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Abstract 

We propose two improvements to the Fiat Shamir authentication and signa- 
ture scheme. We reduce the communication of the Fiat Shamir authentication 
scheme to a single round while preserving the efficiency of the scheme. This 
also reduces the length of Fiat Shamir signatures. Using secret keys consisting 
of small integers we reduce the time for signature generation by a factor 3 to 
4. We propose a variation of our scheme using class groups that may be secure 
even if factoring large integers becomes easy. 

1 Introduction and Summary 

The Fiat-Shamir signature scheme (1986) and the GQ-scheme by Guillou and Qu& 
quater (1988) are designed to reduce the number of modular multiplications that 
are necessary for generating signatures in the RSA-scheme. Using multicomponent 
private and public keys Fiat and Shamir generate signatures much faster than with 
the RSA-scheme. The drawback is that signatures are rather long. They are about 
t-times longer than RSA-signatures, where t is the round number in the Fiat-Shamir 
scheme. Using single component keys Guillou and Quisquater obtain signatures of 
about the same length as in the RSA-scheme but the cost for signature generation is 

only slightly reduced (by a factor of about 3) compared to the RSA-scheme. 
* 

In this paper we propose a new signature scheme and a corresponding authentica- 

tion scheme that reduces the length of signatures in the Fiat-Shamir scheme to about 
the length of RSA-signatures. Signature generation with the new scheme is about 
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3 to 4 times faster than with the Fiat-Shamir scheme. The efficiency of the new 
signature scheme is comparable to that of the discrete logarithm signature scheme by 
Schnorr (1989): In the new scheme signature generation is somewhat slower, signature 
verification about 5 times faster than in the discrete logarithm scheme. Signatures, 
private and public keys are longer in the new scheme.. 

We present the basic version of the new signature scheme in section 2. This basic 
version preserves the efficiency of the Fiat-Shamir scheme but reduces the length 
of signatures. In section 3 we present a variant of the new scheme that generates 
signatures about 3 to 4 times faster than with the Fiat-Shamir scheme. The authen- 
tication scheme that corresponds to the signature scheme is presented in section 4. 
It is shown to be secure unless computing non trivial 2'-th roots modulo N is easy. 
A variation of our scheme using class groups is given in section 5 .  This variant may 
be secure even if factoring large integers is easy. 

2 A condensed variant of Fiat Shamir signatures 
Notation. For N E IN let ZN denote the ring of integers modulo N .  The 
numbers t and k are security parameters, typically 4 5 t , k 5 20 . 

The role of the key authentication center (KAC). The KAC chooses 

0 random primes p and q such that p ,  q 2 'PS6 

0 a one-way hash function h : ZN x Z + (0, l}tk. 

0 its own private and public key. 

The KAC publishes N = p - Q , h and its public key. 

COMMENTS. The KAC's private key is used for signing the public keys issued by 
the KAC. The KAC can use any secure public key signature scheme whatsoever for 
generating this signature. 

The user's private and public key. Each user chooses a private key s = 
(sI,. . . ,sk) consisting of random numbers s; E [I, N ]  such that gcd(si, N )  = 1 for 
i = 1,. . . , k. The corresponding public key v = (vl,. . . , vJ consists of the integers 
v; = s; -2' (mod N) for i = 1,. . . , k. 

Registration of users. The KAC checks the identity of a user, prepares an 
identification string I (containing name, address etc.) and generates a signature S for 
the pair (1,~) consisting of I and the user's public key v .  
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Signature generation. 
input message m E 12 , private key s = (sl,. . . , sk) and modulus N. 

1. Preprocessing pick a random r E [l, N ]  , z := r2' (mod N). 

2. e = (ell, .  . . , e l k )  := h(s,rn) E (0, 

c;=, Cij2i-1 
3. y := r n g ,  sj (mod N). 

Output signature ( e ,  y). 

Our signature concept reduces multicomponent signatures of the Fiat Shamir 
scheme to single components. The efficiency of signature generation is preserved. 
Step 3 can be performed as follows 

y := rl[ sj (modN) 
e t , j = l  

y : = y z  ]II sj ( m o d N ) f o r i = l ,  ..., t - 1  
e t - i , j = l  

y := y - r  (mod N). 

Step 3 requires at most kt + t - 1 modular multiplications; for random e only 
t ( k  + 2)/2 - 1 modular multiplications are required on the average. Step 1 requires t 
squarings and can be done in a preprocessing stage that is independent of the message 
m. 

Signature verification. 
input signature ( e ,  y), message n, v = ( ~ 1 , .  . . , vk), I, S, N .  

1. check the signature S for ( I ,  v). 

3. check that e = h(z ,rn)  . 

Signature verification can be done using at most k t + t  modular multiplications. For 
random e only t ( k  + 2)/2 + 1 modular multiplications are required on the average. 
Step 2 can be performed as follows: 

z := y2 vj (mod N) 
C t , ~ = l  

z : = z 2  v j  ( m o d N ) f o r i = l ,  ..., t -1 .  
e t - , , ] = 1  
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Security of signatures. 
analyst has to solve the equation 

In order to falsify a signature for message m the crypt- 

for e and y. No efficient method is known to solve this equation. 

3 Fast Signatures 
The generation of signatures can be accelerated by choosing secret keys s consisting 

of small integers s1 7 .  . , , Sk . The security of this variation of the scheme is based 
on the assumption that computing 2'-roots modulo N is difficult. No particular 
algorithms are known to compute 2'-roots modulo N given that these 2t-roots are of 
order N2-'+'. 

11 
si 

Let the private key (sl, . . . , sk) consist of random primes s17.. . sk in the interval 
, P4]. The interval [I, 264] must be large enough so that it is infeasible to find the 
by exhaustive enumeration. We must have t 2 4 so that s;t is at least of order 

N 2 .  We next explain the requirement for the numbers sl,. . . sk to be prime. For if 
sj = Q p with a, /3 E [l, 232] we can find si by solving 

Pe2' = v;cr2'(rnod N) for a,@ E [l,232]. 

This can be done using about 232 steps. 

For the efficiency of the scheme we suppose that Cj e i j  5 8 for i = 1,. . . , t .  
Then we have nci,,yl s j  < 2'12 for all i and computing this product does not require 
any modular reduction. Consequently step 3 of the procedure for signature genera- 
tion requires only 2t - l full modular multiplications; the other multiplications are 
with small numbers. Thus step 3 costs an equivalent of about 2.5t - 1 full modular 
multiplications. Step 1 of the procedure for signature generation requires t additional 
modular multiplications, but these multiplications are done in preprocessing mode 
independent of the message that is to be signed. The total cost of about 2.5t - 1 mo- 
dular multiplications for signature generation compares favourable with the average 
of (k/2 + 1)t modular multiplications in the original Fiat-Shamir scheme. 

4 The authentication scheme and its security 
Let the private and public keys s, u be as in the previous sections. In particular we 

can use the small integer variant for the private key s. 
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The authentication protocol. 
(Prover A proves its identity to verifier B )  

1. Preprocessing. A picks a random number r with 1 5 r 5 N and computes 
z := ?(mod N). 

2. Initiation. A sends to B its identification string I ,  its public key 21, the KAC's 
signature S for (I,.) and z. 

3. B checks v by verifying the signature S and sends a random string e E (0, l}'k 

4. A sends y := r nj SF'=, 
5 .  B checks that z = yZc nj v?'=l 'I  

to A. 
ei,, 2 ' 4  

(modN) t o B  

=, .qi-1 
(mod N) and accepts A's proof of identity 

if this holds. 

Obviously if A and B follow the protocol then B always accepts A's proof of 
identity. We next consider the possibility of cheating for A and B. Let A (a, resp.) 
denote a fraudulent A ( B ,  resp.). A (B, resp.) may deviate from the protocol in 
computing z, y ( e ,  resp.). 2 does not know the secret s. spies upon A's method of 
authentication. 

A fraudulent A can cheat by guessing the exam e and sending for an arbitrary 
r E ZN the crooked proof 

The probability of success for this attack is 2 - f k .  

We prove in the following theorem that this success rate cannot be increased unless 
we can easily compute some nontrivial 2'-th root modulo N. For this let A be an 
interactive, probabilistic Turing machine that is given the fixed values k, t ,  N .  Let 
RA be the internal random bit string of 2. Let the success bit S A , ~ ( R A , ~ )  be 
1 if A' succeeds with v,RA,e and 0 otherwise. The success probability S',, of A 
for v is the average of S A , ~ ( R A , ~ ) ,  where RA,e are uniformly distributed. We 
assume that the time TA,,(RA, e) of A for v, RA, e is independent of RA and e ,  i.e. 
TA,,(RA, e )  = TA,,. This is no restriction since limiting the time to twice the average 
running time for successful pairs (RA, e )  decreases the success rate S A , ~  at most by a 
factor 2. 

L 

Theorem 1. There is a probabilistic algorithm AL which on input 2, v computes 
a 2'-root o f n j  v? (mod N) f o r  some (c l , .  . . ,ck) # 0 with Icjl < 2t f o r  j = 1,. . . , k. 
1' SA , > 2-'k+' then AL runs in ezpected time O ( T A , ~  / SA,,). 
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Proof. 
assume that T A , ~  also covers the time required for B. 

The argument extends Theorem 5 in Feige, Fiat, Shamir (1987). We 

Algorithm with input v 

1. Pick RA at random. Compute z = z(2, RA,v), i.e. compute z the same way 
as algorithm 2 using the coin tossing sequence RA. Pick a random e E (0, l}*k. 
Compute y = y ( 2 ,  RA, v, e )  the same way as algorithm 2. If SA,,(RA, e )  = 1 
then fix RA, retain z, y ,  e and go to step 2. Otherwise repeat step 1 using a 
new independent RA. 

2. Let u be the number of probes (i.e. passes of step 1) in the computation of 
RA,z,y, e. Probe up to 4u random E E (0, l}'k whether SA,,(RA,E) = 1. If 
some 1 occurs with E # e then compute the corresponding = T(A, RA,E,v) 
and output c; = Cf=r(eij - E,,)Zi-l for j = 1,. . . ,t and v / y  (mod N). 

- 

Time analysis. S A , ~  > 2-'k+1. For fixed A" and v let the success bits 
S2,,(RA,e) be arranged in a matrix with rows RA and columns e. A row RA is 
called heavy if the fraction of l-entries is at least SA, , /~ .  At least half of the 1- 
entries are in heavy rows since the number of l-entries in non-heavy rows is at most 
S A , ~  - #rows - #columns/2. Thus the row RA that succeeds in step 1 is heavy with 
probability at least 1/2. A heavy row has at least two l-entries. 

Let 

We abbreviate E = SA,,. The probability that step 1 probes ic-l random RA 
for some i E IN without finding an l-entry is at most (1 - c) i /c  < 2.7-'. Thus the 
average number of probes for the loop of step 1 is 

M 

i=l 

We have with probability at least 1/2 that u 2 c-l/2. The row RA is heavy with 
probability at least 1/2. If these two cases happen then step 2 finds a successful E 
with probability 2 1 -(1 - E / Z ) ~ / '  > 1 -2.7-', and we have e # E with probability 
2 1/2. Thus AL terminates after one iteration of steps 1 and 2 with probability 

1 1 
4 2 

1 -(1 - 2.7-')- > 0.07. 

The probability that AL performs exactly i iterations is at most 0.93'-l. Alltogether 
we see that the average number of probes for AL is at most 

00 

5~" '  C0.93'-'t 
i=O 

This proves the claim. QED 
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5 A variation of the new scheme using class 
groups 

One can obviously modify the new scheme so that the private and public key com- 
ponents s; ,v i  are elements of an arbitrary finite abelian group G, i.e. we can replace 
the group 23: of invertible elements in ZZN by the group G. The efficiency of signa- 
ture generation and signature verification relies on the efficiency of the multiplication 
in G. For the generation of the public key components vi = sf2' we need an efficient 
division algorithm in G. The security of the authentication and the signature scheme 
requires that computing 2'-th roots in G is difficult. 

A particular type of suitable groups are class groups Ca of equivalence classes of 
binary quadratic forms a x 2  + bXY + CY2 E Z [ X ,  Y ]  with negative discriminant 
A = 6' - 4ac. The multiplication in CA, which is called composition, is only slightly 
slower than modular multiplication for integers of the order of A. All known algo- 
rithms for computing 2'-th roots in Ca require knowledge of the group order h a  of 
CA which is called the class number. 

Class groups CA have the following advantage over the group ZN: 

The problem of computing class numbers h~ is harder than the problem of 
factoring integers N of the order N x I A I. 

0 Computing the class number ha is hard no matter whether A is prime or 
composite. 

0 No trusted authority is required for the generation of A, since there is no hidden 
secret, as is the factorization of the modulus N in the Fiat-Shamir scheme. 

For the sake of completeness we give all the details for the operation in class groups. 

5.1 Class groups. A polynomial ax2 + bXY + c Y 2  E E [ X ,  Y ]  is called a binary 
quadratic form, and A = b2 - 4ac is its discriminant. We denote a binary quadratic 
form ax2 + bXY + cY2 by (a ,  b,c) .  A form for which a > 0 and A < 0 is 
called positive, and a form is primitive if gcd(a, b, c) = 1. Two forms ( a ,  b, c) and 
(a',b',d) are eqvivalent if there exist c ~ , p , y ,  6 E ZZ with ( ~ 6  - /3y = 1 such that 
a'U2 + b'UV + dV2 = ax2 + b X Y  + cY2, where U = aX + 7Y, and V = PX + 7Y. 
Two equivalent forms have the same discriminant. 
Now fix some negative integer A with A z 0 or 1 mod 4. We will often denote a form 
(a ,  6, c) of discriminant A by ( a ,  b),  since c is determined by A = b2 -4ac. The set 
of equivalence classes of positive, primitive, binary quadratic forms of discriminant A 
is denoted by CA. The existence of the form (1 ,  A) shows that CA is non-empty. 
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5.2 Reduction algorithm. Each equivalence class in C, contains precisely one reduced 
form, where a form (0, b, c)  is reduced if 161 5 a 5 c and b >_ 0 if lbl = a or if 
a = c. 

5.3 Composition algorithm. The set CA is a finite abelian group, the CIQSS group. 
The group law, which we will write multiplicatively, is defined as follows. The inverse 
of ( a ,  b) follows from an application of the reduction algorithm to (a ,  -b), and the unit 
element la is (1,l) if A is odd, and (1 ,O)  if A is even. To compute (al ,  b ) . ( a , ,  k?), we 
use the Euclidean algorithm to determine d = gcd(a1, a2, (bl+&)/2), and r, s, t € 2Z 
such that d = ru1+ sa2 + t ( b l +  b2)/2. The product then follows from an application 
of the reduction algorithm to (ala2/dz, b2 + 2a2(s(h - b2) /2  - tc2)/d,  where c2 = 
(bz' - A ) / ( h ) .  

5.4 Prime forms. For a prime number p we define the Kronecker symbol ($) by 

1 if A is a quadratic residue modulo 4p and gcd(A,p) = 1 
0 if g c d ( A , p )  # 1 

-1 otherwise. 

For a prime p for which ($) = 1 , we define the prime form I p  as the reduced 
form equivalent to ( p ,  b p ) ,  where b, = min{b E IN>,, : b2 ZE A mod 4p). 

5.5 Factorization of forms. A form (a, b, c) of discriminant A, with &(a, A) = 1, 
for which the prime factorization of a is known, can be factored into prime forms in 
the following way. If u = npprimc p e p  is the prime factorization of a, then (a, b) = 
npprime I p . p e p ,  where sp E {-1, +l} satisfies 6 E spbP mod 2p, with Ip = ( p ,  bp) as 
in 3.4. Notice that the prime form I,, is well-defined because the prime p divides a, 
gcd(a, A) = 1, and b2 G A mod 4a. 

5.6 Choice of the discriminant and the private and public keys. We can choose 
A = -q to be the negative of any prime with q = 3 mod 4 so that q is at least 512 
bits long. This particular choice of A implies that is odd, and thus every class 
( a ,  b)  in CA has a unique square root. 

We can choose the components s; of the private key s = (sl,. . . , sk) to be prime 
forms s; = Ip, with random primes p ; ,  P3 < pi  < P .  We must have t >_ 3 so that 
p!' is much larger than m. Given s; one can easily compute the corresponding 
public key component vi = sT2'. 
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