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Abstract 

We propose interactive probabilistic public-key encryption schemes so that: 

(1) the sender and the receiver of a message, as well FS the message itself, can be 
authenticated; 

(2) the scheme is secure against any feasible attack by a participant, including chosen- 
ciphertext attack. 

Our suggested protocols can use any one-way trapdoor functions. In order to formulate 
and prove the properties of our procedures, we propose several new complexity-theoretic 
definitions of diferent levek of cryptographic security for systems which allow interac- 
tion. Chosen-ciphertext security is achieved using the techniques of minimum-knowledge 
interactive proofs, and requires only a constant number of message exchanges at the 
system’s initiation stage. 
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1 Introduction 

To authenticate something is t o  prove that it is genuine or to establish its validity. There 
are several sorts of on-line authentication problem that face the designer of a cryptosystem. 
For example, he may wish t o  authenticate either a physical or a virtual channel between 
certain pairs of users; he may wish to  allow users to establish their identities; or he may 
wish to enable the authentication of certain characteristics of specific messages. 

Among the directions that researchers have taken in studying authentication problems 
are the “algebraic” approach of [14, 4, 51, the Kauthentication channel” of [15], the “digital 
signature” approach initiated by Diffie and Hellman [3] (which actually deals with a Meren t  
problem that we do not study here), and the “identification scheme” of [6] (whose purpose 
is to identify a user without regard to  specific messages). 

In this paper we d assume that the communications media are not physically or 
otherwise authenticated. Our setting is that of the original Dae-Hellman public-key model 
[3]: each user has an encryption key that is “public,” or available to all other users (as 
well as to any adversary), and a corresponding private decryption key; all cryptograpkic 
tasks, including encryption and authentication of messages, must employ these keys. Our 
procedures are not based on the intractability of a specific computational problem, but are 
based instead on the more general assumption that a one-way trapdoor function exists. 

In this setting, we distinguish several authentication problems that arise when A sends 
a message to  B. There is the problem of sender authentication, which is to convince B 
that it was indeed A who sent the message, and the complementary problem of receiver 
authentication, which is to  convince A that i t  is indeed B who received the message. There 
is also the problem of message authentication, which is to convince B that the message he 
receives is indeed the message that  A intended to send. 

In [7] we suggested an interactive procedure for the authentication both of the sender and 
of the receiver of a probabilisticdy encoded message. In this paper we extend our scheme SO 

as to enable message authentication; and we show how t o  use interactive proofs of knowledge 
[16, 61 in order to refine our procedures so that they are secure against chosen-ciphertext 
attack. A major contribution of this paper is the formulation of definitions of security 
and privacy, using the language of computational complexity. In proving the properties 
of our constructions, we adapt the formal definitions of cryptographic security that were 
proposed by [IT, lo], generalizing them to the setting of interacting users of a cryptosystem. 
Our definitions capture the intuitive notions that have often been used by cryptographers 
without careful definition, while allowing us to give precise proofs of the strength of the 
cryptographic procedures that we propose. 

After describing OUI assumptions and notationd conventions, we give our definitions 
of several Merent  degrees of cryptographic security in $2. We give our authentication 
procedures and state their properties in 93. Finally, in 94, we formalize chosen-ciphertext 
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attack and give our procedures for achieving security against such attack. We give our new 
definitions in some detail in this abstract, but due to lack of space we omit the proofs in 
553-4; for these, see the full paper (91. 

2 Definitions of cryptographic security 

2.1 Preliminaries 

We model the users of a crrptosystem as interactive Turing machines, as defined iz [ll, 81. 
Our constructions aSsume the existence of a family of one-way functions with an a- 

sociated family of hard-bit predicates, as follows [I, 171. Let I be an infinite family of 
strings, and for each positive integer k let Ik = ( i  E I I = k} denote the set of strings 
in I of Iength k. A hard-bit famdy is a family F = { ( f ; , b i )  1 i E I } ,  where for each i of 
length k, f; : D; + D; is a function defined on a domain D; consisting of k-bit strings, and 
b; : Di (0, l}‘(k) is an I(k)-bit “predicate”. We require that these sets be accessible: there 
is a probabilistic algorithm, running in expected polynomial time, that, given k ,  chooses 
i E Ik U n i f o d y  and at random; and there is mother such algorithm that, given i, chooses 
2 E Di uniformly and at  random. Both ( i , z )  H f,(z) and ( i , z )  ct b;(z )  are easy compu- 
tations (i.e. of cost polynomial in k); the functions f; are one-way, and furthermore it is 
computationally intractable to predct the bits of b;(z) ,  given only the value f ; ( z )  E D;. 

2 -t f;(z) 
1 J hard bits 

b ; ( z )  

(Typically, one is given functions f; that are assumed to be one-way, and then one proves 
that the “hard bits” b; o fF1 poIynomially reduce to  f,F’. By a recent result of Impagliazzo, 
Levin, and Luby [I2], it suffices merely to assume the existence of a family If;} of one-way 
functions.) 

For OUT applications, we assume in addition that F = { ( f ; , b 8 )  I i E I }  is a trapdoor 
hardbit  family: for each i E I there is a string d,-the trapdoor infonat ion Gi the secret 
key associated with i-that enables the inversion of f ; ,  so that the computation (i, y ,  4) 
z E fF’(y) is easy, for any y E f ; ( D ; ) .  Furthermore, there is a probabilistic algorithm that, 
on input k, chooses a pair (i ,  d;) ,  with i uniformly distributed in the set I k .  

For the sake of greater efficiency in one of OUT constructions in $4 below, we assume 
that (as is the case with all the suggested examples of hard-bit families F) the sets D, are 
groups, and that each function fi is a group automorphism. 

The following presentation is adapted from that of [ l o ,  13,  21. We wil! say that a 
public-key c r y p t o s y s t e m  consists of a security parameter  k, a sequence of message spaces 
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{Mk) (probability distributions on strings of polynomial length Z(k) ) ,  a key-generator, POS- 

sibly a public-key encryption-decryption algorithm pair, and one or more message-sending 
protocols : 

0 The key-generator is a probabilistic algorithm G that, on input lk, halts in expected 
time polynomial in k and writes out a pair of strings (e ,d):  a public key and a secret 
key. For example, for any trapdoor hard-bit family F, there exists a corresponding 
key-generator GF which, on input k ,  chooses i E Ik at random and writes out the pair 
( i ,  4) .  

0 A public-key encryption-decryption algorithm pair consists of a pair of (possibly prob- 
abilistic) algorithms ( E ,  D). The encryption algorithm E takes as input a message rn 
chosen according to  the message space hfk and a public key e with security parameter 
6 ,  and produces a ciphertext c; when E is probabilistic, there may be many possible 
ciphertexts for each input pair ( m , e ) .  The decryption algorithm D takes as input a 
ciphertext c and a private key d ,  and produces the cleartext message m. 

0 A message-sending protocol is a pair of interacting probabilistic Turing machines 
(SIR), a sender and a receiver. Each machine takes as input a pair of public keys 
( e s , eR)  (belonging to S and R,  respectively) as well as its own private key ds or df i  
(respectively). The sender receives as additional input a message chosen according to 
the message space Mk. The machines proceed with their computation. At ar.y point, 
either party may reject the execution, writing a special reject symbol on its private 
output tape. Otherwise, when they h d t  the receiver writes out, as a private output, 
the deartext message m’ that  it has accepted. We also require that S write a message 
m (presumably, the one i t  has just tried to send) on its private output tape. The 
protocol is correct if m’ = m with overwhelming probabihty. 

2.2 Security against cryptanalysis 

In this section we repeat the definition first proposed by Goldwasser and Micali for the 
“ p o l ~ o m i a l  security” of a probabilistic public-key encryption algorithm [lo], and then we 
adapt the definition in order t o  handle more general public-key message-sending protocols. 
In our definitions, attacks are deemed to be successful if they result in very weak sorts 
of cryptanalytic ability; hence any procedure that satisfies one of our definitions is all the 
stronger against attacks that attempt to  achieve more. 

Suppose that we are given a public-key encryption-decryption algorithm pair (El  D )  
(dong with a sequence of message spaces {Mk} and a key-generator G). A message-finder 
is a f d y  of probabilistic circuits F = {Fk}, as follows: on input a specific public key 
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with security parameter k ,  the circuit Fk produces as output two messages m, ml E Mk. 

A message-distinguisher is a family of probabilistic circuits D = { D k } ,  each of which takes 
four input strings and produces one output bit: the first input to Dk is a public key e with 
security parameter k; its second and third inputs are strings of length I ( k ) ,  for example a 
pair of messages chosen from h f k ;  and its fourth input k a string of length l ‘ ( k ) ,  such as an 
encryption produced by E.  (h [lo] “message-distinguishers” were called “line-tappers.”) 
Note that both Fk and Dk may have information about G, about h f k ,  and about E “hard- 
wired” into them. 

Consider the following experiment. Run the algorithm G on input I k  t o  produce a pair 
of keys (e, d ) ;  give the public key e as input to Fk to obtain a pair of messages mo, ml E h f k ;  
choose one of these at random, mb say, and give (mb, e) to E to produce an encryption a; 
h d y ,  give ( e Im,ml , a )  as input to  Dk to obtain the bit b’. (This bit b‘ may depend, of 
come ,  on the sequence of random bits used by these probabilistic circuits and probabrlistic 
Turing machines.) The experiment is a success if b = b’. We say that the encryption- 
decryption algorithm pair (El D) is polynomially secure against cryptanalysis if for any 
message-fbder F, for any message-distinguisher D, and for any constant c ,  the probability 
of success is less than 4 + ,$ for sufficiently large k. 

Suppose now that we are given a message-sending protocol (S, R )  (along with {Mk}  and 
G). TO analyze the security of such a protocol we define a message-finder to be a family 
of probabilistic circuits F = {Fk}  whose kth member takes as input a pair of public keys 
with security parameter k, and produces as output two messages q, ml E hfk. skda r ly ,  
we define a message-distinguisher D = { D k }  as before, except that D k ’ s  inputs include a 
pair of public keys with security parameter k instead of just a single public key, and the 
transcript of a protocol execution instead of an output of the encryption algorithm. In 
addition, we give D k  another input string consisting of the random-bit string that was Fkls  

random input; this is a technical consideration that could conceivably increase the power 
of the attacking circuits. (Once again, both Fk and Dk may have information about M k ,  

about S, and about R “hard-wired” into them.) 
As with a conventional public-key encryption algorithm, we consider the following ex- 

periment. Run the algorithm G twice on input l k  to produce two pairs of keys (es ,ds )  
and ( eR ,  dR) ,  and give the public keys es, eR (along with a random bit-sequence p )  as input 
to Fk to obtain a pair of messages rno,ml E h f k .  Choose one of these a t  random, m b  

say, and use S and R to  perform the given protocol to send the message mb; let T be the 
transcript of strings written by S and R on their communication tapes during the protocol 
execution. Finally, give (es, eR,  p,  r n ~ ,  ml, r )  as input to Dk to obtain the bit b‘-its guess 
as to whether the message sent was r r ~  or ml. The experiment is a success if b = b’. We 
say that the message-sending protocol is polynomially secure against cryptanalysis iffor any 
message-finder F ,  for any message-distinesher D, and for any constant d ,  the probability 
of success is less than 4 + & for sufEciently large k. 



We remark that a conventional public-key encryption-decryption algorithm pair (El 0) 
can be regarded as a special kind of interactive message-sending protocol, one in which 
there is only one round of interaction. For such a message-sending protocol, the definition 
of security just proposed reduces to  the Goldwasser-Micali definition described above. 

Next we deal with the provision of authentication (for each message sent) in the context 
of the probabilistic public-key model. In $3 below we present our public-key solution to 
the problems of sender, receiver, and message authentication. In the rest of $2 we give OUT 
formal definitions of authentication security. 

2.3 Security against sender impersonation 

We formalize the property of sender authentication by asking what advantage an adversary 
can gain by impersonating the legitimate sender of a message. Thus we define a sender- 
impersonator to  be an interactive Turing machine s that takes as input a pair of public 
keys ( e s , e R ) .  Note that  .’? is not given either of the corresponding secret keys d s ,  dR. 

Consider the following experiment. Run the algorithm G twice on input Ik to produce 
two pairs of keys ( e s ,  d s )  and ( e x ,  d ~ ) .  Then perform the given protocol, with s (instead 
of S) acting as the sender, and R performing the role of the receiver (as specified); let m 
be the private output of 3. The experiment is successful if R accepts the same message 
m. We say that the protocol is polynomially secure agaimt sender impersonation if for 
any sender-impersonator and for any constant d ,  the probability that the experiment is 
successful is less than & + & for sufficiently large k. 

2.4 Security against receiver impersonation 

We formalize the property of receiver authentication by asking what advantage an adversary 
can gain by impersonating the legitimate receiver of a message. Thus we define a receiver- 
impersonator to be an interactive Turing machine R that takes as input a pair of public 
keys (es, eR)  and a pair of messages %,ml. We define a message-distinguisher D = {Dk} 
as above, except that the last input of Dk is R’s view of a protocol execution with security 
parameter k (in other words, a string of, say, Z’(k) bits). Note that Dk may have information 
about GI about Mk, about (S ,R) ,  and about R “hard-wired” into it. (However] neither 2 
nor Dk is given either of the secret keys d s , d R  corresponding to eS,eR.)  

Let F = (Fk} be a message-finder, and consider the following experiment. Run the 
algorithm G twice on input Ik t o  produce two pairs of keys ( e s ,  d s )  and ( e R ,  d R ) ,  and give 
the public keys e S ,  e R  as input to Fk t o  obtain a pair of messages m,,, ml E MA. Choose one 
of these at  random, say, and perform the given protocol to send the message m b ,  with 
S performing the role of the sender (as specified), and 2 acting as the receiver. Finally, 
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give k s  view of the protocol execution to Dk to  obtain a bit b' (its guess as to whether 
the message sent was or ml). Call the experiment a success if b.= b'. We say that the 
protocol is polynomiaUy secure against receiver impersonation if for any message-finder F, 
for any receiver-impersonator 2, for any message-distinguisher D, and for any constant d, 
the probability of success is less than f + & for sdficiently large k. 

2.5 Security against random-message attack 

Jn order to  address the problem of message authentication formally, we challenge an ad- 
versary, without knowing a sender's private key, to "force" a legitimate receiver to  accept 
some legal message. Consider, therefore, the following experiment. Let .? be a sender- 
impersonator. Run the algorithm G twice on input lk to produce two pairs of keys ( e s ,  &) 
and (eR,dR). Then perform the given protocol, with .? (instead of S) acting as the sender, 
and R performing the role of the receiver (as specified). The experiment is successful if R 
accepts a message m E Mk-any message at  all. We say that the protocol is polynomzally 
secure against random-message attack iffor any sender-impersonator .$ and for any constant 
d,  the probability that the experiment is successful is less than & for sufficiently large k. 

Observe that a message-sending protocol which is polynomially secue against random- 
message attack is clearly also polynomially secure against sender impersonation. 

3 Authentication schemes 

Assume that we are given a trapdoor hard-bit family F = {(f;,b;) I i E I}, where 6; is 
an Z(k)-bit predicate for i E I of length k. The following is a protocol for S to  send an 
authenticated Z(k)-bit message m to R. The sender's inputs include its public and secret 
keys (is, 4s), the receiver's public key i ~ ,  and the message rn; the receiver's inputs include 
its public and secret keys ( i ~ ,  4,) and the sender's public key is. Protocol  1 

1. 

2. R chooses zs E D;, at random, and computes ps := 6;,(zs) and ys := fis(zs). 

3. s computes 2 s  := fG1(ys) and p s  := 6;,(2~),  chooses ZR 

R : "Hi, this is S sending a message to R." 

R + S :  y s  

D;, at  random, and 
PR := b i , ( t R ) ,  YR := fi,(Zfl), C := 772 @ PS @ pR. 

-+ R : [c,YR] 

4. R computes ZR := f ; " , ' ( y ~ ) ~ p ~  := b i R ( z ~ ) ,  c $ p s $ p ~  = m; and then R accepts and 
mites as output this message m. 

end-protocol  
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Theorem 1 Protocol 1, based on h e  trapdoor hard-bit family F = { ( f ; ,  6 ; )  I i E I } ,  is a 
correct message-sending protocol that is polynomially secure against cryptandysis, against 
sender impersonation, and against receiver impersonation. 

Protocol 1 is not secure against random-message attack. A cheating user S', not knowing 
S's trapdoor As, can s t i U  succeed in sending some message to R simply by choosing a string 
c at random in step 3. In order to  foil such an attack, we adapt the protocol, as follows. 
In step 2, R chooses not just one but k random elements zs ,  computing the corresponding 
values ys and p s  for each one; similarly, S runs k versions of step 3 in parallel. Finally, R 
executes k versions of the computation m' := c @ p s  @ p ~ ,  and only accepts a message if 
they all give the same d u e  m'. Call the resulting procedure Protocol 2. 

Theorem 2 Protocol 2, based on the trapdoor hard-bit family T = {( f , ,  b;) I i E I ) ,  is a 
correct message-sending protocol that has all the security properties of Protocol 1 and is also 
polynomially secure against random-message attack. 

4 Chosen-ciphertext security 

The designer of a multi-user cryptosystem must be concerned not only with passive attacks 
or unauthenticated messages sent by impersonators but also with attacks carried on by 
active participants. One or more malicious users may take advantage of their user privileges, 
sending and receiving specially computed plaintext and ciphertext messages, or deviating 
from the system's message-sending protocols in some other manner, in order to  attack a 
legitimate user's security. Zn this section we deal with such attacks. 

4.1 Definition of chosen-ciphertext security 

In a chosen-ciphertext attack on a standard encryption algorthm, the adversary is allowed to 
choose several ciphertext messages, and then is given the corresponding plaintext messages 
(ifthey exist). Generalizing to  the context ofmessage-sending protocols, we may regard such 
an attack as consisting of two stages: a participation stage during which the attackers take 
part in protocol executions and interact with other useis, and an extraction stage during 
which the attackers try to infer additional information about legitimate users' messages or 
private keys. As in the definitions above, we will call the attack successful if the extraction 
stage results in a very weak sort of cryptanalytic ability. 

AS in 52.2 above, it may be helpful formally to define a chosen-ciphertext attack on 
a public-key encryption-decryption algorithm pair ( E ,  D) before defining the attack on a 
more general message-sending protocol. A chosen-ciphertezt attack on ( E ,  D) consists of 
an interactive Turing machine A, a message-finder F = {Fk}, and a message-distinguisher 
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D = {Dk}, as follows. The input t o  A consists of a security parameter k and a public key 
e; this key is the target of A’s attack. Several times during the course of its computation, A 
interacts with D by requesting that a ciphertext string c of its choice be decrypted using the 
private key d that corresponds to e. (More precisely, A writes c on one of its communication 
tapes, and then reads D ( c , d )  from its other communication tape.) The message-tinder 
circuit F k  takes as input the target key e along with the contents of A’s history tape, and 
computes as output two messages rn0,ml E Mk. The message-distinguisher Dk takes as 
input a public key, the contents of an interactive Turing machine’s history tape, a pair of 
messages in Mk, and an encryption produced by E .  

Consider the following experiment. Run G on lk to get ( e , d ) .  Run A with input e, 
using D (and the private key d )  t o  decrypt the requested strings; this computation is the 
participation stage of the attack. Next, in the extraction stage, give e and A’s history tape 
h to F k  to  obtain a pair of messages m, ml E Mk. Choose one of these at random, m b  

say, and give (mb, e )  to  E t o  produce an encryption a; finally, give (e,  h, n o ,  rnl, a) as input 
to Dk to  obtain the bit b’. The experiment is a success if b = b‘. We say that ( E , D )  is 
polynomially secure against chosen-czpheriezi  attack if for any interactive Turing machine 
A, for any message-finder F ,  for any message-distinguisher T ,  and for any constant d ,  the 
probability of success is less than f + for sufficiently large k. 

Next we generalize this definition to deal with the more general setting of interactive 
protocols. Suppose that  we are given a message-sending protocol (S, R) (along with { M k }  

and G). A chosen-ciphertezt attack on the protocol consists of an interactive Turing machine 
A, a message-finder F = (Fk}, and a message-distinguish= D = {Dk}, as follows. The 
input to  A consists of a security parameter k and two public keys eo and e l ;  these keys 
are the targets of A’s attack. After performing several executions of the message-sending 
protocol, as described below, A writes out its view of these executions. The Lth message- 
finding circuit F k  takes as input the target keys eo,  el along with d ’ s  execution views, and 
computes as output two messages mo,rnl E Mi, as well as a choice of either 0 or 1. The 
message-distinguisher is as above, except that D k ’ s  inputs include a pair of public keys with 
security parameter k instead of a single public key, the machine A’s history string, and the 
transcript of a protocol execution instead of an output of the encryption algorithm. 

The attacking machine A is meant to model a coalition of several malicious users; it 
operates a5 follows. Several (polynomially many) times, A chooses to participate in the 
given message-sending protocol, each time choosing either to send or to receive a message, 
as well as choosing one of the two keys eo or e l  to be used by the “legitimate” receiver or 
sender. 

0 Lf the choice is to  send, then A takes the role of the sender in a protocol execution 
with R. In this execution, d may “send” a message from the message space hfk or a 
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message chosen according to  some other computation. R uses either (eo,  6)  or ( e l ,  d i )  
according to A’s choice. At the end of the execution, A is given*-R’s private output 
(the message that  R accepted). For convenience, we may refer to A’s computation 
during this execution as a “subroutine” 3. 

0 If the choice is t o  receive, then A takes the role of the’receiver in a protocol execution 
with S, in which S attempts to  send a message chosen according to the dstribution 
Mk. s uses either (eo ,do)  or ( e l , d l )  according to A’s choice. At the end of the 
execution, A is given S’s private output (the message that S tried to  send). Once 
again, we may refer t o  A’s “subroutine” R.  

In each execution, A may request a new public-key, private-key pair generated by G (with 
security parameter k), or may use a pair requested earlier. These pairs are generated 
independently of the target keys. 

A’s attack may be “adaptive”: any of its computation steps may depend on previous 
steps. For instance, the sending (or receiving) subroutine (or I?) invoked by A during 
a particular execution of the protocol may be different from the subroutine used by A in 
an earlier execution. Of course, the computation of R (or of S)-modelling the actions of 
a legitimate receiver (or sender)-is not adaptive; each step is an independent execution 
with a new sequence of random coin-fiips. Without loss of generality we may require that 
the concatenation of A’s execution views be a string u of length at most Z(k) ,  where I is a 
polynomial. 

Consider the following experiment. Run G twice on input Ik to obtain ( e o , & )  and 
( e 1 , d l ) .  Run A with input ( e 0 , e l )  as described above to produce the execution history v ;  
this computation is the participation stage of the attack. Next, in the extraction stage, give 
(%el )  and 21 to  t o  produce mo,ml E Mk and a ‘‘choice” of 0 or 1; this is a choice as to 
whether to  use the target keys eo and el as the receiver’s key and the sender’s key or vice 
versa in the next run  of the protocol. Next, choose one of the messages mo, ml at random, 
mb say, and run (S, R) to  send m b ,  using as keys either (eo,do)  and ( e l , d l )  or ( e l , & )  and 
(eo,do) according to Fk’s choice of 0 or 1, respectively; let T be the (“public”) transcript 
of this run. Finally, give the public keys eo and e l ,  the pair of messages (mo, ml), the 
transcript T ,  and the history string v as input to Dk to obtain the bit b‘-its guess as to 
whether the message sent was mo or ml. The experiment is a success if b = b’. We say that 
the message-sending protocol is polynomially secure against chosen-ciphertext attack if for 
any interactive Turing machine A, for any message-finder F, for any message-distinguisher 
D, and for a n y  constant d,  the probability of success is less than + & for sufficiently large 
k. 
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4.2 Achieving chosen-ciphertext security 

The main tool we use in order to achieve chosen-ciphertext security is the zero-knowledge 
(or minimum-knowledge) in faac t i ve  proof of knowledge that was formalized by [16, 61. In 
the form that we need it, this is a procedure whereby one party (the “prover”) can prove to 
another party (the “verifier”) that  he “knows” or can compute a quantity without revealing 
to the verifier any computational knowledge about the value of that quantity. For example, if 
f; is a one-way function and y is known beforehand to both parties, the prover c a n  convince 
the verifier that he knows a pre-image of y, i.e. an element x that satisfies the relation 
f ; ( z )  = y, without revealing anything about the bits of x. In the case that each function 
f; is a group automorphism of its domain Di (thus providing an example of a “random 
self-reducible problem”), this interactive proof can be carried out especially efficiently. 

We specify Protocol 3 by refining Protocol 1 in the following way. After sending a vdue 
ys in step 2, R proves to S that he knows a preimage xs. Similarly, after sending a value 
YR in step 3, S proves to  R that she knows a corresponding preimage X R .  At aoy point, if 
one of these interactive proofs is not successful-i.e. if the verifier is not “convinced”-then 
the unconvinced verifier rejects the attempted message-sending and halts the protocol. 

The complete protocol is as follows. As in 93, this is a protocol for S to send an 
authenticated I(k)-bit message m to R. The sender’s inputs include its public and secret 
keys (is, &), the receiver’s public key i ~ ,  and the message m; the receiver’s inputs include 
its public and secret keys ( i ~ ,  diR)  and the sender’s public key is. 

Protocol 3 

1. S + R : “Hi, this is S sending a message to R.” 

2. R chooses zs E D;, a t  random, and computes ps := b,,(zs) and ys := f t s ( ~ s ) .  
R + S :  ys 

R proves to S that i t  can compute an element of fXi1(ys); if the verifier would reject 
the proof, then S halts the protocol. 

3. otherwise S computes E S  := f;,’(ys) and p s  := b r s ( z s ) ,  chcoses z~ E D,, at random, 
and computes p~ := ~ , , ( z R ) ,  YR := f r n ( z R ) ,  c ;= m a ps 
s ---t R :  [C,?JR! 

S proves to R that it can compute an element of f , ; ( y ~ ) ;  if the verifier .n-ould reject 
the proof, then R halts the protocol. 

p R .  

4. otherwise R computes Z R  := fa i l (yx) ,  p~ := bln(zR) ,  c @ p S $ p R  = n; R accepts this 
message. 

end-protocol  
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Theorem 3 Protocol 3, based o n  the trapdoor hard-bit family 3 = {(fi, b ; )  1 i E I}, is a 
correct message-sending protocol that has all the security properties of Protocol 1 and is  also 
polynomially secure against chosen-ciphertezt attack. 

We can r e h e  Protocol 2 in a similar manner, so that the resulting protocol is polyno- 
m i d y  secure against random-message attack and against chosen-ciphertext attack. 

Finally, we briefly describe an adaptation of our protocols so as to provide a message- 
sending protocol that  is polynomially secure against chosen-ciphertext attack, and requires 
overhead whose amortized cost (per bit of plaintext message sent) can be arbitrarily small. 

In this protocol one of the two parties chooses a short random bit-string r ,  and then the 
two parties use the refined version of Protocol 2 so that he can send r to the other party. 
They then use r as a seed-known only to them-for a pseudo-random bit-generator SO 
that they share a (simulated) one-time pad of length polynomial in the security parameter; 
different pieces of this one-time pad may be used in order to encode messages sent from 
either one of the two parties to the other. This enables the exchange of polynomially many 
messages, in such a way that  the system as a whole is secure against chosen-ciphertext 
attack. This method minimizes the cryptographic tools required; it uses only the parties' 
public keys, with no additional keys produced in order to send additional messages. 
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