in probabi- 
lities 8/13, 4/13 and 1 /13 of terminating on the leaves 
V i ,  v2, and v3, respectively 
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Consider now the average number of binary digits emitted by the BSS 
before the scheme just described terminates on a homophone for u. Because 
one node at depth 1 will always be assigned to a homophone and at least one 
other leaf must be assigned to a homophone, the probability exceeds 1/2 that 
the experiment will terminate on any one traversal of the tree. Thus, an 
average of less than 2 traversals will be needed. The average number of bits 
used in one traversal will be greatest if the tree is infinitely long, in whch 
case this average is exactly 

m 

C n 2-" = 2 
n=l 

because the traversal then ends with probability 2-n on the leaf at depth n. 
Thus, less than 4 bits from the BSS will be required on the average to select 
the homophone for any value u of U. (Of course, no bits from the BSS are 
needed when PW = u) = 2-n for some integer n.) 

Prouosition 5: An optimum homophonic channel for any message random 
variable U can be realized with a BSS as the only source of randomness in a 
manner such that the expected number of bits E[B I U = u] from the BSS 
required to determine the homophone for u satisfies 

E[B I U = U] < 4 

for every value u of U. 

6. GENERALIZATIONS AND REMARKS 

The results of Sections 4 and 5 are easily generalized to the case of D-ary 
homophonic coding with D > 2. In Proposition 3, 2 must be replaced by D 
everywhere, and "distinct" must be replaced by "at most D-1 times 
occurring". The inequalities in Proposition 4 become 

The realization of optimum D-ary homophonic substitution requires that 
the BSS of Section 5 be replaced by the D-ary symmetric source whose 
output is a completely random D-ary sequence, and that the binary rooted 
tree traversed to obtain a homophone be replaced by a D-ary rooted tree with 
D-1 leaves at each depth and one node that is extended to the next depth 
(except in the case of a finite tree where there are D leaves at the maximum 
depth). The bound of Proposition 5 changes to 
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where now of course B is the count of D-ary letters from the random source. 
The interested reader should have no difficulty in verifying the validity of 
these generalizations as no new arguments are needed. 

It is also easy to generalize all the results of this paper to the case of an 
arbitrary L-ary message source. For the homophonic coding of Ui, one 
merely needs to replace P(U = u) by P(Ui = u I UI ... Ui-1 = ui ... Ui-1) where ui, 
u2, ..., Ui-1 is the sequence of message digits already coded. The homophonic 
channel is now a channel with memory as its transition probabilities will 
now depend on the past of the input sequence. 

Finally, we mention the implications of Proposition 4 for source 
coding. Suppose that U is actually a sequence TI, TL ..., TN of N digits from a 
memoryless and stationary source with entropy H(T). Then H(U) = NH(T) 
so that proposition 4 shows that average number of binary encoded digits 
per true source letter, E[Wl/N, satisfies 

E[Wl/N -= H(T) + 2/N, (7) 

which can be made as close to H(T) as desired by choice of N. Inequality (7) 
differs from the traditional source-coding result of information theory (cf. [2, 
p. 511) only in that the latter has 1/N in place of 2/N. The interesting fact is 
that the encoded digits are completely random when the optimum 
homophonic-substitution scheme is used to achieve the near-ideal data 
compression described by (3, but are only "roughly" completely random in 
the traditional deterministic source coding scheme. Whether this true 
complete randomness might be useful in source coding is a question that we 
leave to others to answer. 

APPENDIX 

The definition in Section 2 of a non-expanding cipher is equivalent to 
the condition that 

and 
H(Y" I Xn,Z) = 0 

H(X" I Y",Z) = 0 

for all n E S, regardless of the statistics for Xn and for Z. Thus, with the aid of 
the identities 

H(Xn,P,Z) = H(X")+H(Z I Xn)+H(Y" I Xn,Z) 

it follows that 

H(Y") = H(Xn)+H(Z I X")-H(Z I Yn). 
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But the independence of the key Z and plaintext sequence Xn is equivalent 
to H(Z I Xn) = H(Z) so that 

H(P)  = H(Xn) + H(Z) - H(Z I Y”) 

holds for all n E S. Thus, the inequality H(Z I Yn) I H(Z), which holds with 
equality if and only if Y” and Z are independent, implies 

H(W) 2 H(Xn) (A2) 

for all n E S with equality if and only if Y” and Z are independent, 

The assumption that x” is completely random gives H(Xn) = n log D bits 
and thus implies H(Yn) 2 n log D. On the other hand, H(Y*) S n log D also 
holds and equality occurs if and only if Yn is completely random. Thus, if Xn 
is completely random, equality must hold in (A2), which implies both that 
Yn is completely random and that Yn and Z are independent for all n E S. 
But, the complete randomness of Yn and its independence from Z imply the 
complete randomness of Ym and its independence from 2 for all m with 1 I 
m i n. Because the set S contains arbitrarily large positive integers, it 
follows that the entire ciphertext sequence Y1, Yz, Y3, ... is completely 
random and independent of the key Z, which is the claim in Proposition 1. 

Beginning with the identities 

H(X”,Y”) = H(Xn)+H(Y” I Xn) 

= H(Y”)+H(X” I Y”) 

and recalling that if Xn is totally random then so is Yn and thus H(Xn)  = 
HW), we see that 

H(Y” I x”) = H(X” I Y”) 

holds for all n in a non-expanding cipher when the plaintext sequence is 
completely random. This is the claim preceding Corollary 2 to Proposition 1. 
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