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ABSTRACT 

This paper considers the cross-correlation function values of a family of binary 
sequences obtained born finite geometries. These values are shown to depend on the 
intersection of hyperplanes in a projective space and the cross-correlation function 
values of the nonlinear feedforward functions used in the construction of the geometric 
sequences. 

1. Introduction 

Maximum period linear feedback shift register sequences with nonlinear feedforward 
functions have been used in modern communication systems. Many of these sequences 
are required to have high linear complexities, good autocorrelation and/or cross- 
correlation function values. Recently, Chan and Games [l] introduced a class of 
binary sequences obtained from finite geometries using nonlinear feedforward function 
p : GF((I) -+ GF(Z), with (I odd. They showed that these sequences have high 
linear complexities. Brynielsson [Z] had studied similar problem with q even and 
established the linear complexities of these sequences in terms of the polynomial 
expression of the function p. In this paper, we consider the autocorrelation and 
cross-correlation functions of these sequences, and establish their values in terms 
of the autocorrelation and cross-correlation values of the sequence obtained from 

W”), P(P), . . -, P(P~-~)>, where P . IS a P rimitive element of GF(q). In the case where 
q is even, we show that the autocorrelation and cross-correlation function values are 
vastly different, malting these geometric sequences viable candidates for applications 
in spread spectrum communications. 

2. Geometric Sequences 

Let 4 be a prime power and GF(q”) be the field of 9” elements. A q-ary m-sequence 
R of span n and period qn - 1 can be generated by choosing a primitive polynomial 
f(z) over GF(q). A binary sequence S can be obtained from the m-sequence R for any 
choice of mapping p : GF(q) + GF(2) ( sometimes called a “nonlinear feedforward 
function”) by defining Si = p(Ri) for all i 2 0. Such a sequence S is closely related 
to finite geometry and is called a 6inu~ry geometric sequence. 
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It is well known that the sequence R can be represented as (Tr(ao),  
Tr(or),Tr(a2), . . .), where a is a root of the primitive polynomial f(z) and Tr : 
GF(q") + GF(q) is the trace function. Thus 

Let 21 = (q" - l ) / ( q  - 1) and /3 = or'. Then p is a primitive element in the base field 
GF(q) and Tr(a"+') = BTr(ar'), so Ri+, = /3Ri for all i 2 0. In [l], Chan and Games 
studied the linear complexities of these binary sequences with q odd, and proved the 
following result. 

THEOREM. Let S be a binary sequence obtained from finite geometries with q odd. 
Then 

linear complexity (S) = v * linear complexity (s). 

where s = ( P ( P 0 > ,  P ( a ) ,  * .  ., p(Pq-')>.  

By choosing p appropriately, the linear complexity of s can be made as high as q- 1, 
and so the linear complexity of S can reach g" - 1. In [2] Brynielsson considered the 
linear complexities of binary finite geometric sequences with q even, and proved a 
similar result: 

THEOREM. Let p : GF(2") -+ GF(2)  be represented as a polynomial x:li Aiz' over 
GF(2e).  Then 

linear compzezity (s) = C nlil 
A i f O  

where 121 denotes the dyadic weight of the integer i (ie. the weight of the binary 
vector representation of a). 

In the latter case, the linear complexity of S is maximal if the polynomial represen- 
tation of p has nonzero terms of every degree. Thus, for q even, the linear complexity 
of S has c& (:)nd as an upper bound. 

In this paper we consider the crosscorrelation of binary geometric sequences S and 
2, each of period q n  - 1, where S, = p(Tr(Aa.')) and Zi = r(Tr(Ba')) ,  and where 
A,B are fixed elements in GF(qn) .  Note that S and Z are geometric sequences with 
same linear feedback functions but different nonlinear feedforward functions p and y. 
(In a later paper we will consider the crosscorrclation of geometric sequences with 
different feedback functions.) 

3. Hyperplanes in  GF(qn)  

The geometric sequences are based on the geometry of hyperplanes in the finite 
field GF(q"). The crosscorrelation of these geometric sequences is calculated by 
counting the number of elements in the intersections of two hyperplanes. The use of 
intersecting hyperplanes for evaluating crosscorrelation of pseudorandom sequences 
was considered by Games in [3] and our method is similar to his. In this section we 
review some of the basic facts cmcerning hyperplanes and their intersections. 
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Let Tr: GF(q") -+ GF(q) denote the trace function. For any U E GF(q) we define 

Then Hu is an ( f i e )  hyperplane, i.e. it is an n - 1 dimensional vector subspace of 
GF(qn) which does not necessarily pass through the origin. If V E GF(q) then the 
hyperplanes HU and H v  are parallel, i t .  they have no points of intersection unless 
U = V ,  in which case they axe equal. Now let b E GF(q"), V E GF(q),  and consider 
the hyperplane 

LEMMA 1. The hyperplanes H u  and b-'Hv are parallel if and only if b E GF(q).  

PROOF: If b E GF(q)  then 

Since both b and V are in GF(q),b-'V E GF(q) ,  so H b - 1 ~  is parallel to Hu. 

GF(q). 
hyperplanes H u  = HO and b-'Hv actually coincide. Thus, 

On the other hand, if Hu and b-'Hv are parallel, then we must show that b E 
Let us first consider the special case when U = 0 and the two pasallel 

2 E HO iff T r ( z )  = 0 iff Tr(bz )  = V. 

By taking z = 0 we see immediately that V = 0. Now choose z E GF(q") - Ho. Since 
HO is a hyperplane, the addition of this one more linearly independent element will 
span all of GF(q"). Therefore bz may be written as a linear combination involving z 
and Ho, 

bz = uz + A 

for some a E GF(q) and h E Ho.  We will show that 6 = a E GF(q).  If this were false, 
we would have z = h / (b -a ) .  But multiplication by a preserves Ho, and multiplication 
by b also preserves Ho, so multiplication by (6 - a )  preserves Ho,  and so multiplication 
by ( b  - a)-' preserves Ho. Therefore z E H o ,  and this is a contradiction. 

Next we consider the general case of U arbitrary and H u  not necessarily equal to 
b-'Hv. As above, let Ho = {zlTr(z)  = 0). Then Hu, b- 'Hv,  and HO are parallel. 
Thus there are translations 5 1 ,  z2 E GF(qn) such that 
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Define V' = V - Tr(bz2). Then 

Thus b-'Hvi = HO and the preceding special case applies to this situation, from 
which we conclude that b E GF(q).  

LEMMA 2.  I f b  E GF('")-GF(q) then for any U, V E GF(q),  the number ofelements 
in the intersection H u  n b-l Hv is precisely q"-2. 

PROOF: By lemma 1, the hyperplaces Hu and b-'Hv are not parallel. If two hyper- 
planes are not parallel, then their intersection is a hyperplane inside each, i.e. it is 
an n - 2 dimensional (&ne) subspace of GF(q"). Therefore it contains qn-2 points. 

4.  Cross-Correlation Functions 

In the notation of section 2, we consider a primitive element a E GF(qn)  and two 
geometric sequences based on this element, 

sa = p(Tr(Acy')), 2; = -f(Tr(Bai)) 

Recall that the cross-correlation function associated with the sequences S and Z is 
given by: 

q n - 2  

Cs,z(.) = 1 ( - l ) y - l ) Z t + r ,  
t=O 

where 0 5 T 5 q" - 2. Using the notation @ ( p )  = (-l)P(J') and r ( p )  = ( - l ) 7 ( p )  for 
,u E GF(q) ,  and denoting by p = a' the corresponding primitive element of GF(q) ,  
we have the following definitions. 

DEFINITION. The short cross-correlation function is defined as 

/'EGF(Q) 

DEFINITION. The imbalance of p, denoted by I ( R ) ,  is defined by 

The imbalance of a nonlinear function p measures the difference in the number of 
0-images and the number of I-images under the mapping p. Let d represent the phase 
displacement of the two binary sequenccs S and 2, that is, ad = B / A  E GF(q"), 
then we prove 
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THEOREM. Let S and Z be two binary geometric sequences of span n with period 
4" - 1 a above. Let d denote their phase shift and let IJ = (q" - l ) / ( q  - 1). Then 
the cross-correlation function C S , ~ ( T )  is given by: 

C ~ , Z ( T >  = q"-lc,,,(m) - qo)r(o) , i f  d +  7 = m v  

and 
C s , z ( ~ )  = q"-21(p) l (y )  - @(O)I'(O) otherwise. 

Observe that if q is even then it is possible to choose p : GF(2") -+ GF(2) such 
that exactly half of the elements in GF(2")  are mapped to 0 and the other half to 
1. Then Cs,z (r )  = +(O)r(O) = k1 for d + T # iv. However if Q is odd then the 
imbalance is always at least 1, so the crosscorrelation is always greater than or equal 
to p - 2  - 1. 

PROOF OF THEOREM: 
The cross correlation is 

To each J: E GF(q")  there corresponds unique elements U = T T ( z )  and V = Tr(bz) 
in GF(q). Thus the elements of GF(q") are divided into disjoint subsets of the form 
Hu n b-l Hv, so the above sum may be rewritten as, 

According to lemma 2, the number of points IHu n6-'Nvl in this intersection is qn-2 
unless b E GF(q) ,  i.e. unless c l +  T is a multiple of u = (q" - l ) / ( q  - 1). So in the 
first case wc obtain 

= qa-2r(p)r(y)  - qo)r(o) 

as claimed. In the second case, if b E GF(q) ,  then d + T is some multiple, say rn, of 
u = ( q n  - 1) / (q  - 1). Thus 

6 = ad+r = 8" 
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where /3 = a" is the primitive element of GF(q). As observed above, 

P-"Hv = HD-mv 
which has no points in common with H u  unless U = /3-"V. Therefore the only 
nonzero terms in the above double sum give 

c ~ , ~ ( T )  = qn-' C qu)r (pmu)  - qo)r(o) 
U € G F ( q )  

= f - l ~ ~ , ~ ( m )  - qo)r(o) 
as claimed.1 

Recall that the autocorrelation function of a sequence S is given by 
an -2 

As(.) = 1 (-l)st(-l)st+r. 
i=o 

To compute the values of A s ( T ) ,  we simply substitute S with 2 in C s , z ( ~ )  and obtain 
the following result. 

COROLLARY. The autocorrelation function of  the sequence S is given by: 

As(.) = q"-'c,(m) - 1 

As(.) = q " - 2 1 ( p ) 2  - 1 

if T = mv 

otherwise. 
and  

where c p ( m )  corresponds to the short autocorrelation function, defined as 

c p ( 4  = c @ ( P ) @ ( P P " ) .  
m u E G F ( q )  

5 .  Absolute Correlation Functions 

The notion of "absolute" cross correlation between two pseudorandom sequences 
with period q n  - 1 has also been studied in the literature [3]. The absolute cross 
correlation counts only the coincident ones  in the sequences. 

DEFINITION. The absolute cross correlation function between two sequences S and 
Z is defined as 

q"--2 

Bs,z(.) = c Sf&+,. 
t=o 

To consider the absolute cross correlation functions of geometric sequences, the 
same argument as above works, but we must replace the "short" cross correlation 
with the "absolute short'' cross correlation, 

% , - A 4  = c P ( P ) 7 ( P P r n )  
E G F( u )  

and we replace the imbalance I ( p )  by the weight, W(p), defined by 

f l € G F ( q )  

Then theorem 1 becomes 
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THEOREM 1'. With the same hypotheses as theorem 1, the absolute crosscorrelation 
function of S and Z is 

6. Applications 

G.M.W. Sequences. In [3], R. Games calculated the crosscorrelation of an m- 
sequence and a GMW sequence having the same primitive polynomial. His method 
involved intersecting hyperplanes, and our theorem 1 is similar to his. In this para- 
graph, we show how to recover his result. 

Suppose a ,  b, and r are integers, with a dividing b, and with T relatively prime 
to 2" - 1. Fix a primitive element a E GF(2*) .  The sequence G M W ( b , a ; r )  is the 
sequence given by 

si = Tr;(Tr:(ai)r). 

The GMW sequence is a geometric sequence in the sense of $2: take q = 2", n = b/a, 
and p(p)  = Trf(p') for any ,u f GF(2") .  In the notation of 52 we have 

s; = p(Tr(cu')). 

Similarly the m-sequence 

Z; = Tr;(Trt(a')) = ~ r ; ( a ' )  

is the geometric sequence corresponding to ~ ( p )  = Tr;(p) .  If we apply theorem 1' to 
find the absolute crosscorrclation between these two sequences, we obtain 

COROLLARY 2 [3]. Given integers a, b, and r ,  with a dividing b and with ( T ,  2" - 1) = 
1, let Si be the sequence GMW(b, a; T )  and let 2; be the m-sequence based on the 
same primitive polynomial. Then 

where v = (2' - 1)/(2" - I), wliere u and w are the m-sequences of span a given by 

21; = T r ; ( p )  w; = Try(@"). 

with @ = CY' a primitive element of GF(2"). 

We remark that for many values of r ,  these "short" crosscorrelation values are 
known, or can be estimated [S] [7] . 

Bent Sequences. The method in this paper may be used to calculate crosscorre- 
lation values of Bent Sequences 151, the computation is fairly straightforward and will 
not be carried out here. 
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