# A remark on the efficiency of identification schemes 

Mike Burmester<br>RHBNC - University of London<br>Egham, Surrey TW20 OEX<br>U.K.


#### Abstract

The efficiency parameters of identification schemes (memory size, communication cost, computational complexity) are based on given security levels and should allow for the 'worst-case' probability of error (forgery). We consider instances of the schemes in [0088] and [Sch90] for which the efficiency is not as good as claimed.


Introduction. Ohta-Okamoto presented [OO88] a modification of the Fiat-Shamir [FS86] identification scheme which claims to reduce the probability of error (forgery) from $2^{-k t}$ to $L^{-k t}$ (for suitable $L$ ). Here $k$ is the number of secret information integers, $t$ the number of iterations and $L$ the exponent (for the Fiat-Shamir scheme $L=2$ ). We shall see that this is not always true, e.g., there are instances for which this probability is $2^{-k t}$ and indeed $2^{-t}$, if we use the argument in [BD89]. In particular, for the parallel implementation the probability of error can be $1 / 2$. Similar instances occur with the scheme in [Sch90].

The schemes that we consider are based on interactive proof systems. A formal setting for such systems is given in [GMR89,FFS88]. Let $A$ be the prover, $B$ the verifier and ( $A, B$ ) an interactive proof of membership in a language $\mathcal{L}$. For every dishonest prover $\tilde{A}$ there is a probability that $B$ will accept when the input $x \notin \mathcal{L}$. The probability of error of $(A, B)$ is the largest such probability, taken over all $\tilde{A}$. This is negligible when the proof $(A, B)$ is sound [GMR89]. The probability of error for proofs of knowledge [FFS88] is defined in a similar way.

The Ohta-Okamoto scheme. Let $n=p q, p$ and $q$ distinct odd primes, $L \geq 2$, and $x=(I ; n, L), 1<I<n$, be the input. The prover $A$ proves that there exists (or that it knows) an $S$ such that $I=S^{L} \bmod n$. The protocol has four steps which are repeated $t=O(\log n)$ times. In Step $1, A$ sends $B$ the number $X=R^{L} \bmod n, R$ random in $Z_{n}$. In Step $2, B$ sends $A$ a random query $E \in Z_{L}$ and in Step $3, A$ replies with $Y=R \cdot S^{E} \bmod n$. Finally in Step $4, B$ verifies that $Y^{L} \equiv X \cdot I^{E}(\bmod n) . B$ accepts (the proof of $A$ ) if the verification is valid for all $t$ iterations.

We shall show that the probability of error can be as large as $2^{-t}$. Suppose that $L=2 L_{1}, L_{1}$ odd, and that $I, S_{1} \in Z_{n}^{*}$ are such that $I=S_{1}^{L_{1}} \bmod n$ with $S_{1}$ a quadratic
non-residue $\bmod n$. Then $I$ is a non-residue and does not have an $L$-th root $\bmod n$. Let $\tilde{A}$ be a dishonest prover which guesses the parity of the queries randomly, with uniform distribution. In Step $1, \widetilde{A}$ sends $X=R^{L} \bmod n$ if the guessed parity is even, and $X=R^{L} \cdot I^{-1} \bmod n$ if the guessed parity is odd. In Step $3, \tilde{A}$ sends $Y=R \cdot S_{1}^{E / 2} \bmod n$ if the (actual) query $E$ is even, and $Y=R \cdot S_{1}{ }^{(E-1) / 2} \bmod n$ if $E$ is odd. Then $B$ will accept when $\tilde{A}$ has guessed the parity correctly. Indeed for $E$ even, $X \cdot I^{E} \equiv R^{L} \cdot S_{1}^{L_{1} E} \equiv$ $\left(R \cdot S_{1}^{E / 2}\right)^{L} \equiv Y^{L}(\bmod n)$ and for $E$ odd, $X \cdot I^{E} \equiv R^{L} \cdot I^{-1} \cdot S_{1}^{L_{1} E} \equiv R^{L} \cdot S_{1}^{L_{1}(E-1)} \equiv$ $\left(R \cdot S_{1}{ }^{(E-1) / 2}\right)^{L} \equiv Y^{L}(\bmod n)$. So $B$ will accept with probability $1 / 2$ for each iteration. Therefore the probability of error for the proof $(A, B)$ is at least $2^{-t}$.

A similar example can be used with proofs of knowledge. For 'unrestricted input' proofs the input $I$ has to be an $L$-th root. Again we take $L=2 L_{1}$, only this time $L_{1}$ need not be odd and $S_{1}$ is a quadratic residue. The dishonest prover $\widetilde{A}$ is given on its knowledge tape $S_{1}$ but not $\sqrt{S_{1}} \bmod n$ (the soundness condition for proofs of knowledge [FFS88] does not restrict the contents of the knowledge tape of $\tilde{A}$ : we assume that it is hard to compute $\sqrt{S_{1}} \bmod n$, given $S_{1}$ ). So $\tilde{A}$ does not know an $L$-th root of $I$. As before, if $\tilde{A}$ guesses the parities then $B$ will accept with probability $2^{-t}$.

This argument can be easily extended to other values of $L$ which have a common factor with $p-1$ or $q-1$. An illustration of a more general case for which $n$ is a product of three primes and $L$ is a prime is given in [BD89].

In [OO88, p.241] it is argued that the probability of cheating is $1 / L$ when $t=1$ and $L$ is the product of distinct primes with $(L, p-1)=L$, provided that there is no probabilistic polynomial time algorithm for factoring. This is not true for our example. For us, with such $L>2, L$ even, the probability of error is $1 / 2$, and there is no reason why factoring should be any easier (e.g., when $S_{1}$ is a quadratic non-residue, for proofs of membership, or when $\tilde{A}$ has $S_{1}$ on its knowledge tape, for proofs of knowledge).

In conclusion, the probability of error (forgery) lies between $L^{-k t}$ and $2^{-t}$, depending on $L$. Even though this is negligible when $t=\theta(\log n)$, the larger value must be taken into account when considering the efficiency parameters of the scheme. We get the lowest probability (and hence the best efficiency) when $L$ is a prime number [GQ88] which is large (non-constant, polynomial in $\log n$ ), provided that the input is of the 'proper' form and that $Y \notin Z_{n}^{*}$, for proofs of membership, or $Y \neq 0$, for proofs of knowledge [BD89].

The Schnorr scheme. Let $p, q$ be odd primes with $q \mid p-1, \alpha \in Z_{p}$ have order $q, L=2^{l}$, and $x=(v ; \alpha, p, q, L), v \in Z_{p}^{*}$, be the input. The prover $A$ proves that it knows an $s$ such that $v=\alpha^{-s} \bmod p$. Again the protocol has four steps. In Step $1, A$ sends $z=\alpha^{r} \bmod p$, $r$ random in [1:p-1], in Step 2, $B$ sends the random query $e \in Z_{L}$, and in Step 3, $A$ replies with $y=r+s e(\bmod q)$. In Step $4, B$ checks that $z=\alpha^{y} v^{e} \bmod p$ and accepts if equality holds.

For this protocol the probability of error is $1 / 2$. Indeed let $\gamma$ be a primitive element of $Z_{p}$ and $\alpha=\gamma^{p-1 / q} \bmod p, \beta=\gamma^{p-1 / 2 q} \bmod p$, and $v=\beta^{-s} \bmod p, s$ odd. Then $v \neq \alpha^{i} \bmod p$ for all $i$ ( $v$ has even order) and there is no $s$ such that $v=\alpha^{-s} \bmod p$. $\tilde{A}$ is a dishonest prover which is given $s$ on its knowledge tape. As before $\tilde{A}$ guesses the parity of the query and sends either $z=\alpha^{r} \bmod p$ or $z=\alpha^{r} v \bmod p$ in Step 1. In Step $3, \tilde{A}$ sends
$y=r+s e / 2(\bmod q)$ if $e$ is even, and $y=r+s(e-1) / 2(\bmod q)$ otherwise. Again $B$ will accept when $\tilde{A}$ has guessed the parity correctly. So the probability of error is $1 / 2$.

In [Sch90, Proposition 2.1] it is argued that if the probability of error $\varepsilon$ is greater than $2^{-l+2}$ then $\log _{\alpha} v$ can be computed in time $O\left(\varepsilon^{-1}\right)$ with constant, positive probability. For us, when $l>3$, this is not true since $\varepsilon=1 / 2$ and $\log _{\alpha} v$ does not exist.

To prevent this situation (of 'proving' knowledge of logarithms which do not exist) the verifier must check in the protocol that $v^{q} \equiv 1(\bmod p)$. Then $\log _{\alpha} v$ always exists. Of course this is only possible when $q$ is 'public'. The example described above also applies to the Brickell-McCurley identification scheme [ BrMcC 90 ] as presented at Eurocrypt' 90. This scheme has now been adjusted so that the prover first proves to a Key Issuing Authority that $\log _{\alpha} v$ exists.

Acknowledgement. The author wishes to thank Yvo Desmedt for helpful discussions and Kevin McCurley for a remark about the Schnorr identification scheme.

## References

[ Br McC 90$]$ E.F. Brickell, and K.S. McCurley. An interactive identification scheme based on discrete logarithms and factoring. Presented at Eurocrypt'90.
[BD89] M. Burmester, and Y. Desmedt. Rermarks on the soundness of proofs. Electronics Letters, 25(22), 1989, pp.1509-1511.
[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology, 1(2), 1988, pp. 77-94.
[GQ88] L.C Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. Proceedings of Eurocrypt'88, Lecture Notes in Computer Science 330, SpringerVerlag, Berlin, pp. 123-128.
[FS86] A. Fiat, and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. Proceedings of Crypto' 86 , Lecture Notes in Computer Science 206, Springer-Verlag, New York, pp. 186-194.
[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. Siam J. Comput., 18(1), 1989, pp. 186-208.
[OO88] K. Ohta, and T. Okamoto. A modification of the Fiat-Shamir scheme. Proceedings of Crypto'88, Lecture Notes in Computer Science 403, SpringerVerlag, New York, pp. 232-243.
[Sch90] C.P. Schnorr. Efficient Identifications and Signatures for Smart Cards. Proceedings of Crypto'89, Lecture Notes in Computer Science 435, SpringerVerlag, New York, pp. 239-251.

