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NEW RESULTS ON PSEUDORANDOM PERMUTATION 

GENERATORS BASED ON THE DES SCHEME 

A h  t r a c  t 

We denote by ik the  permutation generator based on the DES Scheme with k rounds 
where the S boxes are replaced by random independant functions. \Ye denote by lPi - P;l, 
(respectively /PI - Pi*(), the  probability of distinguishing such a permutation from a 
random function (respectively from a random permutation) by means of a distinguishing 
circuit tha t  has m oracle gates. 
In 1988, M .  Luby and C. Rackoff [I] proved t h a t  

At Eurocrypt 90, J .  Pieprzyk wondered a t  the  end of his paper [4] if t h a t  inequality could 
be improved. This is the  problem we consider here. In particular, such an improvement 
could greatly rcduce the lenglh of the keys used in a “direct” application of these theorems 
to  a cryptosystem. 

Our main results will be  : 
m(m - 1)  

1. For g3 and i4 there is n o  really tighter inequality than /PI - P;l 5 - 
2” 

2. However for i5 (and then for $ k ,  k 2 5 ) ,  there is a much tighter inequality than Luby 

- Rackoff’s one. For example for G6, /PI  - P;l and 14 - P;’i are < - - 2n $22”. 
3. When rn is very small (m  = 2 or 3 for example) i t  is possible t o  have an explicit 

evaluation of the eXects of the  number of rounds k on the “better and better pseu- 
dorandomness” of G k .  

12m. 18m3 

1 Notatioiis and definitions 
Definitions 1 a 1, is the set {O,l)”,n f N. 

a For a, b E I,, [a ,  b] will be the s t r ing  of length  2n of Izn which is t h e  conca tena t ion  of a 
and b. 

a If A and B a r e  two sets ,  AB will be the set of all funct ions from B to A. 

a The se t  of all funct ions from I, to I,, is F,,. So F, = 12. 
The set of all permuta t ions  from I ,  t o  I,, is B,, so B, c F,,. 

a o is t h e  composi t ion of functions. 

a E,, is the number of elements of F,,. So EO = (2”)’” = Z”.’”. 

a fa is f o f. 
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Definition 2 Let f1 be a function from I,, to I,,, and let L,  R,  S ,  and T be elements of I,. 
Then by definition : Q(f1) is the function from IZ,, -+ I,, such that: 

where '3 is the bitwise addition niodulo 2. 

This can be reprcsented by the diagram 
INPUT: L R 

Remark:  
q(f,, . . . , fk) is in fact a k rterution DES Scheme where the S-boxes are replaced by the functions 
fi, . .  . r f k .  

Definition 4 We will use the notation y ! ~ ~  to say that we are considering a permutation 
$(f~, . . . ,fk), where fi,. . . , fk are k independant function randomly chosen in F,. 

We will assume that the definitions of permutation generator, distinguishing circuit, random 
oracle, pseudorandom permutation generator. and super pseudorandom permutation generator 
are known. Thesc definitions can be found in [l] for example. 

Definition 5 Let 6 be a distinguishing c;;cuit. We will denote by 4(f) its output (1 or 0) 
when its oracle gates arc given the values of the function f. 
We will denote by Pi the probability that @(f) = 1 when fl,. . . , fk are k functions randomly 
chosen in F,,, and f = +(f1,. . . , fk). 
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Number of ( f l , .  . . , fk) such that d(ll(J1,. . . , fk)) = 1 so : Pl = 

We will denote by P; the probability that @(f) = 1 when f is randomly chosen in F2,,. 

Then : P; = 

And we will denote by P;’ the probability that 4(f) = 1 when f is randomly chosen in Bz,. 
Then : P;’ = 

Notice that Pl depends on k and 4, and that P; depends on q5. 
A distinguishing circuit has only normal oracle gates. To insist on this, we will use sometimes 
the expression “normal distinguishing circuit” for “distinguishing circuit”. A “super distin- 
guishing circuit” has normal and inverse oracle gates. (See [l] for precise definitions). 

Definition 6 Let 4 be a super distinguishing circuit. 
We will define q5(f),Pl and P;‘ exactly as for normal distinguishing circuit. 

Notice that here P; is not defined. 
with permutations. 

Definition 7 Let u be the permutation such that : 
V ( L , R )  E rz,a[L,R] = [R,L].  (u  “swaps” the left and the right parts). D E Bz,. 
Then for all functions f ~ ,  . . . , fk of F,, we have : $(j1)-’ = c o $(fl) o u. 
And : $ ( j l , .  . . ,fk)-’ = u o $(fk,. . . , f l )  o u. 

In [l], M. Luby and C. Rackoff proved that for g3 (or for gk ,k  2 3), for any normal distin- 

guishing circuit $ with m oracle gates, [PI - P;l 5 

The aim of this paper is to find conditions on k under which such an inequality can signif- 
icantly be improved. In paragraph 6 we will give an example of J. Pieprzyk which shows why 
such a n  improvement can be interesting. 

El! 

Number of functions f E Fz, such that + ( I )  = 1 
( 2 2 ” ) ( 2 1 “  1 

Number of permutations f E Bln such that d(f) = 1 
( 2 2 ” ) !  

This is because an inverse oracle gate is just  defined 

m(m - I )  
2” . 

2 The case m = 2 
Here we will just consider distinguishing circuits with two oracle gates, Of course this case is 
less important than the cases where m is large. ( m  large will be subject of paragraphs 3,4 and 
5). But when m is very small ( m  = 0,1,2 or 3) it is possible to study the problem completely, 
and to obtain the exact maximum values of 19 - P;l and IP1 - P;*l, and this is done for each 
k. Then this case will show with high precision how our generator of permutations “better and 
better pseudorandom” becomes when the number of rounds increases. 

Remark: 
For m = 0 and rn = 1 we have II‘1 - P;l = 0 if k 2 2. So the real problem liegins wlwn rn 2 2. 
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Let L1,R1,Lz,Rz,S1,T,,Sz,T2 be elements of I ,  such that (Ll ,R1)  # (Lz,Rz) and (&,TI)  # 
(Sz,Tz). 
The key property is that, we are able to find the exact number H of k -tuples of functions 
( f i , .  . . , fk) such that : 
Vi ,  1 5 I m,Gk( f l , . .  . , f k ) [ L ; , R , ]  = [S,,T,] when m is very small (rn = 2 here). Then, the 
values H will give us the maximum of lPl - P;l and lPl - P;*l. 

For m = 2 an explicit calculation gives the values H .  
For a n  even k these values are : 

Theorem 2.1 Let a. = - - E," where Eo = 2".2". 

Then when k is even and k 2 2 ,  we have : 

Case 1 : R1 # Rz and Sl # Sz. Then H = a0 1 - - . 

Case 2 : R1 # Rz,Sl = S, and R1 @ R2 # T1 @ T2. 
o r  : R1 = R2,Sl # S1 a n d  Sl @ S2 # L1 @ Lz 

(The proof is by induction on k). 

I - &'24n '  

( 2:J 

1 1 1 
1 - - - 

Case 3 : R1 # R,, S, = S2 and Rl @ R2 = TI @ Tz 
o r :  R 1 = R z , S l # S 2 a n d S 1 @ S z = L 1 @ L Z  

1 1 2 1 
14- - - - - - 

Case 4 : Rl = R2 a n d  S1 = Sz 

1 Then U = a0 

When k is odd and k 2 3, calculation of H is also possible. There are then five cases. (see [3] 
for details). 

The values of H will give us the maximum of 
We will denote this numbers by lP1 - PJmx and 14 - PTlmx. 

- P;l and the maximum of - Pyl. 

We find (for m = 2)  : 
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1 1 2  -+- - -  
22" 24" 25" 

1 - 
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' 1  
1 1 - - (The exact vdue is : 1 - 

23" 

1 
1 - -  

2" 

1 
2" 

1 
2" 

1 
22n 

1 
22" 

1 

- 

- 

- 

- 

- 
23" 

But we have : 
lP, - P;'l k'f" 0. 

Coiiclusion 
When rn = 2 we can obtain the cxact values of IP1 - P;lrnu and 14 - P:*lmx for all k. (See 
[3] for the exact values of /PI - P;'lmax). 
For rn = 2, the result of M. Luby and C. Rackoff says that  Vk 2 3,lPl - P;lmsx 5 :. 
This gives us a good rninoration for G3 and +4 (because then the exact value of lp1 - l'TI,,,- 

is -), but for h 2 5 ,  14 - P;I- 5 -_ So, for k 2 5 and m = 2, it is indeed possible to 

improve the result of M. Luby and C. Rackoff. 
This lets us hope that we can improve this result for other values of m as well. 

0 

2" 

1 2 
2" 22" 
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Another important result that we obtain is that \Pi - P;’l ‘Xm 0, and when b is large 
the rate of convergence is about 2%.  (It IS possible to see this directly in the expressions of H 
that we have given). So we have an explicit evaluation of the effects of the number of rounds 
k on the “better and better pseudorandomness” of dk, when m = 2. 

3 General properties of PI, P; and P;* 
We will always denote by m the number of oracle gates, by k the number of rounds $ that we 
use in @, and by n the integer such Lhat the permutations that we are considering are in B2,,. 

Definition 8 When m , b  and n are fixed, we will denote by ]Pi - P;lmax the smallest real 
number such that : 
for all normal distinguishing circuit that has m oracle gates, we have : \PI - P;l 5 IP1- P:lmx. 
So lP1 - P;lmsr is less or equal than 1, and it depends on m, k and n. 
And we will define (Pl - P;)- and (P; - P,),, in the same way. 

Definition 9 When m,k and n are fixed, we will denote by /Pi - PFl- the smallest real 
number such that : 
for all super distinguishing circuits that have rn oracle gates, we have : IPI-P;*I 5 IPI-P;*~,. 
We define (PI - P;*),n, and (P:* - PI),, in the same way. 
Now we will see some example of the properties of these values. 
(See [3] for the proofs). 

T h e o r e m  3.1 There 1s always a distinguishing circuit such that lPl - P;l = lPl - P;l- and 
there is always a super distinguishing circuil such that 14 - P;’l = I f1  - P;*lmx. 

Theorem 3.2 (Pl - P;),,,= = (P; - Pl )mx  = lPl - P;I-. 

T h e o r e m  3.3 (PI  - P;’)- = (f;’ - Pi)mx = lPl - P;*l,,. 

Theorem 3.4 W h e n  m increases (and k and TL am fized), 
increase. 

- J‘&,,.x and  PI - pFlm- 

T h e o r e m  3.5 When  k increases (and m and n are fixed), IPl - P;lm and IPl - P;*lmm 
decrease. 

Remarks 

1. Theorem 3.5 is very important because it shows that when the number of rounds k 
increases, the random properties of Gk can just be better. But notice that this is due 
to  the fact that all the f i , .  . . , fi are independant function randomly chosen in F,. 
For example +(f, f, f, f2) is pseudo-random (as claimed in [4]), but if one adds a round 
$(fz), we obtaint G = + ( f 2 , f , f , f , f 2 ) .  And this one is not pseudo-random. This is 
because it is its own inverse if left azd right. halves of inputs and outputs are swapped 
: G-’ = u o G o g. So if g is a permutation such that g [ L ,  R] = [S ,T]  by testing if 
g(T, s] = [R, L]  it  is possible to know if 9 is probably a permutation of G or not. 
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2.  The decrease is not necessarily strict for /PI - P;lma. as we have seen for m = 2. 

m(m - 1) 
2.22" ' 

Theorem 3.6 For all nomial distinguishing circuit with m oracle gales, lP; - P;'I 5 

Remark: 
This shows that if m is not of order Z", it is not possible to distinguish a random permutation 
from a random function with a high probability. The converse of this property is well known : 
it is indeed possible to  distinguish with a high probability a random permutation of &,, from 
a random function of FZn when m is of order 2". (This is "the birthday paradox"). 

T h e o r e m  3.7 It is possible t o  distinguish a random permutation from a permutation ik with 
a high probability when m is  of order 2". (k is fixed here, &he number of oracle gates is limited 
by m, but the number of computations l o  analyse these m values is nof  limited). 

Idea of the proof 

There are a lot of different ways to  prove this theorem 3.7. The simplest is perhaps to  see that 
i t  is a consequence a Shannon's theorem : the secret key should be a t  least as great as that of 
the known plaintext. 
It is possible to use this theorem here because we suppose that  there is no limit on the amount 
of computation that a circuit can do to analyse its m values. 
Then, if real random functions f i ,  . . . , j k  of F,, are the secret key, the length of the key is about 
k.n.2" bits. And with m oracle gates, m.2n bits will be known. 

So if m > 7, it is possible to find a circuit 4 with m normal oracle gates such that  14 - pyl 
is not negligible. (But 

Theorem 3.8 If m,n and k are >_ 2 ,  then !PI - P;l- # 0 and \PI - P;'lmsx # 0 .  
This a consequence of theorem 3.4 and of the values that we have found f o r m  = 2 i n  paragraph 
2. 

k.2" , 

* 
will eventually do a lot of computations). 

Conclusion 

When m is small compared to  6, and k 2 3, Luby and Rackoff's property shows that it is not 
possible to distinguish a permutation $' from a random function (or a random permutation) 
with m normal oracle gates and with a high probability. But when m is of order 2", it is possible 
to distinguish a permutation Gk from a random permutation and from a random function, and 
to  distinguish a random permutation from a random function. 
So the problem is now : what will happen when m is between fi and 2" ? This is what we 
will try to  see now. 

4 $3 and $* when m 2 O(2;) 
We will see that when m 2 0(2:), it is possible to distinguish the permutations ~3 and $' from 
random permutations. 
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P r o o f  for $3 

Let $ be the following distinguishing circuit : will analyse a function j’ of FZR like this : 

1. 4 chooses m distinct Ra,  1 5 z 5 m, and chooses m values L,  arbitrarily in I,,, 1 5 i 5 m. 

2. 4 asks for the values [$,Ti] = f ( [ L ; ,  R,]), 1 5 z 5 m. 

3. 4 counts the number N of equalities of the form R; @ S, = Rj @ Sj,z < j .  

4. Let No be the expectation of N when j is a random permutation, and N1 be the expec- 
tation of N when f is a 2/J3(fi,f2,f3). 
Then Nl N 2N0, because when f is a 7,b3(fi,fz,f3), R. 63 Si = f 2 ( L ,  @ fl(R,)) so 
f i (L@fi(&))  = f 2 ( ~ 5 , @ f i ( & ) ) , Z  < j ,  ifL,@fi(Ri) # LjCBfi(Rj) andfz(Li@fi(&)) 
f i ( L J  ~9 fI(Rj)) a if L @ f i ( R )  = Lj @ fi(n,). 

So if $ gives 1 as output when N is closer to Nl and 0 as output when N is closer to No, 4 will 
have a /PI - P;*l close to 1 when No is greater than 1, that is to say when m 2 O(2i). 

Conclusion : For 43, there is a converse to Luby-Rackoff’s property. It is possible to distin- 
guish with a good probability the permutations 145~ from random permutations with m oracle 
gates, if and only if m is of order @. 

Notice also that here the m values [R,,L,] chosen can be chosen randomly in I,,. In terms 
of cryptography this means that it is possible to use a “known plaintext attack” (we don’t have 
to use a “Chosen plaintext attack”). 

Proof for 4’ 
This time, we take R, = 0 (or R, constant), and we count the number N of equalities of 
the form S, @ L, = S, @ L,, I < j .  In fact, when f = $(fi,fa,f3,f4), then S; @ L, = 
f3(fi(L, @ fl(0))) @ fi(0). So the probability of such an equality is about the double in this 
case than in the case where f is a random permutation (because if j 2 ( L , @ J 1 ( O ) )  = j z ( L , $ f i ( 0 ) )  
this equality holds, and if Pi = f z ( L ,  @f1(0)) # fz(L, ejl(0)) = P, but f@i) = J@,), this 
equality also holds). 

Conclusion : 
It is possible to distinguish with a good probability the permutations 2/J3 and $4 from random 
permutations with m oracle gates, if and only if m is of order a. We will see that this will 
not be true for -$k, k 2 5. 

For 44, as for 43, there is a converse to Luby-Rackoff‘s property. 

Notice that for 44 we have used a ”chosen plaintext attackn (because all the  R; are constant). 
And it is possible to prove that this is necessary if  m is of order G. (See 131). 
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5 Properties of $’ and $G 

For Q 6 ,  we have proved the following theorem. (See (31 for the demonstration). 

T h e o r e m  5.1 For q ! ~ ~  and lor  all super distinguishing’circuit with m oracles gates, we have : 
18m i2m3 
2“ 22” 

lP1 - P;’l 5 - + -. 
The main idea in proving this theorem is to evaluate the number H of ];-tuples of functions 
(fi,. . . ,fk) such that : V i ,  1 5 i 5 m,$k(fl , .  . . , f k ) [ L i , R ; ]  = [S;,T,]. Here k = 5 or 6, the 
[L , ,  I&], 1 5 i 5 m, are m pairwise distinct elements of I,,, and the [S,, T,], 1 5 i 5 m are also 
m pairwise distinct elements of IZn. (“I’airwise distinct’’ means that if i # j, then L,  # L, or 
R; + Rj).(See [3] for a complete proof). 

This theorem shows that it is not possible to distinguish with a good pr2)ability a random 
permutation from a permutation $‘,k 2 6, if m is not a t  least of order 2 7 .  We will give in 
the next paragraph an exemple of an application of this result. 

For $‘, we have just. proved the following theorem. 

Theorem 5.2 For 45 and for all normal distinguishing circuit with m oracles gates,  PI - p;l 
is negligible when n is large i fm is not  at least of order 2 y .  

Remark: 
The theorems 5.1 and 5.2 show that 45 and $G are really sensibly better permutation generators 
than $3 and G4. And we have strong presumption (see [3]) that the properties of 4’ and $6 

are even better. 
For example, it is probable that  this conjecture holds : 

Conjecture 
For $5r or perhaps 

/PI - P;l 2 -. (The number 30 is just an example). 
If this conjecture is true (and it is probably true), it shows that  in fact when k 2 5, m should be 
of order 2“ to distinguish a permutation Jt’ from a random function (or a random permutation). 

or d7, and for any distinguishing circuit with m oracle gates we have : 
30m 

2 R  

6 Example of application 
We will now see an example given by J. Pieprzyk a t  the end of his talk at Eurocrypt’SO. 
This is just an example and there are a lot of different (and clever) ways to use the results on 
pseudorandom permutations. (In general a pseudorandom function generator is used and not 
real random functions as we will do). But this example is instructive, and this was the example 
that we had in mind when we decided to work in an improvement of the inequalities. 
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T h e  problem 

Suppose that you want to use the results in a direct way, that is to say with k real random 
functions f l ,  . . . , fk of F,, which are the secret key. Then your secret key will be k.n.2” bits 
long. And suppose that you want that the permutation $(fi,. . . , fk) is not distinguishable 
from a random permutation with a good probability for all dislinguishing circuit with m 5 lo’. 
Notice that if this property holds, then to distinguish $(fi,, . . ,fk) from a random permutation 
with a good probability it is necessary to do a t  least lo’ computations. Then, what will be the 
length of the secret key ? 

If you use Luby-Rackoff’s property : for y13, /PI - P:l _< -, then since m N 230, you 
will take n Y 64, so the length of the key is 3.64.264 bits. This is of course too much ! 

m2 
2“ 

If you use Pieprzyk’s property : $ ( f , f , / , f 2 )  is pseudorandom, then you will divided “at 
best” the length of the key by 3, and the length is of course still too much. (We say “at best” 
because in fact the inequality of (PI - P;J is worse in this case : see the paragraph 7). 

0 If you use our property for $6 : lPl - P;l 5 - + -, then since m N Z30, you will 
take n N 48, so the length of the key is 6 . 4 € ~ 2 ~ ’  bits. This is still too much ! But . . . we have 
divided the length of the key by 40000. 

0 And in fact, if the conjecture of paragraph 5 is true, it is probably possible to take n N 32 
for $P. 
Then the length of the key will be 6.32.232 bits. Of course this is still a lot, but because of 
Shannon’s theorem there is no hope to reduce the length of the key by much more (if you are 
considering that the distinguishing circuits are not limited in the amount of computation that 
they can perform to analyse their m values). 

12m ism3 
2” 22” 

7 
When f is a random function of F,, $(f, f, f, f’) is a pseudo random permutation of Bzn. But 
there is a little mistake in one of the the proofs of J. Pieprzyk : his lemma 4.1 page 145 of [4] 
is wrong. (And then the inequality obtained for this generator is worse). 
For example, let 4 be this normal distinguishing circuit, which has only one oracle gate. will 
test like this a function F of Zzn -+ Izn. 

1. I# chooses an element R of I ,  (for example R = 0) and take L = 0. 

2. d asks for the value F[O, R] = [S, TI. 

3. If R = S = T ,  then d gives the output 1. If not, 4 gives the output  0. 

Evaluation of PI = Pr[C2,(~(f, f, f, f’))]. (This is the notation of J. Piepzryk). 

If F = +(f, f, f, f’), we kave : s = f ( R )  @ f ( R  63 f 2 ( R ) )  
T = R @ j’(R) @ f2(S). 
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PI is the probability that R = S = T when f is randomly chosen in F,,. 
But here (this will not be the case for +4( f ,  f, f, 9 ) )  if R = S we will have necessarily T = R. 

1 
so P1 = F. 
Evaluation of Q1 = Pr[Cz,,(tj(f, f, f,g))] (This is the notation of J. Pieptryk). 

s = f ( R )  @I f ( R  @I fZW) 
T = R @ f 2 ( R )  @I g ( S ) .  If F = $(L f, f,s), we ha= : 

Q1 is the probability that R = S = T when f and g are randomly and independently chosen 
in F,. 

1 SO Qi = - 

Then, IP1 - & I 1  = 2;; - -, which is not smaller than - for all n,  as was mentioned in lemma 
4.1. of [4]. 
An other problem of +(f, f ,  f, f) is that this generator is not super pseudo random. (see [3)). 

22". 
1 1  9 

4" 4" 

8 Conclusion 
We have seen that +', for k 2 5, is an 'exponentially" better pseudorandom permutation 
generator than g3 and +4. This improvement of the properties of ritk when k 2 5 is a new 
result, and it holds for small values of rn as for great values of rn. 
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