
Exploiting Parallelism
in Hardware Implementation of the DES

Albert G. Broscius
Distributed Systems Lab

Dept. of CIS
Univ. of Pennsylvania

Phila PA, 19104-6389 USA
brosciusQcis.upenn.edu jmsc0cis.upenn.edu

Jonathan M. Smith
Distributed Systems Lab

Dept. of CIS
Univ. of Pennsylvania

Phila, PA, 19104-6389 USA

Abstract

The Data Encryption Staridard algorithm h a s features which may be used to
advantage in parallelizing an implementation. The kernel of the algorithm, a single
round, may be decomposed into several parallel computations resulting in a struc-
ture with minimal delay. These rounds may also be computed in a pipelined parallel
structure for operations modes which do not require cryptext feedback. Finally, sys-
tem 1/0 may be performed in parallel with the encryption computation far further
gain. Although several of these ideas have been discussed before separately, the
composite presentation is novel.

1 Introduction

The Data Encryption Standard (DES) is probably Lhe most widely used publicly avail-
able secret-key algorithm. Since its introduction by the National Bureau of Standards
(NBS) in 1977[FIPS46], DES iinplementations have improved gieatly in encryption rate.
Yet, typical computer communication rates have also increased significantly during the
same period. Today's high-performance computer networks extend still further the en-
cryption bandwidth needed for adequate performance of secure systems [Gigago]. Thus,
we examine means to iricrease the throughput of a DES implementation to satisfy these
demands.

We discuss parallel approaches for several levels of an implementation. At the lowest
level, the kernel of the algorithm can be split into several parallel computations for
increased speed. By generating subkeys one cycle in advance. the time required can be
effectively overlapped with the -259 of the subkey in the rest of the round operation. An
additional overlap can be made oi the two stages of exclusive-or (XOR) gates at the
expense of increased complexity and gate-count.

One level upward in the hierarchy, the use of multiple round implementations can

'This research waa supported by NSF and DARPA tluougli the Corporation for National hearch
Initiatives, and by Bellcore through Project DAWN.

J. Felgenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 367-376, 1992
0 Spnnger-Verlag Berlln Heldelberg 1992

368

Shift2

increase computation bandwidth if the DES mode of operation chosen does not require
feedback of ciphertext. Of the official modes(FIPS81], this requirement rules out all but
the Electronic Code Book (ECB) method, Unfortunately, ECB is known to be susceptible
to plaintext frequency-analysis based attacks since multiple identical input blocks result
in the same output cryptext block. We discuss in section 3 of this paper a proposed
operating method [Feldmeiergl] that resists this attack yet does not require feedback of
ciphertext.

XOR#l S Boxes XOR#2 Reg. Load

Finally, at the system level, the processing of 1/0 concurrent with DES computation
provides for continuous operation of the encryption unit. In addition to this buffering,
the use of Direct Memory Access (DMA) for encryption allows the host processor t o
continue other work concurrently with the ongoing encryption.

2 Algorithm Kernel

Figure 2: Timing Diagram for Circuit of Fig. 1

The kernel of the DES algorithm consists of four operations: key generation, key mixing,
substitution table lookup and data mixing between the R and L words. This kernel

369

is repeated for sixteen iterations with only one key generation parameter dependent on
iteration number. This single parameter specifies one or two shifts of the circular registers
from which the current key is derived.

A straightforward implementation of the kernel is depicted in Fig.1. The box labeled
KSR represents the circular shift registers which hold the key data. These are to be
clocked either once or twice depending on the iteration number. Once the key has been
shifted, the key-mixing box denoted XOR4& outputs the modulo 2 sum of the key data
with the extended R data after a propagation delay interval. The S Botes then begin
their access time delay interval before output of their results. The box marked XOR32
then begins mixing in data from the L register. After a propagation delay of an XOR
gate, data are ready at the input to the R register. Once a register setuptime has passed,
the R and L registers may be clocked once. A register propagation delay later, the cycle
may begin once more.

I
,
I

Timing analysis reveals that the critical timing path results from two shifts of the
key registers, the keying XOR array, the S Box table lookup, the R L mixing XOR array,
plus the register loading delays. A simplified timing diagram is shown in Fig. 2. The
critical path timing defines the limiting rate at which round computation may proceed.
Assuming these delays are minimal, the only way to improve the critical path timing
to modify the circuit so that these sequential processes become concurrent. We will now
examine several ways to achieve this concurrency.

2.1 Key Parallelism

Separating the key generation from the remaining three stages of the algorithm kernel
can reduce the critical path timing. This approach saves delay by updating the key shift
register in anticipation of the next iteration simultaneous with the remaining operations
in the current iteration. An additional key latch is introduced to buffer the key value for
the current iteration on the input to the key-mixing XOR stage as shown in Fig. 3.

This key parallelism was suggested by Diffie and Hellman [Diffie77] in their timing
approach for the proposed DES key-search device. They did not include the additional
key latch but instead relied on strict control of key shift timing with respect t o the overall
.R-L clock timing to prevent a race condition. Our introduction of the key latch allows
greater tolerance in clock provision by ensuring that the key data input to the key-mixing
XOR cannot change during the iteration cycle.

Later, a different key-parallel approach incorporating a multiplexer (MUX) was used

370

Figure 3: Pipelined Key Generation Algorithm Kernel

Figure 4: Timing Diagram for Circuit of Fig. 3

371

XOR#1 S Boxes XOR#2 Reg. Load

Figure 5 : Timing Diagram for Circuit of Fig. 4

L <

by Fairfield e t al (Fair841. Their MUX approach allowed either one or two shifts in
either the encryption or decryption direction to be performed in one clocking operation.
Additionally, a key loading operation could be selected by the multiplexer. This shortens
the time required for the key generation somewhat since the MUX propagation delay
is likely to be much lower than a full key shift cycle. More importantly, since the key
shift register (KSR) no longer generates intermediate results, as it did when two shifts
were required for a given iteration, the extra key latch introduced above to prevent
race conditions is no longer necessary so the block diagram reverts to that of Fig.1. A
simplified timing diagram for this arrangement is shown in Fig. 5.

R < K Pre-S <

E XOR4d

Figure 6: Block Diagram of Datapath with Single XOR Delay in Critical Path

SP

Since the XOR summation is a bitwise linear operation, the order in which XOR opera-
tions are performed does not alter their algebraic correctness. Thus, these operations may
be grouped (or associated) in any order whatsoever without changing the final results of
the combined operations.

1 t t

372

MUX Latch

Figure 7: Timing Diagram for Circuit of Fig. 6

If we remove the labeling of R and L in a pair of consecutive rounds of the DES, we
observe that there are two stages of XORS, where the second follows the first directiy
with only the E expansion separating the two. Since E may be commuted with the XOR
at the cost of additional bits in the XOR array, we may combine the 48-bit XOR and the
32-bit XOR into a single 48-bit XOR, which would remain in the critical t h i n g path,
and a 48-bit XOR which would be computed concurrent with the previous S BOX table
lookup operation. This transformation also requires the addition of a 32-bit XOR array
since the R value is no longer produced in the critical timing path.

3 Multi-Round Parallelism

Using multiple stages in parallel limits the computation of feedback modes of encipher-
ment. Since a ParalIeI implementation begins processing subsequent blocks before com-
pletion of a current block’s encryption, modes that use the cryptext of a prior block
cannot be computed at the full bandwidth that a feedforward mode can achieve. Three
of the four modes defined by the NBS for use of the DES require feedback.

A feedforward operation mode proposed by Feldmeier and McAuIey appears t o over-
come the weaknesses of ECB. Their modified ECB mode of operation combines a sequence
number with each plaintext block using the XOR operation. This approach should thwart
frequency-analysis style attacks since multiple instances of a plaintext block are mapped
to different cryptext elements. Using a 64 bit sequence number, cycling of this space
would take place in Z6? bytes of a data stream. This mode allows independent processing
of data elements by avoiding the interdependence of subsequent encryption operations
found in feedback modes.

An intermediate alternative between feedback and feedforward modes is the use of
multiple interleaved chains. The degree of interleaving can be chosen to allow for
much bandwidth gain through parallelism as needed.

373

3.1 Pipeline
L, R, and I< Inputs from Previous Stage I

I Figure 8: Pipeline Segment for DES with Key Transport

The parallel computation elements may each be configured to implement a fraction of
the rounds in a pipeline approach or each element may operate independently in a com-
putation farm approach which we discuss in section 3.2. A pipeline of elements may be
configured from two, four, eight or s-teen round implementations. Each element would
operate on a 64-bit block for an equal number of cycles needed to partition the aka-
rithm computation. Thus, a two round pipeline would execute eight cycles on each of
the processors in the pipeline. Similarly, a four round pipeline would execute four cycles 1 on each processor.

374

When keying nerds to be updated frequently, the pipeline style allows a matching
ofthe datapath flow with a parallel keypath. In this way, data blocks are accompanied
by their key throughout the computation. Switching keys between successive datablocks
without flushing the pipeline is made possible since the key and data streams are syn-
chronized. Each stage of the pipeline has the structure depicted in Fig. 8. Note that the
8:1 key MUX actually selects between four different shifted versions of either the current
key or the input key from the previous stage.

For infrequent key changes, the tradeoff in keying interconnection may not be worth-
while as compared to maintaining separate key registers for each stage of the pipeline.
Each round would then maintain its own key load (shadow) register in this approach.
The standard’s key shifting sequence would be partially executed on each stage. Since
a partial execution of the key schedule would not result in a complete cycling of the
keytext, the key would be reloaded from the shadow register when it had completed its
share of the computation on a data block.

A limitation of the pipeline approach is the bandwidth ceiling imposed by the num-
ber of rounds in the algorithm, sixteen. This means that a single pipeline of processors
cannot provide more than sixteen times the encryption bandwidth of a single proces-
sor. Additionally, the pipeline suffers in scalability since the number of stages possible is
restricted t o be a factor of sixteen. This deficit is most notable when considering an up-
grade of a pipeline: to gain any increase in bandwidth requires a doubling in computation
resources.

3.2 Computation Farm

Instead of a pipeline approach, multiple devices may be configured as a computation farm
with each given subsequent plaintext elements to process. This configuration allows for

smooth increase in available encryption bandwidth since the number of rounds used need
not be a power of two as in the case of the pipeline parallelism.

Managing the farm requires logic similar to that used in FIFO buffers. A counter to

keep track of the next available processor and the last busy processor are required. A
generalized depiction of the interconnection is shown in Fig.9, using an Input Manager
and Output Manager to coordinate operations.

375

~ -
Input Manager

DES#1

Figure 9: Computation Farm Block Diagram

DES#N
e e e

DES#2

4 System-Level Parallelism

To maintain constant throughput rates requires careful consideration of the encryption
system’s interface or input/output section. Overlap of the input, output and encryp-
tion processes of subsequent text blocks provides high throughput [VerSS]. Similarly,
DMA support decouples the host processor froin the encryption function to allow CPU
processing of other tasks to proceed in parallel with the encryption request[Anderson87].

5 Conclusion

Parallel aspects of the DES may be exploited at three levels: within the algorithm kernel,
through duplication of the algorithm kernel, and in the encryption processor 1/0 design.
Consideration of operation mode also impacts t.he maximum performance attainable

1 - nonstandard or hybrid operations modes should be studied further as a means of
increasing bandwidth without compromising security.

I

As part of our work with the Aurora network testbed [Gigago], we have developed
a DES board [Broscius91] using SSI T T L and MSI PALS using the MUX key register
approach. Testing of the wirewrapped prototype indicated an encryption rate of 93
Mbps. Further work on a DMA interface to the Microchannel interface bus of the
IBM FS/SOOO is planned. However, recent announcement by VLSI Technology of their
VM007 encryption processor [VLSIgl] with 192 Mbps performance obsoletes our discrete
approach and will m a t likely be used in our final version.

376

References

[Anderson871 David P. Anderson and P. Venkat Rangan, High-Performance Interface Ar-
chitectures for Cryptographic Hardware, EUROCRYPT '87 Proceedings, Springer-
Verlag, Amsterdam, 1987

[BrosciusSl] Albert G. Broscius, Hardware Analysis and Implementation of ihe NBS
Data Encryption Sfandard, MSE Thesis, CIS Dept., Univ. of Penn., May 1991

[Davio83] Marc Davio, Yvo Desmedt, Marc Fosseprez, Rene Govaerts, Jan Hulsbmch,
Patrik Neutjens, Philippe Piret, Jean-Jacques Quisquater, Joos Vandewalle and
Pascal Wouters, Analytical Characteristics of the DES Advances in Cryptology:
Proceedings of CRYPTO 83, Plenum Press, New York, 1984

[Denning82] Dorothy Denning, Cryptography and Data Security , Addison-Wesley (1982)

[Diffie77] Whitfield DifEe and Martin E. Hellman, Ezhausfive Cryptanalysts of the NBS
Data Encryption Standard, IEEE Computer Vol. 10 No. 6, June 1977 pp. 74-84

[Fair841 R.C.Fairfield, A. Matsuevich and J . Plany, An LSI Digital Encryption Processor,
Advances in Cryptology: Proceedings of CRYPTO 84, Springer-Verlag, New York,
1985

[FIPS46] National Bureau of Standards, Federal Information Processing Standard #46:
The Data Encrypiion Standard

[FIPS81] National Bureau of Standards, Federal Informaiion Processing Standard #81:
Operational Modes of the DES

[Feldmeiergl] Anthony McAuley and David C. Feldmeier. Minimizing Protocol Orden'ng
Constraints to Improve Performance , Submitted for publication, Available via
anonymous f l p &om Internet host thumper. bellcore. corn

[Gigago] Anonymous, Gigabit Network Testbeds , IEEE Computer, Vol. 23 No. 9

[Ver88] Ingrid Verbauwhede, Rank Hoornaert, Joos Vandewalle and Hugo de Man, Se-
curity and Performance Optimization of a New DES Daia Encryption Chip , IEEE
Journal of Solid State Circuits Vol. 23, No. 3, pp. 647-656, June 1988

[VLSISl] VLSI Technology, Inc., VMUO7 Data Encryption Pmcessor , Tempe, A 2 1991

	Introduction
	Algorithm Kernel
	Key Parallelism
	XOR Rearrangement

	Multi-Round Parallelism
	Pipeline
	Computation Farm

	System-Level Parallelism
	Conclusion
	References

