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1. INTRODUCTION 

In this paper, we shall investigate the connections between three properties of a bi- 

nary function : the Strict Avalanche Criterion, balance and correlation immunity. 

The strict avalanche criterion was introduced by Webster and Tavares [7] in order to 

combine the ideas of completeness and the avalanche effect. A cryptographic trans- 
formation is said to be complete if each output bit depends on each input bit, and it 

exhibits the avalanche effect if an average of one half of the output bits change when- 
ever a single input bit is changed. For& [l] extended this notion by defining higher 
order Strict Avalanche Criteria. A function is balanced if, when all input vectors are 

equally likely, then all output vectors are equally likely. This is an important prop- 
erty for many types of cryptographic functions. The idea of correlation immunity is 
also extremely important, especially in the field of stream ciphers, where combining 
functions which are not correlation immune are vulnerable to ciphertext only attacks 
(see, for example [4]). Th e concept of mth order correlation immunity was introduced 
by Siegenthaler [5] as a measure of resistance against such an attack. 

In a previous paper [2], we found conditions under which a function satisfying the 

highest possible order Strict Avalanche Criterion was also balanced and/or correlation 

immune. Here we shall look at functions satisfying the next highest order Strict 
Avalanche Criterion. We shall also investigate higher orders of correlation immunity. 

In Section 2, we establish some notation, define the properties to be examined and 
state characterisations of functions with the various properties. Section 3 is devoted to 

some preliminary calculations which will enable us to identify conditions the functions 

must satisfy. We present results on balance in Section 4, on correlation immunity in 

Section 5, and on simultaneous balance and correlation immunity in Section 6. In 

each of sections 4, 5 and 6, we shall produce necessary and sufficient conditions for a 
function to satisfy the criteria. 

2. NOTATION AND DEFINITIONS 

Although we are really dealing with functions of binary vectors of length n which 
take values in (-1, l}, we shall find it convenient to identify a binary vector with 
its support, that is the set of positions in which it has a 1. We shall, therefore, deal 
instead with functions from subsets of {1,2, ..,n} to {-l, l}. 

Let S be the set {1,2, .., n}, and let Bs denote the set of functions which takes subsets 
of s to {-1,l). We formulate all the definitions and characterisations in terms of 
such functions. 
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2.1 Balance 

This is the simplest of the three properties, and ensures that the number of 1's 
produced by f is the same as the number of -1's produced. 

Definition 2.1.1 Let f E Bs. Then f is balanced if and only if 

2.2 Correlation Immunity 

Definition 2.2.1 f E Bs is said to be first order correlation immune if, for any i E S, 
the probability that i f V, given that V satisfies f ( V )  = 1, is equal to f .  
The definition is extended to higher orders as follows. 

Definition 2.2.2 Let m be an integer with 1 5 m 5 n. Then f E Bs is said to be 
mth order correlation immune if for any J E S with IJI = m and any Y C J ,  the 
probability that V n J = Y, given that f(V) = 1, is equal to &. 
Note that, for any rn with 2 5 rn 5 n, mth order correlation immunity implies 
(m - 1)th order correlation immunity. 

In order to characterise correlation immune functions, we need to define the Hadamard- 
Walsh transform. 

Definition 2.2.3 The Hadamard-Walsh transform off E Bs is defined by 

H(U) = c f(v)(-l)lufl"'. 
vcs 

There is a well known formula for inverting the Hadamard-Walsh transform, which 
we give below. 

lunw'  for w E S. f(W> = c H(U)( -1 )  
1 

ucs 

Xiao and Massey [6] have proved the following theorem characteriskg correlation 
i m u n e  functions in terms of the values of their Hadamard-Walsh transforms. 

Theorem 2.2.4 The function f E l3s is mth order correlation immune if and only if 
H ( U )  = 0 for all U C S with 1 5 IUI _< m. 

Let us define the integer valued function X by 

X ( W )  = C f(v) for w c S. 
vc_w 

We will find i t  more convenient to express the characterisation of correlation immunity 
in terms of the function X. In order to do so, we need the following result. 
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Lemma 2.2.5 If X and H are defined as above, then 

c H(U) for all W 2 S. 
1 

X ( W )  = - 
2"-lwl ucs 

Proof 
Since H is the Hadamard-Walsh transform of f, we know that 

Substituting this into the definition of X, we obtain 

1 X ( W )  = C - c H(U)(-l)'unvI 
vcw 2" uc_s 

For any V C W ,  we can write V = A U B  with A c  (WnU) and B 2 (W\U). So 

c (-1)lvnvl = c c (-l>'Al 
vcw EE(W\U) AE(WnU) 

If W fl U # 0, there are as many subsets of odd size as of even size, so the sum is 0. 
If W fl U = 0, then the sum is just 21wl. Hence 

Note that X ( S )  = H(0).  

We shall now use this to produce a formulation of mth order correlation immunity in 
terms of X. 

Lemma 2.2.6 If H and X are defined as above, then the following three conditions 
are equivalent : 
(i) f is mth order correlation immune 

(ii) H ( U )  = 0 for all U 5 S with 1 5 IUI 5 m. 
(iii) X ( W )  = 21WI-"X(S) for all W E S with (n  - rn) 5 IWl 5 (n  - 1). 

Proof 
The equivalence of (i) and (ii) is given by Theorem 2.2.4. We shall now show the 
equivalence of (ii) and (iii), using Lemma 2.2.5. 
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Suppose that (ii) holds. Let W C_ S be such that (n - rn) 5 IWl 5 (n - l), and let 
U C S  besuch that W n U =  0. Then 0 5 IUI 5 (n- IWl) 5 m, so either U =  0,or 
H ( U )  = 0. So 

Now X ( S )  = H ( 0 ) ,  so we have (iii). 

Now suppose that (iii) holds. We shall prove (ii) by induction on the size of u. 
Suppose first that [Ul = 1. Let W = S \ U. Then V n W = 0 if and only if either 
V = 0 or V = U, so 

1 

But since IWl = (n - l), we know also that X ( W )  = iH(0). Hence H(U) = 0. 
Now suppose that 2 5 lUl <, rn and that H ( V )  = 0 for all V with 1 5 (V( < IUl. Let 
W = S \ U, then V n W = 0 if and only if V 2 U, so 

X ( W )  = z(”(0) + W)). 

1 
X ( W  = a ( H ( 0 )  + H ( U )  + c H ( V ) ) .  

vcu,v#a 

Now, for any V C U, V # 0, we see that 1 5 IVl c lUl, so H ( V )  = 0. Since 
(n - m) 5 IWI I (n - 1)) we know also that X ( W )  = 21WI-nH(0J. Thus we may 
conclude that H ( U )  = 0 as required. 

Note that we may write the condition that f is balanced as X ( S )  = 0. 

2.3 The Strict Avalanche Criterion 

Definition 2.3.1 Let f E B5. Then f satisfies the strict avalanche criterion (SAC) 
if and only if 

We now define the higher order SAC. The SAC defined above is deemed to be the 
SAC of order 0, and the SAC of order m for 1 _< m 5 n - 2 is defined M follows. 

Definition 2.3.2 [l] A function f E B, satisfies the SAC of order m, where 1 I 
m 5 (n - 2) if and only if given any subset 7 of S with IT1 = n - m and any subset 
P of S \ 7, the function g E I37 obtained from f by setting g(V) = f ( V U  P) for each 
V 2 7 satisfies the SAC. 

Let 7 denote the algebraic normal form of f (so 7 also takes subsets of S to (-1,1}). 
We shall sometimes find it convenient to write F for the function from S to (1, -1) 
such that F ( z )  = f({z}). To reduce confusion between sets and elements of those 
sets, we shall use capital letters to denote subsets of S and small letters to denote 
elements of S. 

- 
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In [3], we proved the following result characterising functions satisfying the SAC of 
order (n - 3). Note that, since we are dealing exclusively with functions satisfying 
the SAC of order (n  - 3), we insist throughout that n 2 3. 

Theorem 2.3.3 131 Suppose that f E as. Then f satisfies the SAC of order (n - 3) 
if and only if 

f ( V )  = T ( U >  for all V S 
Lrcv,1u1<3 

and for each z E S, there is at most one y E S for which f({z, y}) = 1. 

Suppose that f satisfies the SAC of order ( n - 3 ) .  Then Theorem 2.3.3 tells us that for 
any z E S, either T({z, y}) = -1 for all y E S, or there is exactly one y E S for which 
f({z,y}) = 1. Given any W E S, and any z E W ,  there can therefore be at most 
one y E W for which ?({z, y}) = 1. Suppose there are exactly m pairs (z,y) in W 
with T({z,y}) = 1. Let us write these as (q,y1),.., (zm,ym) (where 0 5 rn 5 n/2), 
and let us denote the remaining elements of W (if any) by z ~ ~ + ~ ,  .., Z I W ~ .  Then we 
have W = {~~,~~,..,~~,Y~,YZ,-.,Y,,~Z~+~,..,~~WI} where T({zjiyj}) = +1 for all 
1 5 j S m and f({a, 6 ) )  = -1 otherwise. Note that, although the elements may be 
numbered in various ways, the value of m is determined uniquely by W (and f). We 
shall find the following definition useful. 

Definition 2.3.4 We shall write Aw(n,m) (W S, 0 5 2m 5 IWl) for the set of 
functions f E 2?5 satisfying the following conditions: 

f satisfies the SAC of order (n-3)  and there exist zl, zz, .., z,, yl, y2, .., ym, z~,+~, .., zlwl 
such that 

- 

W = {~1,~~,..,zrn,~1,~/zr..r~rntf2mt1, - - , ~ I W I ) ,  

and - 
f({zj,vj}) = +I ,  1 5 j I m - 
f( {a ,  6 ) )  = -1 otherwise. 

In what follows, we shall want to distinguish the cases where there exists a pair (z,y),  
such that f({z,y}) = 1 and F ( z )  = --F(y), from those where no such pair exists. It 
turns out that the case where such pairs exist is much simpler than the other case. 
In order to be able to state some subsequent results concisely in the cases where no 
such pair exists, we introduce the following notation. 

Definition 2.3.6 We shall write Cw(n, m,r,t,q) (W E S ,  0 5 2m I: IWl, 0 5 r 5 m, 
0 5 t ,< IWl - 2m, q = 2r + 2t + m - IWl) for the set of functions f E f .?~ satisfying 
the following conditions: 
f belongs to Aw(n,rn) 
and 

F(Z j )  = F(Yj) = +1, 1 5 j 5 T 

r + 1 5 j 5 m 
F(+j) = +1, 2m + 1 5 j I 2m + t 
F(zj)=-l ,  2 r n + t + 1 5 j < I W I  

F(zj) = F ( y j )  = -1, 
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For ease of notation, we shall write simply C(n,  rn, r, t ,  q )  for Cs(n, rn, r, t ,  q ) .  So we 
see that, if f E 23s satisfies the SAC of order (n - 3), then either there exists a pair 
(z,y), such that T({z,y}) = 1, and F ( z )  = -F(y) ,  or f belongs to C(n,m,r,t ,q) for 
some values of m, r ,  t and q. 

3. PRELIMINARY CALCULATIONS 
We want to express f (V  U {z}) in terms of f(V). We know that, given I and V ,  if f 
satisfies the SAC of order (n  - 3), then there is at most one z in V with T(  {I,.}) = 1. 
We first deal with the caSe where no such z exists. 

Proposition 3.1 Suppose that f E Bs satisfies the SAC of order ( n  - 3). Suppose 
further that I $! V ,  and that T({z,y}) = -1 for all y E V.  Then 

f (V  u {z}) = (-1yVlf(V)F(Z). 

Proof 
Straightforward application of Theorem 2.3.3. 

We turn now to the c a e  where there is a unique element z in V with f({z, z } )  = 1. 

Proposition 3.2 Suppose that f E BS satisfies the SAC of order (n - 3). Suppose 
further that I $! V ,  and that ~({I,z}) = 1 (so f({z,y)) = -1 for all y E V ,  y # 2). 

Then 
f ( V  u {z}) = (-l)lvq(v)F(z). 

Proof 
Straightforward application of Theorem 2.3.3. 

We are now able to produce an expression for X(W) = C,,wf(V) in terms of 
the values of 7. In order to prove this, we need also to produce the corresponding 
expression for x-(w) = ~v ,w( - l ) lv l j (V)  - as well. 

Lemma 3.3 Suppose that f satisfies the SAC of order ( n  - 3). Let W C S, 2 E W 
and U = W\ {z}. Suppose that T({x,g}) = -1 for all y E U. Then 

X ( W )  = X ( U )  + F ( z ) X - ( U )  

and 
x- (w)  = x-(u) - F ( z ) X ( U )  
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Proof 

To calculate the second sum, since T({r,y}) = -1 for all y E U, we may use Propo- 
sition 3.1 to obtain 

= F ( z )  c (-1>'V'f(V) 
vcu 

= F ( z ) X - ( U )  

as required. Similarly 

x - ( W )  = c (-l)'"'f(V)- c (-l)'vlf(vu{r}) = x-(U)- c (-l) l~ 'f(VU(z}) 
V g J  vc_u v g l  

Using Proposition 3.1 again, we have 

c (-l)'"'f(V u {z)) = F ( r ) X ( U ) .  
V g J  

Hence X - ( W )  = X - ( U )  - F ( s ) X ( U ) .  

Lemma 3.4 Suppose that f satisfies the SAC of order (n - 3). Let W C S, and 
suppose that z,y E W are such that 7({z,y}) = 1.  Let U = W \ {z,y}, then 

and 
x-(w) = x-(u)  - F ( y ) X ( U )  - F ( z ) X ( U )  t F ( s ) F ( y ) X - ( U ) .  

Proof 
As before, we have 

By Propositions 3.1 and 3.2, we know that 
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So we have 

and 

= ~ ( z : ) X ( U )  - F(4 c f(V u {YH 

c f ( V  u {Y}> = c ( - W f ( V ) F ( Y )  = F ( y ) X - ( U )  

c (-l)'"'f(V u {z}) = F ( z ) X ( U )  - F ( z ) F ( y ) X - ( U ) .  

V g J  

Then 

VqJ V g J  

so 

V C ( W Y I )  

Now by Lemma 3.3, X - ( U  U (y}) = X - ( U )  - F(y)X(U), so putting these two 
together, we obtain the desired result. 

We are now able to prove our main result in this section. 
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Theorem 3.5 Suppose that W 
the square root of -1, and let 

S and that f belongs to Aw(n,m).  Let i denote 

I Wl 

~w = f ( 0 )  & I +  F(z j )F(y j )  + i(F(zj) + F(yj))) n (1 + i ~ ( x j ) ) ,  
j=1 ’ j=Zm+l 

then 
X ( W )  = Si(Gw) + S(Gw) 

X - ( W )  = 9?(Gw) - S(Gw) 
and 

where %(z) and $(z) denote the real and imaginary parts of x respectively. 

Proof 
The proof is by induction on the size of W.  Firstly, we assume that IWl = 0, so that 
W = 0. Then 

Gw = f(0) and X ( W )  = f(0) and X-(W)  = f(0). 

Now suppose the result true for all W with IWl 5 If, and let W be such that 
IWl = I‘+ 1. Choose x E W.  We shall split the proof into two cases. Since f 
satisfies the SAC of order (n - 3), either T({z,y}) = -1 for all y E (W \ {z}), or 
there exists a unique y E (W \ {z}) for which f({z, y}) = 1. 

Suppose that the first case holds, and let U = W \ {z}. Now, by Lemma 3.3, 

X ( W )  = X ( V )  + F(z)X-(U) .  

By the inductive hypothesis, since lUl = K ,  we have X(V) = zR(Gu) + ~ ( G u )  and 
X- (U) = zR( Gu) - 3( Gu).  We deduce, therefore, that 

X ( W )  = ~ ( G U )  + Q(Gu) + J’(z)(g(Gu) - ~ ( G u ) )  = %(Gw) + Q(Gw). 

since, in this Case, Gw = (1 + iF(z))Gu.  

We now turn to the second case, and let U = W \ {x, y}. By Lemma 3.4, we have 

X ( W )  = X(U) + F(y)X-- (U)  + F ( z ) X - ( U )  + F(z)F(y)X(U). 

By the inductive hypothesis, since lUl = A’, we have 

X ( V )  = Si(Gv) + S(Gu) and X - ( V )  = zR(Gu) - S(Gu) 
so we have 

X ( W )  = W G U )  + Q(Gu) + F(y)(g(Gu) - ~ ( G U ) )  
+ F(z ) (WGu)  - Q(Gu)) + F(z)F(y)(s(Gu) + ~ ( G u ) )  

= ~ ( G w )  + Q(Gw) 

since, in this case, Gw = (1 + F ( z ) F ( y )  + i ( P ( x )  + F(y)))Gu. 
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Corollary 3.6 Suppose that f belongs to Aw(n,rn). Suppose further that for some 
j, 1 5 j 5 m, we have F(zj) = --F(yj). Then Cvcw f ( V )  = 0. 

Proof 
Suppose, without loss of generality, that F(zl) = --F(yl). Then by Theorem 3.5, 

- 

c v g v  f ( V )  = W) + S(G), where 

m IWl 
G = f(0) n(1+ F ( z j ) F ( y j )  + i(-F(zj) + F(yj)))  n (1 + iF(zj))- 

j=  1 j=lm+l 

But 1 + F ( z l ) F ( g ~ )  + i(F(z1) + F(y1)) = 0, since F(z1) = -F(yl), so G = 0. Hence 

Corollary 3.7 Suppose that f belongs to Cw(n, rn, r, t ,  q) .  Write k for IW]; then 
cvcw f ( V )  = 0- 

f (  0)( -1) f92i("+k) qrO (mod4) 
q = 1 (mod 4) -1) :(9-1)2?("+k+l) 

f(0)(-l)t(9-2)21(m+k) q 

Proof 
Let G be defined as above; we shall examine each term in turn. Now if 1 5 j S m, 
then 

and if 2m + 1 2 j I n, then 

1 f i  if F(zj) = 1 
- i  if F ( z j )  = -1 (1 + iF(Zj))  = { 
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4. BALANCE 
We shall use the results of the preceding section to obtain necessary and sufficient 
conditions for a function satisfying the SAC of order (n - 3) to be balanced. 

Theorem 4.1 Suppose that f E Bs satisfies the SAC of order (n - 3). Then f is 
balanced if and only if either 
(i) there exist z and y with f({s,y}) = 1 and F ( z )  = -F(y) or 

(ii) f belongs to C(n ,  m, r,  t ,  q) and g = 3 (mod 4). 

Proof 
Since f satisfies the SAC of order (n-  3), we know that either (i) holds, or there exist 
m, P ,  t and q such that f belongs to C(n,  m, r,t,  q). We recall that f is balanced if 
and only if X ( S )  = 0. 
If (i) holds, then by Corollary 3.6, we know that X ( S )  = 0. 
If (ii) holds, then by Corollary 3.7, we have 

f (0) (- 1) :'12 i (m+n)  i f p r o  (mod4) 
f (0)(-1):(4-')2?("+"+') if Q 1 (mod 4) 
f(0)(-l)f(q-2)2S(m+.) if q 2 mod 4 

i f q z 3  I )  mod4 0 

W ) =  { 
So in this case, f is balanced if and only if q = 3 (mod 4), since f(0) = +1 or -1. 

5. CORRELATION IMMUNITY 
We shall now obtain necessary and sufficient conditions for a function satisfying the 
SAC of order (n - 3) to be correlation immune. 

Proposition 5.1 Suppose f E 23, satisfies the SAC of order (n - 3). Suppose there 
are exactly p pairs (zj,yj) such that T({sj,yj}) = 1 and F(zj) = -F(yj). Then f is 
exactly (p - 1)th order correlation immune. 

Proof 
Let us write S = (21, yl,  . . , z p , y p r  zzP+1, ..,z,,} where, as usual, -f({xj,yj}) = 1, and 
f ( { u , v } )  = -1 otherwise. By Corollary 3.6, X ( W )  = 0 whenever there exists j ,  
1 5 j 5 p, with zj, yj E W. Any W with IWI > n - p must contain at least one such 
pair, so X ( W )  = 0 for any such W (including S). By Lemma 2.2.6, therefore, f is at  
least ( p  - 1)th order correlation immune. 

Let U = S \ { z ~ , y l ,  yz, .., yp}. Then U contains no pairs (s,, yj), and so GU # 0. 
Let us write z for s1 and y for yl, and let U, = U U {z}, and U, = U U {y}. 
Since F ( z )  = --F(y), we may assume without loss of generality that F ( z )  = 1 and 

Gry, = (1 + iF(z ) )Gv = (1 + i)Gu, 

- 

F ( y )  = -1. NOW 

so 

X ( U z )  = R(Gu) + ~ ( G U )  + ~ ( G u )  - ~ ( G U )  = 2%(Gu). 
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On the other hand, 
Grr, = (1 + iF(y))Gu = (1 - i)Gv, 

so 

X(U9)  = ~ ( G u )  + ~ ( G u )  - %(Go) + ~ ( G U )  = 23(Gu). 

I f f  is pth order correlation immune, then X(Uz) = X(Uy) = 0. But this forces 
Gv = 0, which is not true. Hence f is not pth order correlation immune. 

We shall now prove some results on the values of X(W). In the four lemmas which 
follow, we assume that f belongs to Cwj(n, mj, r,, t j ,  g j )  for j = 1,2, and that lWjl = 
k, for j = 1,2. We shall calculate the relationship between X(W1) and X(W2) 
for various values of W1 and Wz. The proofs of these results are straightforward 
applications of Corollary 3.7, and are omitted for brevity. 

Lemma 5.2 Suppose that W1 C S and that z, y E W1 are such that T({z,y}) = +l. 
Let WZ = Wl \ {z), then X(W2)  = 4X(Wl). 

Lemma 5.3 Suppose that Wl 2 S and that z E Wl is such that T({z,y}) = -1 for 
all y E W1, and that F ( z )  = +l. Let Wz = Wl \ {z}. Then 

Lemma 5.4 Suppose that Wl 
all y E Wl, and that F ( z )  = -1. Let W2 = W1\ {z}. Then 

S and that z E W1 is such that T({z,y}) = -1 for 

Corollary 5.5 Suppose that Wl 5 S and that z E W1 is such that f({r,y}) = -1 
for all y E Wl. Let W2 = Wl \ {z}. Then 

1 
X(W2)  = ,X(Wl) if and only if q1 = 1 (mod 4) 

Lemma 5.6 Suppose that W1 C S and that t , y  E Wl are such that T({z,y}) = +1, 
and F ( z )  = F ( y )  = +l. Let W2 = Wl \ {z,y}, then 

( 0 0  q1 rO (mod4) 
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Lemma 5.7 Suppose that W1 E S and that z,y E Wl are such that f({z,y}) = +1, 
and F ( z )  = F(y)  = -1. Let W, = Wl \ {z,y}, then 

Corollary 5.8 Suppose that Wl C S and that z,y E W1 are such that T({z,Y}) = 
+l. Let Wz = W1 \ {z,y}, then 

1 X(W2)  = gX(Wl)  if and only if q1 3 1 (mod 4) 

Proposition 5.9 Suppose that f belongs to C(n,m,r,t,q). If 2m < n, and q f 1 
(mod 4), then f is not correlation immune. 

Proof 
We must find W with IWl = n - 1, and X ( W )  # $ X ( S ) .  Let W = S \ {z,,}. Since 
2m < n, we may apply Corollary 5.5, with Wl = S. Since q f 1 (mod 4), we deduce 
that X ( W )  # i X ( S ) .  So f is not correlation immune. 

Proposition 5.10 Suppose that f belongs to C(2m,m,r,O,q). If q $ 1 (mod 4), 
then f is exactly 1st order correlation immune. 

Proof 
Let us write S = {~~,y~,..,z,,y~} where, as usual, T({zj,yj}) = 1, and f ( { u , v } )  = 
-1 otherwise. We show first that if IWl = n - 1, then X ( W )  = i X ( S ) .  Let W be 
such that IWl = n - 1. Then either W = S \ {zj} for some j or W = S \ { y j }  for 
some j .  By Lemma 5.2, therefore, with Wl = S, X ( W )  = iX(S). 
So we have shown that f is at least 1st order correlation immune. We now need to 
find W with IWl = n - 2, and X ( W )  # $ X ( S ) .  We take W = S \ {zl,yl). Then 
we may use Corollary 5.8, with Wl = S. Since q f 1 (mod 4), X ( W )  # $ X ( S ) .  SO 
f is not 2nd order correlation immune. 

We turn now to the case where q zi 1 (mod 4). 
Lemma 5.11 Suppose that f belongs to C(n,m,r,t ,q) and that q zz 1 (mod 4). 
Then f is 1st order correlation immune. 

Proof 
Let us write S = { X I ,  yl, .., zm, y,,,, z~,,,+~, .., z,} where, as usual, f( {zj, yj}) = 1, and 
~ ( { Z L , ~ } )  = -1 otherwise. We must show that X ( W )  = i X ( S )  for any W with 
IWl = n - 1. Choose any such W. Then we have the following possibilities for W : 

- 

W = S \ { z j }  

W = S \ {yj} 
W = S \ { z j )  f o r s o m e j , 2 m + 1 < _ j s n  

In either of the first two cases, we may apply Lemma 5.2, to obtain X ( W )  = $X(S), 
while in the third case we may apply Corollary 5.5 to obtain X ( W )  = i X ( S ) .  Hence 
f is 1st order correlation immune. 

for some j ,  1 5 j _< m or 

for some j ,  1 5 j 5 m or 
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Lemma 5.12 Suppose that f belongs to C(n,m,r,t,q) and that q --= 1 (mod 4). 
Then f is 2nd order correlation immune if and only if 2m 2 n - 1. 

Proof 
Let us write S = {XI ,  y1, .., z,, y,, xZm+l, .., zn} where, as usual, T({zj,yj}) = 1, and 
f ( { u , v } )  = -1 otherwise. We already know that f is 1st order correlation immune. 
We must show that X ( W )  = $ X ( S )  for any W with IWI = n - 2. Choose any such 
W. Then we have the following possibilities for W : 

- 

W = S \ {xj,yk}tj # k, 1 I jjk I m 
W = S \ ' { x j , ~ k } , j  # k,l S j , k < m  
W=S\{Yj,Yk},j  # k , l  < j , k S m  
W = S \ {zj,Yj}, 1 I j 5 m 
W = S \ {xj,zk}, 1 5 j 5 m,2m + 1 5 k 5 n 
W = S \ {yj,zk}, 1 5 j 5 m , 2 m +  15 k 5 n 
W = S \ {xj,xk}, j # k ,2m + 1 < j ,  k < n 

In the first case, we may first apply Lemma 5.2 with Wl = S and W2 = S \ {xj}, 
and then apply Lemma 5.2 again with Wl = S \ {zj} and W2 = W to obtain 
X ( W )  = fX(S \ {xj}) = $ X ( S )  as required. This may also be done in the second 
and third cases. In the fourth case, we may apply Corollary 5.8, with W1 = S to 
obtain X ( W )  = $ X ( S ) ,  as required. In the fifth and sixth cases, we may proceed 
in a similar manner as in the first case, applying Lemma 5.2, and then Corollary 5.5 
to obtain the result (noting that q is unchanged after applying Lemma 5.2). When 
we come to the seventh case, however, we see that if we apply Corollary 5.5 with 
W1 = S, and W2 = S \ {rj}, we obtain X(W2) = f X ( W l ) ,  but when we come to 
apply Corollary 5.5 again with W1 = S \ {z,} and Wz = W ,  we now have q1 E 0 
(mod 4), or q1 3 2 (mod 4)) according as j 5 2m1 + tl or j > 2ml + t l ,  and so 
X ( W )  # $ X ( S )  in this case. This case can only occur when 2m+ 1 < n, so f is 2nd 
order correlation immune if and only if 2m 2 n - 1. 

Lemma 5.13 Suppose that f belongs to C(n ,m , r , t , q )  and that q 1 (mod 4). 
Then f is 3rd order correlation immune if and only if 2m = n. 

Proof 
Let US write S = (zl,yl,. . ,  r , , ~ , , ~ ~ + l  ,.., x,,} where, as usual, T({zj,yj}) = 1, 
and T ( { u , v } )  = -1 otherwise. Suppose first that 2m = n. We therefore know 
that f is 2nd order correlation immune, since 2m 2 n - 1. We must show that 
X ( W )  = $ X ( S )  for any W with IWl = n - 3. Let W be such that IWl = n - 3. If 
W = S \ {zj, zk, q}, with j ,  k and I all different, and 1 5 j, k, 1 5 m, then we may 
apply Lemma 5.2 three times to obtain the result. The same method will also work 
in the cases W = S \ {x, ,zk,y~),  W = S \ {xj,yk,yl} and W = S \ (yj,yk,yl). The 
cases W = S \ {xj)yj,xk} and W = S \ {xj,y,,yk}, where 1 5 j, k 5 m may each 
be dealt with using first Corollary 5.8, and then Lemma 5.2. This means that when 
2m = n, f is 3rd order correlation immune. 
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When, however, 2m < n, we must consider the case W = S \ {xl,yl,xn}. We apply 
Corollary 5.8 with Wl = S, and Wz = S\ {zl,yl}, and then apply Corollary 5.5 with 
Wl = S \ {zl,yI}, and Wz = W. But this time either q1 2 
(mod 4) according as r > 0 or r = 0. So in this case, f is not 3rd order correlation 
immune. 

Lemma 5.14 Suppose that f belongs to C(n,m,r,t,q) and that q. E 1 (mod 4). 
Then f is not 4th order correlation immune. 

Proof 
We shall produce W with IWl = n - 4 but X ( W )  # + X ( S ) .  
In order for f to be fourth order correlation immune, it must certainly be third 
order correlation immune. So, by Lemma 5.13, we must have 2m = n. Let US 
write S = {zl,yl,..,z,,ym} where, as usual, T({zj,yj)) = 1, and f({u,u}) = -1 
otherwise. We take W = S \ { ~ ~ , y ~ , z ~ , y ~ } .  (Note that this is possible since n is 
even and at least 3). Let us also denote S \ {zl,yl} by U. Then by Corollary 5.8, we 
see that X ( U )  = $ X ( S ) ,  since q1 G 1 (mod 4). We now apply Corollary 5.8 with 
Wl = U. This time, however, we have q1 0 (mod 4) or q1 G 2 (mod 4), (according 
as r 2 1 or not) so X ( W )  # & X ( U ) ,  and therefore X ( W )  # s X ( S ) .  Hence f is not 
4th order correlation immune. 

We thus have, combining the preceding four lemmas. 

Corollary 5.15 Suppose that f belongs to C(n,m,r,t,q) and that q i 1 (mod 4). 
Then 
(i) if 2m < n - 1, then f is exactly 1st order correlation immune and 
(ii) if 2m = n - 1, then f is exactly 2nd order correlation immune and 

(iii) if 2m = n, then f is exactly 3rd order correlation immune. 

Combining all the results of this section, we have the following theorems and corol- 
laries. 

Theorem 5.16 If f E BS satisfies the SAC of order ( n  - 3), then f is not correlation 
immune if and only if either 

(i) there is exactly one pair (z,y) with T({z,y}) = 1 and F ( z )  = - F ( y )  or 

(ii) f belongs to C(n,rn, r 7 t 7 q )  and 2m < n and q $ 1 (mod 4). 

Theorem 5.17 If f E BS satisfies the SAC of order ( n  - 3), then f is exactly 1st 
order correlation immune if and only if one of the following holds 
(i) there are exactly two pairs (5, y) with T({z,y}) = 1 and F ( z )  = -F(y) or 

(ii) f belongs to C(n, rn, r, t ,  q)  and 2m = n and q $ 1 (mod 4) or 

(iii) f belongs to C(n ,  rn, r, t ,  q)  and 2m < n - 1 and q = 1 (mod 4). 

0 (mod 4) or q1 

- 
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Theorem 5.18 If f E BS satisfies the SAC of order (n - 3), then f is exactly 2nd 
order correlation immune if and only if either 
(i) there are exactly three pairs (z,y) with T({z,y}) = 1 and F ( z )  = -F(y) or 
(ii) f belongs to C(n,m,r , t ,q )  and 2m = n - 1 and q z 1 (mod 4). 

Theorem 5.19 If f E Bs satisfies the SAC of order (n - 3), then f is exactly 3rd 
order correlation immune if and only if either 
(i) there are exactly four pairs (z,y) with T({z,y}) = 1 and F ( z )  = -F(y)  or 
(ii) f belongs to C(n, rn, r, t ,  q)  and 2m = n and q EE 1 (mod 4). 

Theorem 5.20 If f E B, satisfies the SAC of order (n - 3), then f is pth order 
correlation immune ( p  > 3) if and only if there are exactly ( p  + 1) pairs (2, y) with 
f({z,y}) = 1 and F ( z )  = -F(y).  
- 

6. BALANCE AND CORRELATION IMMUNITY 
Combining the results in sections 4 and 5 ,  we have the following result. 
Theorem 6.1 If f E Bs satisfies the SAC of order (n - 3), then f is both balanced 
and correlation immune if and only if either 
(i) there exist a t  least two pairs (5, y) such that T({z,y}) = 1 and F ( z )  = --F(y) or 
(ii) f belongs to C(n,rn,r,t, q)  and n = 2m and q z 3 (mod 4). 
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