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Abstract. We consider protocols in which a signature authority issues RSA-signatures to ~II 
individual. These signatures are in general products of rational powers of residue classes module 
the composite number of the underlying RSA-system. These residue classes are chosen at random 
by the signature authority. Assuming that it is infeasible for the individual to compute RSA- 
roots on randomly chosen residue classes by himself, we give, as a consequence of our main 
theorem, necessary and sufficient conditions describing whether it is feasible for the individual to 
compute RSA-signatures of a prescribed type from signatures of other types that he received 
before from the authority. 
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1. Introduction 

A cryptographic protocol can be taken to be a set of rules according to which messages 
are transmitted between parties. Generally the parties apply cryptographic operations 
(such as computation of digital signatures and encryption) to the messages sent and 
received, in order to protect their interests. 

In this paper we consider signature protocols in which only one party, called the 
signature authority, can create signatures. The signature authority issues these 
signatures to an other party, called the individuaf. Such protocols are used, for instance, 
in credential systems (e.g. [CE86]) and payment systems (e.g. [CBHMS89]), in which a 
signature represents a credential or money. 
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Figure 1 shows a simple version based on the RSA-system with modulus N .  Let 

el,e2 be public exponents, known to both the signature authority Z and the individual A, 
and l/e, the secret exponent, known only to Z. Here l/e2 is some integer such that 

( ; I e p  = x(m0d N ) ,  for all x coprime to N .  (Note. that this implies that only Z 
knows the factorization of the RSA modulus). 

Individual A Signature authority 2 

chooses x (mod N )  randomly, 
computes S = x'"'~ (mod N )  

verifies if 
+ S'z 3 x'* (mod N) x . s  

Fig. 1. A signature issuing protocol in which the 
individual has no influence on the choice of the integer. 

The protocols we shall consider, are variations on or generalizations of the scheme in 
Figure 1. It will appear to be useful to consider variations in which Z does not send x to 
A, but only the signature (so then A can not verify the signature). In our most general 
protocols, the RSA-signatures are products of rational powers of residue classes modulo 

N, for instance 4" - ' (mod N) . It is reasonable to assume that an individual, not 

knowing the factorization of N ,  can not compute RSA-roots x l ld  (mod N )  on a 
randomly chosen x for d>l by himself. Yet it is possible that the individual learns some 
RSA-signatures computed by 2 (e.g. by participating in some protocol or by 
eavesdropping) and can use these to compute some new signatures of a type not issued 
by 2. The purpose of this paper is to investigate which new types of RSA-signatures an 
individual can compute from the ones obtained from 2. 

We give an example of the kind of problems we shall consider. Suppose A has 
received, by participating in some protocol (or by eavesdropping) two random integers 

x1,x2 and a signature S= 415. (mod N>. Then A can compute { I 5 ,  using that 

{ I s  E 4 . .', / 3 (mod N). On the other hand we shall prove that for all positive 
integers d different from 1 and 5 (and relatively prime to q ( N ) ) ,  it is infeasible for A to 

compute { I  from ( xl, x2, S) . Another consequence of our results is a result of Shamir 

[Sh831 which states that it is feasible for A to compute x * /  
if and only if m divides the least common multiple of (ul, ..., us). In section 3 we give 
more detailed examples related to coin systems. 

l l a l  : I " , )  from ( x x ,..., 

This paper is organized as follows. In section 2 the notation used in this paper is 
introduced. Section 3 contains descriptions of the RSA scheme and the four protocols that 
we want to investigate. We shall state four propositions related to the respective 
protocols and give some examples and applications to illustrate these propositions. With 
the lemmas of section 4, the four propositions will be proven in section 5. 
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The propositions of section 3 can not be considered as mathematical statements since 
they involve an intuitive notion of computational feasibility which we shall not formalize. 
Therefore in our main theorem in section 6 ,  we will not use any assumption on the 
computational feasibility of RSA-roots by individuals. In this extended abstract we shall 
only state this theorem in words without using the formalism of Probabilistic Turing 
Machines, and we shall not prove this theorem here. 

2. Notation 

The following notation is used throughout this paper: 

lcm(al,. . .,a,) 

alb 
a=b (mod m) 

S k  

U 

ei 

the sets of positive integers, all integers and rational numbers 
respectively. 
the greatest common divisor of al ,  ..., ur; also defined for rational 

, where d~ Dv such that 
( a , d  ...., a , d )  

numbers by (u l ,  ..., u,) := d 

ald, ..., a& Z ;  this definition is independent of the choice of d. 
the least common multiple of ul ,  ..., 
numbers analogously to the gcd). 
there is an integer c such that uc=b; also defined for a,be 9. 
it holds that rnl(a-b), for a,be Q, me IN; we shall omit the suffix 
(mod m), if no confusion is likely to arise. 
the set of k-dimensional column vectors with entries from the set S. 

Cj (this is defined for rational 

column vector (ul,. . .,ad1; if a€ sk, then al ,-.., ak€ S. 
the I* unit vector (0 ,..., 0,1,0 ,..., O)= which has a 1 on the ifh place and 
zeros elsewhere (the dimension of these vectors will follow from the 
context). 
the scalar product of two column vectors a = ( a l ,  ..., aJT a n d  

b=(bl ,..., bk) , which is defined by <a,b>=ulbl+...+akbk. 
the matrix with columns a l ,  ..., a,. 
the matrix with column vector a concatenated at the right to mamx C. 
the defect of a l ,  ..., a , ; b ~  Q ; this is the smallest positive integer d 
such that [ a 1  ... a , ] y=db  has a solution YE Z t  (well defined if 

[ a l  ... a , ] x = b  has a solution XE 9'). Examples: def(3;1)=3, 
def(5;1)=5, def(3,5; 1)=1. 
the RSA modulus used in all the protocols; N is a composite, odd 
number. 

the set {ul U E  lN, 1 I a l  N ,  (a, N ) =  I } .  

Euler's Totient function; cp(N)=l Z L  I .  

the set [ f I a , b e  Z, b>O,(b, c p ( N ) ) = l } .  

T 

k 
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X” 

alb 

T * k  a a  
x 1 ’ x2’. . . x;Ymod N ) ,  for x=(xl,. . . j k )  E ( Z and 

T k a=(al ,..., aJ E ( . Examples: x“ I x i ,  and if 
N 

b, x = ( x  ,...) x ‘1, then P= x < * r b ’ .  

(F ,..., 7) , ifbL+O for i=1,. . .,k. a, a k T  
t 

3. Protocols 

In this paper we will consider 4 protocols, and each but the first is a generalization of the 
previous one. In each protocol, a signature authority Z issues one or more RSA- 
signatures of certain types to the individual A, who has no influence on the integers used. 
We deal with the problem to determine for which other types of RSA-signatures it is 
feasible for A to compute them from the types of signatures that he obtained from Z. 

In order to avoid technical complications ,we shall not give a mathematically precise 
definition of the notion “computational feasibility”, but only the following intuitive 
definition. If al, .  . .,ul are binary strings chosen according to some prescribed probability 
distribution and b is a binary smng with b=f(ul, ..., uf )  for some function f, then we 
say that it is feasible to compute b from a l ,  ..., ut if there is an efficient probabilistic 
algorithm that outputs b with non-negligible probability, when it is given u l ,  ..., af as 
input. In this section we shall freely use the notion of computational feasibility in 
statements of propositions, corollaries etc. We shall state four propositions, each related 
to a protocol. 

First we briefly sketch the RSA scheme [RSA78]. The signature authority Z chooses 
two large “randomy’ primes, each of 100 decimal digits say, and computes their product 
N ,  which will be used as RSA modulus. 

Let d~ Z* - The equation d z  P l(mod cp( N ) )  has a unique solution 

which can be computed by Z, because Z knows the factorization of N (and 

thus q ( N ) ) .  We define x”’ d(mod ZV) to be the unique solution Y E  Z> to 

y d =  f ( m o d  N ) ,  for X E  Z;  and :E Q N .  This solution y can be computed by 

y = &(mod N> . We call 

and the factorization of N secret. The RSA- 
signatures issued by Z in the protocols are products of rational powers of residue classes. 
For all the signatures in this paper the same modulus is used. The case that an individual 
receives signatures with different moduli is partially solved in [HassS]. 

+ The RSA-scheme can be made slightly more efficicnt by solving d from d d  E 1 (mod A( N)) , where 
A ( N )  is Carmichael’s function. For instancc, if N = P Q  for primes P , Q ,  then q(N)=(P-l)(Q-l) and 
%W=P“)(p-l,Q-1). 

rp(W 
ZE Z” 

rp(N) 

(mod N )  the dth RSA-root of XE Z>. 
Z makes N and d public, and keeps 
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We assume that it is computationally infeasible for an individual A to compute RSA- 
roots by himself: the only positive integer d with (d ,q(N))=l  for which A can feasibly 

compute xlld (mod N) for uniformly chosen x from Zf” is d=l. In other words: 

’ 

Assumption. Let N be the used RSA-modulus. Then for every integer d > l  with 
( d , q ( N ) ) = l  it is computational infeasible for A to compute xl ld  (mod N )  when 

given only N , d j  as input, where x is chosen uniformly from Z; 

We now describe the four protocols, the propositions and some examples (related to 
coin systems) to illustrate the propositions. 

3.1. Protocol 1 

Protocol 1. Z makes public integers a,n with alnE Q 

( 1 )  Z chooses x uniformly from Z L  and computes the RSA-signature 

( 2 )  Z sends the pair (x,S) to A. 
(3) A verifies the RSA-signature on x by checking if s“ = xO(mod N) 

. 
N 

S= P’”(mod N).  

We consider the problem for which integers m>O with ( m , q ( N ) ) = l ,  A is able to 

(mod N) from the pair ( x , S )  that he received from 2. Necessary and compute xl/ 
sufficient conditions are given in the next proposition. 

Proposition 1. Fix integers a,n,m with n,m>O and (n,q(N))=(m,cp(N))= (a ,n)=l .  
Then the following three statements are equivalent: 

m from ( x ,  PI ), if Z chooses x uniformly (i) It is feasible fo r  A to compute 

from z”. 
(ii) There are integers v,w such that l/m=v.aln + w. 
(iii) mln. 

Proposition 1 can be applied to coin systems, such as in Figure 2. Here f is a fixed, 
public, “pseudo-random” function. In a coin system, different exponents s are used, each 
representing another coin value. Suppose that the exponents s=3,5,7,9 (assumed to be 
coprime with cp(N)) are used, and that they correspond to the coin values 8,4,2,1 
respectively. Now any user A can gain 7 money units simply by withdrawing a coin of 

value 1 ,  which is of the form C = f ( y ) ’ I 9 ,  and computing C? = f( y ) l I 3 ,  which is a coin 
of value 8. One can prevent users from gaining money by replacing s=9 for instance by 

s=ll. Assume that A withdraws the coins f (  y )  and f( y f i 5  of value 
1,2 and 4 respectively. Then A can compute f(y)”(” ’’ 

I /  11 
, f (  y i  

by 
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Withdrawal of a coin Spending of a coin 
User Bank User Shop 

f01) y :  random > 

Fig. 2. A simple coin system 

3.2. Protocol 2 

In Protocol 2, Z issues to A one RSA-signature that is a product of powers of RSA- 
roots on integers (chosen by Z). Proposition 2 describes which new RSA-signatures are 
feasibly computable from the received ones. 

k 
Protocol 2. Z makes public vectors a , n E  Z such that alnE mg.) . Let 
n*=lcm(nl, ..., nJ. 

(1) Z chooses x unifomlyfrom (Z;) , and computes the signature 

S= P'"(mod N). 
( 2 )  Z sends (x, S) to A. 
( 3 )  A verifies the signature on x by checking whether 

k 

a l n ' l  n, a , n ' /  n s" = XI - ... . n, &(mod N). 

Proposition 2. Fix vectors a , n , b , m E  Z Ir with ( a i , n i ) = ( b i , m i ) = ( n i , ~ ( ~ ) ) =  
(mi,v(h7))=1 for i=l,. . .,k. Then the following three statements are equivalent: 

(i) I t  is feasible for A to compute xbl from ( x,  f ") , if Z chooses x uniformly 

from ( z * , )~ .  
(ii) There are VE Z and a vector WE Zk such that btm=v(aln)+w. 
(iii) milni for i=l,.. .,k and 

aib,nj/m = a,bini/mi mod (ni,n,) for l l i j l k .  

10 3i-1 
To illustrate this proposition, we consider the product n x i  I ". We are interested in 

i =  1 
the question whether it is feasible for an individual to change the order of the terms in the 
product, i.e. is it feasible for an individual to find a non-identical permutation Z such that 
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10 2.i-I, 1 7 _  10 ~ T ( , > - I  

i = l  i=  1 
? Using the next corollary (which can be derived from I17 - n x .  

Proposition 2) we can prove that this is not feasible. So to each position in this product 
(i.e. to each exponent) we can assign a different coin value. This result is used in the 
offline check system of [CBHMS89]. 

Corollary 1. Let p and q be different primes such that (p,q(N))=(q,q(N))=l and 
let k,m be integers. Define the integral vectors a=(qm,. . .,qm+k-l)T and n=@, . . . ,p  ) . 
The following statements are equivalent i f x  is chosen randomly from ( Z k )  . 

T 

k 

(i) There is a non-identical permutation zo f  (0 ,  ..., k - l ) ,  such that it is feasible for A 
to compute Wblnfiom (x ,~ /n)  where b=(qmf~O),. . .,p+qk-l) 1 .  

(ii) There is an io with l l io lk  such that 2 = 1 (mod p )  . 

3.3. Protocol 3 

We now consider a general protocol, in which 2 issues to A several signatures at 
once, together with the chosen vector x. Notice that sending x is exactly the same as 

sending ( xel,.., xek), where el ,..., ek are the unit vectors of (Q N) . k 

k Protocol 3. Z makes public vectors al ,  ..., as€ (Q N) . 

( 1 )  Z chooses x uniformly from (Z>) , and computes Si= xui(mod N) 
i=l, ..., s. 

( 2 )  Zsends (x, S1 ,..., S,) to A. 

( 3 )  A verifies that $ = x '(mod N )  for i=l,  ..., s, where d is a positive integer such 

k 
for 

da . 

that da,, ..., da,E Z k .  

k We want to know for which vectors be  (Q N) , it is feasible for A to compute 

Xb(mod N) from ( x,xal ,..., x"~) .  

k Proposition 3. Fix vectors a l ,  ..., a,,be (Q N) . Then the following four statements are 
equivalent: 
(i) It is feasible for A to compute x b  from ( x, xu',.. ., xu 3, if Z chooses x uniformLy 

from ( z : ) ~ .  
(ii) There are vl ,  ..., v,E Z and a vector W E  Zk such that b=ulal+ ...+ vp,+w. 
(iii) def(a .. ,a,,e l,. . . .ek;b)= 1. 
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(iv) Let Al,...,Am be all the subdeterminants of [ a l  ... a,] of order between 1 and 
min(k,s), and Am+l,...,An be all the subdeterminants of [al  .__ a ,  b ]  of order 
between 1 and min(k , s+ l ) ,  containing at least one entry f r o m  b .  Then 
(l,Al,*..,Am)=(l,Al ,..., An) (i.e. (l,Al ,..., Am) IAi,for i=m+l, ..., n). 

To illustrate how this proposition can be used, we consider the off-line coin system of 
[0089]. In this system the bank uses a signature scheme which we do not specify here. 
The user makes RSA-signatures using his own modulus N whose factorization he keeps 
secret; so here the user plays the role of a signature authority. Let L be a fixed integer, 

and define Z z  (account number user) mod N. In Figure 3 the basic idea of the 
withdrawal (in which the user is able to blind and the bank to sign messages, cf. [0089l> 
and spending protocol of a coin is given. Each shop sends the numbers it received to the 
bank and the bank verifies that these numbers have not been used before. Since the 
system is off-line, usually each shop first collects the numbers from several payments 
before sending them to the bank. 

L 

Withdrawal of a coin Spending of a coin 
User Bank Uscr Shop 

blindcd(N,f ,X) N , I , X ,  sign(N,f,X) 

E : random, (E,L)=I 

C=(X. I")"' mod N 

X: random > 
sign(blindcd(N,f ,X)) 

4 < 

Fig. 3. The (simpliiicd) on-linc coin systcm of [0089]  

From Proposition 3 i t  follows that  i t  is not feasibIe for the shop/bank to compute the 

identity of the user (i.e. 1 mod N )  from N,I,S,& and C = XI'  '. I E /  '. But if the 
user spends the same coin at two shops, then the bank receives the integers 

N , I , X , s i g n ( N , I , X ) ,  E , E  (coprime w i t h  L ) ,  ( X . I ' ' ' ) " L  modN and 

( X . I E 2 ) ' I L  modN . From Proposition 3 i t  follows that the bank can compute the users 

identity I" 'mod N from this if and only if (E,-E,,L)=l. Hence the probability that a 
double spender is caught by the bank is approximately q(L)/L.  This probability is close 
to 1 if L is a large prime, and close to 0 if L is the product of small primes. Therefore it is 
not wise to let the user choose L himself (which was the original suggestion of [OOSS]), 
but to fix L as a large prime. 

I /  L 

Suppose we modify protocol 3 i n  such a way that a n  individual A receives s 
signatures on d i f f e ren t  vec tors ,  so suppose A has received ( X I ,  ... ,xS,  
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k i  am+ 1 Sl P x;‘ ,..., S, = x”,) and wants to compute S,+ = xs+ 

x i €  (Z;)  

where aiE (a N) and 

,(i=l,..-,s+l). Define y to be the vector obtained by concatenating all the 

different enmes of the vectors X~,...,X,+~. We can Mite Si as ii, where the exponent 
on the “new” yj7s (i.e. those yj which were no entry of Xi) is zero. Now Proposition 3 
can be used to determine for which a,+1 it is feasible for A to compute Ss+l from 

k i  

cv,s1,. . . ,S,). 

3.4. Protocol 4 

We now consider the most general protocol, in which 2 issues to A several signatures 
at once, but without sending the used vector. 

k Protocol 4. Z makes public vectors a l ,  ..., as€ (Q N) . 

(1) 2 chooses x uniformly f r o m  (Z;)  , and computes Si=  xui(mod N) 
i=l , .  . .,s. 

( 2 )  Z sendr ( S1,. . .,S,) to A. 

k 
for  

If one does not accept this as a useful protocol (because A can in general not verify 

the signatures), then assume A has received ( xu’ ,..., xu? during eavesdropping. We 

want to know for which vectors be (a N ) k ,  it is feasible for A to compute i (m0d N) 

from ( Xu’,-.., xu ’ ) ,  and prove that the only b’s for which x b  is computable from 

( xul ,. . ., xu 3, is the lattice generated by ul ,..., us. 

k Proposition 4. Fix vectors a l ,  ..., u,,be (Q N) , and assume that the equation 

[ a l  ... a , ] y=b  is solvable in ye Q”. Then the following four statements are 
equivalent: 

(i) It is feasible for A to compute x b  from ( x’l,..., xu’), if 2 chooses x uniformly 

from (~;j)” 
(ii) There are v1 ,..., V ~ E  Z such that b = vlal + ... + vp,. 
(iii) def(al, ..., a,$)= 1. 
(iv) Let pl,. ..,& be the subdetenninants of [a l  ... a,] of order k and . .,/it, be 

the subdeterminants of [al  ... a, b] of order k, containing at least one entry from 
b. 
Then (l& ,..., &)=(I ,pl,. . .,pa) (i.e. (l,pl ,..., pm) Ipi, for i=m+l, ..., n). 

This proposition implies that only the exponents must be investigated, and that the 
only reasonable computations an individual can do, in order to create a new signature from 
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some received signatures, are the basic computations (add, subtract, multiply and divide). 
So applying the cosine or DES can not help an individual in creating more signatures. 

The previous propositions can be used to prove the following results. 

Corollary 2. Let  a,a l,...,a,,b,d be positive integers coprime with q(N), c be an 

integer, andx,y be chosen randomly from Z>.  Then the following five results hold for A .  

(i) It is feasible to compute xl/ from (x, xc/  " )  * d l e j -  
11 a .  11 b (ii) It is feasible to compute x" from (x,y, x y ) CJ d l ~ .  

(iii) It is feasible to compute xl/ @ dl Icm (a  1 1 0 ,  
from ( .r x ,. .., 2 I "7  a,) 

[Sh83]. 
11 d 

(iv) It is feasible to compute ( x y  ) 

(v) I t  is feasible to compute xd from( xal, ... , xa*) 
from( ;r y, 2 a, y" b,  CJ dl (a ,  b) . 

@ gcd(a l,...,as) I d. 

4. Auxiliary results 

When we say that something is computable in polynomial time, we mean that it  is 
computable by a polynomial time deterministic algorithm. 

Lemma 1. The following operations can be done in polynomial time: 
( 1 ) computing gcd(a,b) from a and b, 
( 2 )  computing the inverse of a (mod b)  from a and b, if(a,b)=l, 
( 3 )  computing ab (mod c)  from a,b and c, if(a,c)=l, 
(4) the Gaussian elimination method for a system of linear equations with rational 

coefficients, 
( 5 )  determining the rank of a rational matrix, 
( 6 )  determining the determinant of a given rational square matrix, 
(7) determining the inverse of a nonsingular rational square matrix, 
( 8 )  testing rational vectors for linear independence, 
(9) computing the Hermite Normal Form of a matrix [KaBa79], 

( 1  0 )  computing a unimodular matrix U ,  such that AU is the Hermite Normal Form of 
A, for a rational matrix A of furl row rank, 

( 1  1 )  deciding if a system of rational linear equations has an integral solution, and if 
SO, finding one. 

References for the proofs can be found in Chapter 3 and 5 in [Schr86]. 

Lemma 2. (CHeg18581 page 1 1  1 )  
Let A be a rational matrix of full row rank, with k rows, and let b be a rational column k- 
vector. Then A x = b  has an integral solution x,  if and only if the gcd of all 
subdeterminants of A of order k divides each subdeterminant of [A b] of order k. 
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k Lemma 3. 
d=def(ul,. . .,us;b); hence 

is solvable in Y E  Zs. 
Further, let pl, ...,,urn be the subdeterminants of A of order k and P, , ,+~,  ...,p,, be the 
subdeterminants of [A b] of order k, containing at least one entry from b. 
Then: 

Le t  u 1  ,.... u , , b ~  (9 N) , A = [ a  ... u s ]  of full row rank, and let 

A v = d b  (4.1) 

(i) 

(ii) 

(iii) 

There is a polynomial time deterministic algorithm that computes d and a solution 
of (4.1). 
There is a polynomial time deterministic algorithm that computes a ZE Q k  such 
that 

(d,<z,db>)=l and A T z ~  Zs. (4.3) 

Remark: Note that expression (4.2) does not yield a polynomial time algorithm to 

compute def(u l,...,u,;b), because m = (3, n- m = [ 1 ) ,  and s2k. 

Proof. Matrix A has full row rank, so according to Lemmas 1.7 and 1-10, we can 
compute in polynomial time a mamx [DO] (in Hermite Normal Form in which D is a 
nonsingular square matrix and 0 is a matrix consisting of zeros) and a unimodular mamx 

U such that A=[DO]U.  The mamces U,U-'.UT,(UT)" have integral entries and in 

this lemma mamx D is rational. Since A T z = U f;*)z = qD:), we have that 

A*ZE Zs  if and only if D T z ~  Zk. Equation (4.1) has an integral solution if and only if 

(4.4) Dw=db is solvable in W E  Zk, 
because there is a 1-1 relationship between the solutions Y E  Z s  of (4.1) and W E  Zk of 

(4.4), defined by Uv= . Hence d is also the smallest positive integer such that 

Dw=db has a solution in W E  Z k ,  i n  other words def(A;b)=def(D;b). Combining the 
( 0") 

T previous equations gives: < z , d b > = < z , A v > = < A  z,v> =< 

< [ D:), U Y > = < [ Dr),( 1) > =<DTz,w> Hence (4.3) is equivalent to 

D T z € Z k  and 

(~,<D"'z,w>)=I, for every solution w of (4.4). (4.5) 
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(i) For every integer 6, the subdeterminants of [ A  6 b ]  of order k are 

pl ,.., pm, 6pm+ ,..., 6 4 .  Now Lemma 2 implies that the equation Av = 6b has 

a solution in YE Z” if and only if 

(pl ,..., pm) I 6pi, for i=m+l, ..., n. 

This holds if and only if ( pl ,.., pm)l 6 . ( p1 ,..., p,, pm+ I ,..., pn). Because d is 
the smallest positive integer for which (4.1) has an integral solution in v, we have 

(ii) Matrix D is a kxk-matrix, so det(D) is the only subdeterminant of order k of 
D, and the mamx [D b] has k subdeterminants ql, . . . ,qt  of order k containing 
an entry from b .  If we apply Lemma 3.(i) on matrix D , we get 

det (D) 
( d e t ( D ) .  v1..... 7,) * d =  The matrix D and the subdeterminants ql, ...,qk can be 

computed in polynomid time from A. Hence d can be computed in polynomial time 
and with this d, a solution w of (4.4) can be computed by Gauss elimination. With 
this w a solution v of (4.1) can also be computed in polynomial time. 

(iii) It is sufficient to prove that there is a polynomial time deterministic algorithm to 
compute a ZE Q k  such that (4.5) holds. Let w be a solution of (4.4) and define 

b has s - w  as an integral d,=gcd(w l , . . . ,w,). The equation D x =  - 
( d .  d , )  

solution. But d was the smalIest positive integer for which (4.4) is solvable, so we 
must have (d,d,)=l. With (the extended ) Euclid’s algorithm we find in polynomial 

time an YE 2’ such that < y , w > = d l .  If we define z:=(DT)-’y, then ZE Q k ,  

D ZE Z k  and ( d , c D  z , w > ) =  ( d , < y , w > ) = ( d , d l ) = l .  Hence this z satisfies 

1 d 
( d .  d , )  

T T 

(4.5). CI 

5. Proofs of the propositions 

We derive the four propositions of section 3 from the previous lemmas (or from Theorem 
1, using the assumption on the computability of RSA-roots by individuals). 

Proof of Proposition 4. 
(ii)e (iii)w( iv) 

(i)+ (iii) 
This follows from Lemma 3 and the definition of defect. 

Suppose that i t  is feasible for the individual to compute x b  from ( xul ,..., x”’) for 
uniformly chosen x. Put A=[al  ... a,] and d=def(al, ..., as$). 

By Lemma 3 we can compute in polynomial time a vector Z=(Z lr...,zk)~ Q k  such that 

(d ,<z ,db>)=l  and A ZE Z s .  Hence A z=(cl. ... ,cJT, where ci=<ui,z>e Z for T T 
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i= 1,. . . ,s. Using (the extended) Euclid’s algorithm we can feasibly compute a,& Z 
with a<z,db>+gd=l ,  so acz ,b>+P=l /d .  Choose x uniformly from Z i  and 

put x = ( x Z 1 ,  ... , x ’). Hence x a i z  x for i=l ,  ..., s. So the individual 

can feasibly compute those x a i ,  and thus by assumption he can compute x b .  But 

= xl’ ’. From the a< z, b > +  B then i t  is feasible to compute ( Xb)axP = x 
assumption on RSA-roots, it follows that d=l. This proves (iii). 

Suppose there are integers v l ,  ..., vs such that vial+ ...+ vsas = db. Lemma 3 

states that it is feasible to compute such v l ,  ..., v,. Now x b  can be computed in 

polynomid time from x b  = ( x ‘1 

z i z .  U i >  Ci 
= x 

(ii)* (i) 

0 a ”  a “ s  . . . (x 1) . 

Proof of Proposition 3. 
(i)w (ii) (iii) 

This follows from Proposition 4 with A = [ a ,  ... a, el ... ek]  (note that A has full 

row rank whence the equation Ay=b is solvable in YE Qk). 

Define A = [ a l  ... a,] and I=[el _.. e k ] .  Since each column of I has exactly one 
entry #0, each subdeterminant of [A 4 containing q columns from I is a 
subdeterminant of [ A ]  of order s - q .  Further det(Z)=l. Similarly, each 
subdeterminant of [A I b] containing q columns from I and at least one entry from 

b is a subdeterminant of [A b] of order s-q, containing at least one entry from b. 0 

(iii)* (iv) 

We leave the proofs of Propositions 1 and 2 to the reader. 

6. Main theorem 

In our propositions of section 3, we used the assumption on the computability of RSA- 
roots by individuals. These propositions can be generalized into a theorem, in which that 
assumption is not required anymore. To state this theorem we need the formalism of 
Probabilistic Turing Machines. But in this extended abstract we shall only state that 
theorem in words and therefore not prove it here. 

k Theorem 1. Let uI,. . . ,us,b€ (Q N) , and assume that the equation [al -.. a,Iy=b 

is solvable in ye Qk.  Hence d=def(al, ..., a,$) is defined. 

(1)Suppose we have a “black box” which outputs x b  from the input ( xul,..-, xa’) 
with average probability (over x )  +>0. 

With this black box we can build an algorithm which computes 2 from input U, with 

probabiliry 2 T ,  for every fixed U E  Z ; .  The running time of this algorithm is 

1 

1 
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1 - P I ,  where P ,  depends polynomially on the length of the input (which consists Of 
El 

Nand the numerators and the denominators of the coordinates of al ,  ..., as,b). 
1 

(2)Suppose we have a “black box” which outputs u’ from the input with average 
probability (over u) 2%>0. 
With this black box we can build an algorithm which computes x b  f rom input 

( xu‘, ..., xu‘) ,  with probability 2 T ,  for every faed X E  (Z;)  . The running rime of 

this algorithm is - P 2 ,  where P ,  depends polynomially on the same input as in 

1 k 

1 
5 

(1). 

More informally, this theorem states that computing x b  h m  ( xu],..., xu’) is polynoxnkd 

time reducible to computing ud from u, where d=def(q, ..., a,$) and x,u random. 
1 - 

Under the assumption that it is infeasible for an individual to compute RSA-roots for 
random numbers, we can derive Proposition 4 (i)a(ii)w(iii) from Theorem 1. 
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