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I. INTRODUCTION 

A new type of signature scheme, a signature scheme where forgery by an unexpectedly 
powefl attacker is provable, was suggested in I1 I]: if the signature of an honest participant 
Alice is forged, she can prove this forgery with arbitrarily high probability. 

The possibility of proving forgeries does not depend on any unproven assumptions. The 
impossibility of forgery is based on the existence of pairs of claw-free permutations. 

We improve this scheme for the special case that the GMR-generator for pairs of claw-free 
permutations is used 151: During the set-up phase, Bob generates a pair cfo, fI). Alice’s security 
depends entirely on the sufficiency of Bobs choice. Therefore, in the general case, Bob, has to 
prove to Alice the sufficiency of his choice by a zero-knowledge proof (ZKP). We show that 
for the GMR-generator, this expensive ZKP can be replaced by the simple condition that the 
modulus chosen by Bob is odd. 

In Section II, we sketch a simplified version of the signature scheme of [ill. Section III 
contains the necessary notations. The Gh4R-generator is described in Section IV. In Section V 
we present our result. 

II. A SIMPLE SIGNATURE SCHEME WHERE 
FORGERY CAN BE PROVED 

The signature scheme where forgery can be proved of [l 11 is based on the idea of LAMPORT’S 

one-time signatures [31: 

Assume two parties, the signer Alice and the recipient of her signatures, Bob. If Alice has to 
sign at the most L bits, she chooses a one-way function g and 2-L values ri,o, ri,l, i = 1,. . .,L+ 
randomly from dam(g), the domain of g. She publishes g and the 2-L images 

g(rl,o) &,I) .-. 8h.0) &,l). 

To sign the r-th bit with value b E (0,l) , Alice sends the preimage rtb of g(r,$ to Bob. As 
usual, if the forger Felix can invert g, Alice’s security is lost completely. 

The new idea was that in such a case Alice should be able to prove to Bob or a judge Judy that 
someone has inverted g [l 1,101. For this, function g has to fulfil two conditions: 
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i. for a futed value Q > 0, and for each x E dom(g), the value g(x) has at least 2O preimages, 
ii. g is (computationally) collision-free for Alice, i.e. it is hard for Alice to find a pair (x, y) 

with g(x) = gCy) and x # y. 

If Felix (or even Bob) forges a signature, at least for one image g(r,a) he computes a new 
preimage x. Since rtb was randomly chosen from domb), with probability (1-2-9 the pair (x. 
'ib) is a gcollision. Each gcollision convinces Bob and Judy that condition ii. is Violated, i.e. 
that the signature scheme is broken. 

Condition i. guarantees that with high probability Alice can prove a forgery. This is called 
Alice's (irQomrion theoretical) security. 

Conditon ii. guarantees that it is hard to forge signatures or proofs of forgery. Since Alice 
can almost always prove a forgery, her security is not influenced by forgeries. Conversely, 
after a proved forgery, all of Alice's signatures become invalid, i.e. Bob's security depends 
completely on this condition. Thus the (computational) impossibility of forgery is called Bob's 
security. 

Such a function g can be constructed from each pair Cfo,fl) of claw-free permutations (as 
defined in [SI): Let D := domCfi). Then define 

g:  {O,lJaxD + D 

(%*- * - ,~C-IJ)  4 f%(.fa,(. * .fa,,(x> * -))- (1) 
Since g hides the first argument in an unconditional way, g is called hidingfiMction in ill]. 

Finding claws is only proved to be hard for parties who cannot observe the process of 
generation. Thus instead of Alice, Bob has to generate the pair for Alice. 

(Please note that now nothing prevents Bob from inverting g and forging signatures, i.e. 
nobody but Bob can be sure that a signature was really created by Alice. Therefore, to sign a 
message for n recipients Bobl,. . .,Bob,, Alice has to sign the message n times, each time using 
a different function gi generated by Bobi. Alice can prove a forgery by presenting collisions for 
each function gk) 

Bob's security is now ensured by Bob himself. 

Alice's security depends completely on condition i. Thus Bob must prove the sufficiency of his 
choice. In general, this can be done by an unconditionally correct zero-knowledge proof Rill. 
In Section V, we show that for the GMR-generator this expensive proof can be omitted. 

Some efficiency improvements are mentioned in (111. Since they are all based on the function g, 
they all cause the same problem, thus we only mention that most of the improvements for 
ordinary one-time signatures described in [7,9,8] can be applied. The most important one is 
MERKLE's tree-authentication for decreasing the length of the public key. To apply this idea, a 
collision-free hash-function, chosen by Bob, must be used p], and each collision of the hash- 
function must be accepted as a proof of forgery. 

For a complete description arid a formal proof of the security of the signature scheme, see [lo, 

11. 
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IIL NOTATIONS 
For m E N, Zm denotes the ring of all residues modulo m, and Z,* the set of all residues x 
modulo m with gcd(x, m) = 1. We use the symmetric representation for Z,, i.e. for odd rn, 
we use the set (-(m-1)/2, ..., -1, 0, 1, .. ., (m-1)/2 ) to represent Zm . 
6) denotes the J A C O B I - S ~ ~ O I .  QR, denotes the set (9 I x E Zm*} of al l  quadratic residues 
modulo m, -QR, the set (-z I z E QR,). 

For odd m and x E Z,, define the absolute value of x by 

x if x E (0, ...,( m - l ) / 2 }  { -x if x E (-1 ,...,-( m - 1 ) / 2 )  
Lxl := 

For a set M, the symbol I M I denotes the cardinality of M. 

IV. THE GMR-GENERATOR FOR PAIRS OF CLAW- 
FREE PERMUTATIONS 

Let k E PJ be the security parameter for the GMR-generator. On input k, the generator 
randomly selects a number m from the set 

of BLUM-integers of length 2.k or 2.k - 1. 

The functions fi: D + D are then defined by 

Hk := (p’4 t p ,  qprime A Llog2(~)l =Llog2(q)J= k -1 ~p 5 3 mod 8 A 4 I 7  mod 8) 

fo(x) := lr21 
f l ( ~ )  := 14 $1. 

Their common domain D is given by 

(2) 
* x  m- 1 

D : = ( x l x ~  Zm A ( - ) = ~ A x E  m (1, ...,-j-)). 

Both functions are permutations of D. Finding a claw, i.e. a triple (xo, X I ,  z) with z = fo(xo> = 
fl(xl), is as hard as factoring m [S] .  

In this case, the hiding function g: (0,l )ax D + D defined in (1) can be described by 

where a = (a&. . .,ael) is interpreted as the integer aGl 2O-I + . .. + a1 2 + q (similar to 
[4], proof by induction on 0). 

Finding a g-collision, i.e. a pair ((a, x ) ,  (p, y)) with g(a ,  x) = g(p, y )  and (a, x )  # <B, y) ,  
is as hard as finding a claw. 

g(a, x )  = 14* .x2OI, 
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V. NUMBER OF PREIMAGES OFg 
To guarantee that Alice can prove each forgery with probability at least (1-2-9, each z E im(g), 
the image of g, must have at least 2O preimages. 

If (fo, fl)  are permutations of D, e.g. because Bob is honest and useshe GMR-generator, 
this is satisfied since then the functions g(a,*), a E (0,1]0, are permutations of D ,  too. Thus 
for each value z E D and each a E (0,l)  O, there is exactly one x with g ( a ,  x )  = z .  Thus 

In the following, we show that to be convinced of condition i, Alice just has to check that m is 
odd. 

For general odd m, instead of using the domain D defined in (2), we use the domain 

from which it is also easy to choose a random element. 

hmma 1. If m E Hk, the domains D and E are equal. 

Proof. Let m = p  q, where p 5 q I 3 (mod 4). Hence (;;;) = (-) (-) = (-1) (-1) = +l. 

E cD: Assume y := Ir2(mod m)l E E .  From cz) = (G) = 1, it follows that (x) = 1. 

D s E: Assume y E D, i-e. (5) = 1, y E { 1 ,..., 2). 

i g-'(z) I = 2 4  

E : =  [ lr21 I%€  z,* }, 

-1 -1 -1 
1 x2 1x21 

Since $1 E { 1,. . .,?) by definition, we have y E D. 

If y E QR, then there is an x such that y = x2 = @I (mcd m). 

m- 1 

Otherwise (2) = C2) = -1 holds. In this case there is an x such that y = -9 = 1x21 (mod 
m ) ,  

P P  

1 1 because (2) = (2) = (L) ( y )  = (l) ( y )  = (-1)2 = 1 which means -y E QR,. 

Lemma 1 says that nothing is changed if Bob is honest, thus Bobs security is not influenced. 
We only need to consider Alice's security. 

Lemma 2. If m is an arbitrary odd integer, then for all z E E, I g-'(z) I2 2 4  

Proof. The proof is in four steps. Each one can be proved by basic algebraic calculations 
omitted here for shortness. 

1st step. The sets (+l,-l} and QR,w-QR, are subgroups of (Zm*,*). Consider the quotient 

Set E is arepresentation system of G, the element h2*(+1,-1) E G is represented by Ix21 

P 4 P P 4 4  

PUP G := (QR,u-QR,) / {+1, -1}. 

E E. Multiplication in E is defined by kl Iyl := Ir yl. 

2nd steD, For all a, B E (0,1] and x ,  y E G ,  let 

( a , x ) *  ( ~ , y > : = ( a + ~ m o d 2 ~ , 1 r * y  *4(a+P)div2"1) 
Then ((O,l}Ox G , *) is an ABELian group. 

3rd sten, Function g is a group-homomorphism from ((O,l)ax G , *) into G. 
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VI. SUMMARY 
If the signature scheme where forgery can be proved of [11] is implemented using the claw-free 
permutation-pairs of 151. the signer Alice just needs to check whether the modulus m chosen by 
the recipient Bob is odd. The zero-knowledge proof used in 11 11 to convince Alice that Bob has 
generated a suitable m can be omitted. 
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