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Abstract 

The efficiency parameters of identification schemes (memory size, communication 

cost, computational complexity) are based on given security levels and should allow 

for the ‘worst-case’ probability of error (forgery). We consider instances of the 

schemes in [0088] and [SchSO] for which the efficiency is not as good as claimed. 

Introduction. Ohta-Okamoto presented [OOSS] a modification of the Fiat-Shamir [FS86] 
identification scheme which claims to reduce the probability of error (forgery) from 2-kt to 
Lekf (for suitable L). H ere k is the number of secret information integers, t the number of 
iterations and L the exponent (for the Fiat-Shamir scheme L = 2). We shall see that this 
is not always true, e.g., there are instances for which this probability is 2-kf and indeed 
2-‘, if we use the argument in [BD89]. In particular, for the parallel implementation the 
probability of error can be l/2. Similar instances occur with the scheme in [SchSO]. 

The schemes that we consider are based on interactive proof systems. A formal setting 
for such systems is given in [GMR89,FFS88]. Let A be the prover, B the verifier and (A, B) 
an interactive proof of membership in a language C. For every dishonest prover A there is 
a probability that B will accept when the input I $ L. The probability of error of (A, B) 
is the largest such probability, taken over all A”. This is negligible when the proof (A, B) 
is sound [GMR89]. The probability of error for proofs of knowledge [FFS88] is defined in 
a similar way. 

The Ohta-Okamoto scheme. Let n = pq, p and q distinct odd primes, L > 2, and 
z = (1; n, L), 1 < I < R, be the input. The prover A proves that there exists (or that 
it knows) an S such that I = SLmodn. The protocol has four steps which are repeated 
t = O(log n) times. In Step 1, A sends B the number X = RLmodn, R random in 2,. In 
Step 2, B sends A a random query E E 22’~ and in Step 3, A replies with Y = R-SEmodn. 
Finally in Step 4, B verifies that YL - X - ZE (mod n). B accepts (the proof of A) if the 
verification is valid for all t iterations. 

We shall show that the probability of error can be as large as 2-‘. Suppose that 

L = 2L1, L1 odd, and that I,& E 2; are such that I = S,“l modn with ,031 a quadratic 

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 493-495, 1991. 
0 Springer-Verlag Berlin Heidelberg 1991 



494 

non-residue modn. Then I is a non-residue and does not have an L-th root modn. 
Let 2 be a dishonest prover which guesses the parity of the queries randomly, with 
uniform distribution. Zn Step 1, A" sends X = RLmodn if the guessed parity is even, and 
X = RL - I-'modn if the guessed parity is odd. In Step 3, A' sends Y = R - SF/'rnodn 
if the (actual) query E is even, and Y = R - S,(E-1)/2modn if E is odd. Then B will 
accept when 2 has guessed the parity correctly. Indeed for E even, X + I E  3 RL SF" 5 

( R  * Sl ( E - 1 ) / 2 ) L  YL (mod n). So B will accept with probability 1/2 for each iteration. 
Therefore the probability of error for the proof (A,  8) is at  least 2-*. 

A similar example can be used with proofs of knowledge. For 'unrestricted input' 
proofs the input I has to be an L-th root. Again we take L = 2L1, only this time L1 need 
not be odd and S1 is a quadratic residue. The dishonest prover A is given on its knowledge 
tape S1 but not modn (the soundness condition for proofs of knowledge [FFSSS) does 
not restrict the contents of the knowledge tape of 2: we assume that it is hard to compute 
f i  modn, given S,). So A' does not know an L-th root of I .  As before, if 2 guesses the 
parities then B will accept with probability 2 - f .  

This argument can be easily extended to other values of L which have a common 
factor with p- 1 or q- 1. An illustration of a mure general case for which n is a product 
of three primes and L is a prime is given in [BD89]. 

In [OOSS, p.2411 it is argued that the probability of cheating is 1 / L  when t = 1 and L 
is the product of distinct primes with (L,p-1) = L,  provided that there is no probabilistic 
polynomial time algorithm for factoring. This is not true for our example. For us, with 
such L > 2, L even, the probability of error is 1/2, and there is no reason why factoring 
should be any easier (e.g., when Sl is a quadratic non-residue, for proofs of membership, 
or when A has S, on its knowledge tape, for proofs of knowledge). 

In conclusion, the probability of error (forgery) lies between L-kf and 2-t,  depending 
on L. Even though this is negligible when t = O(logn), the larger value must be taken 
into account when considering the efficiency parameters of the scheme. We get the lowest 
probability (and hence the best efficiency) when L is a prime number [GQSS] which is 
large (non-constant, polynomial in logn), provided that the input is of the 'proper' form 
and that Y # Z;, for proofs of membership, or Y # 0, for proofs of knowledge [BD89]. 

The Schnorr scheme. Let p ,  q be odd primes with q I p l ,  a E 2, have order q, L = 2*, 
and z = ( V  ; a , p ,  q ,  L ) ,  v E Z;, be the input. The prover A proves that it knows an s such 
that v = a-Smodp. Again the protocol has four steps. In Step 1, A sends z = d m o d p ,  
r random in [l : p -  11, in Step 2, B sends the random query e E Z,, and in Step 3, A 
replies with y = r + se (mod q) .  In Step 4, B checks that z = crguemodp and accepts if 
equality holds. 

For this protocol the probability of error is 1/2. Indeed let 7 be a primitive element of 
2, and Q = -yP-'/qrnodp, /? = yp-l/'qrnodp, and v = P-'modp, s odd. Then u # a'modp 
for all i (v has even order) and there is no s such that v = a-"modp. 2 is a dishonest 
prover which is given s on its knowledge tape. As before guesses the parity of the 
query and sends either z = d m o d p  or z = Q'V modp in Step 1.  In Step 3, A sends 

( R  S,"/')L 5 Y L  (mod n) and for E odd, X - IE G RL - I-' - S F E  E RL * S:l(E-l) - = 
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y = r + se/2 (mod q) if e is even, and y = r + s(e - 1)/2 (modq) otherwise. Again B 
will accept when 

In [SchSO, Proposition 2.11 it is argued that if the probability of error E is greater than 
2-’+* then log,v can be computed in time O ( E - ~ )  with constant, positive probability. For 
us, when Z > 3, this is not true since e = 1/2 and log,v does not exist. 

To prevent this situation (of ‘proving’ knowledge of logarithms which do not exist) 
the verifier must check in the protocol that vq = l(modp). Then log,v always exists. 
Of course this is only possible when q is ‘public’. The example described above also applies 
to the Brickell-McCurley identification scheme [BrMcCSO] as presented at Eurocrypt’SO. 
This scheme has now been adjusted so that the prover first proves to a Key Issuing 
Authority that log,v exists. 

Acknowledgement. The author wishes to thank Yvo Desmedt for helpful discussions 
and Kevin McCurley for a remark about the Schnorr identification scheme. 

has guessed the parity correctly. So the probability of error is 1/2. 
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