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Abstract. We show that an abstract simplicial complex ∆ may be rea-
lized on a grid of IRd−1, where d = dim P (∆) is the order dimension
(Dushnik-Miller dimension) of the face poset of ∆.

1 Introduction

Abstract simplicial complexes are related to order dimension in Section 2 through
the complex of a d-representation. This construction is analogous to the one in-
troduced by Dushnik in [10] and similar to the one used by Scarf in mathematical
economy [14] under the name of primitive sets and which has been applied to
integer programming by Barany, Howe and Scarf [1] and to commutative algebra
by Bayer, Peeva and Sturmfels [2]. In Section 3, we give a simple necessary and
sufficient condition for a mapping to be a geometric realization of an abstract
simplicial complex. This characterization leads in Section 4 to the geometric
realization of the abstract simplicial complex defined by a d-representation on
a grid in IRd−1. This generalizes the result of Schnyder on planar graphs [15]
(see also [3][4]). In Section 5, we prove that any abstract simplicial complex may
be triangulated into a “standard” d-representation having the same face poset
dimension. In Section 6, we extend the vertex shelling order introduced earlier
by Fraysseix, Pach and Pollack for planar triangulations [8] and show that a
complex is vertex-shellable if and only if it is shellable (in the usual sense). We
also prove that a vertex shelling order of the triangulation ∆+ mentioned above
may be easily derived from the “generating” total orders, generalizing a result
proved in [5]. Eventually, Theorem 7 gathers most of the main results of the
paper in a single statement.

We recall some basic definitions on simplicial complexes. For further informa-
tion, see [12]. In the following, we will consider only finite simplicial complexes,
what will justify the following definition. An abstract simplicial complex ∆ is a
non-empty finite collection of finite sets such that X ∈ ∆, Y ⊆ X implies Y ∈ ∆.
The union V (∆) of the members of ∆ is the vertex set of ∆. The members of
∆ are the faces of ∆. The dimension of a face X of ∆ is dim X = |X| − 1.
The dimension dim∆ is the maximum dimension of any face of ∆. If ∆ and
∆′ are abstract simplicial complexes with disjoint ground sets, we recall that
their combinatorial join is the abstract simplicial complex ∆ ∗ ∆′ defined by
∆∗∆′ = {X∪X ′, X ∈ ∆, X ′ ∈ ∆′}. By extension, ∆∗p will denote ∆∗{∅, {p}}.
An abstract simplicial complex ∆ is pure if all the maximal faces of ∆ (with res-
pect to inclusion) have the same dimension, that is if any face of ∆ is included in
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a face of ∆ with dimension dim∆. The face poset P (∆) of ∆ is the poset which
consists of all the faces of ∆ ordered by inclusion. For a poset P , a realizer of
P is a set of total orders whose intersection is P . The minimum cardinality of
a realizer of poset P is its Dushnik-Miller dimension (or simply the dimension)
dimP [11].

2 The Complex of a d-Representation

Let d > 0 be an integer and let V be a finite set. A d-representation R = (<1
, . . . , <d) of V is a set of d total orders on V whose intersection is an antichain.
With respect to R, the supremum section S(X) of a subset X ⊆ V is the subset
of X whose elements are the maxima of X for some linear order in R:

S(X) = {x ∈ X, ∃1 ≤ i ≤ d, ∀y ∈ X − {x}, x >i y} (1)

Given a d-representation R of V , the complex of R is the set Σ(R) of all the
subsets X of V such that ∀v ∈ V, v ∈ S(X ∪ {v})
Lemma 1. The complex Σ(R) of a d-representation R of V is an abstract sim-
plicial complex.

Proof. It is straightforward that S(A) ⊇ S(B)∩A whenever A ⊆ B. Thus, if X ′

is a subset of a set X ∈ Σ(R), we get v ∈ S(X ′ ∪ {v}) for any element v ∈ V as
v ∈ S(X ∪ {v}). ut

Theorem 1. Let (V, ∆) be an abstract simplicial complex with vertex set V .
Then, dimP (∆) is the smallest integer d, such that ∆ is a subcomplex of

some d-representation of V .

Proof. – ∆ is a subcomplex of a dim P (∆)-representation of V :
Consider a realizer ≺1, . . . ,≺d of cardinality d = dimP (∆) of P (∆) and let
R = (<1, . . . , <d) be the d-representation of V induced by the restrictions
on V of the d total orders ≺1, . . . ,≺d.
Let X be an element of ∆. Then, for all 1 ≤ i ≤ d and all x ∈ X we have
x ≺i X, as X is, by definition, greater than its elements in the face poset.
Moreover, X is not comparable to any element which does not belong to X.
Hence, for any y 6∈ X, ∃1 ≤ i ≤ d, ∀x ∈ X, x ≺i y. Hence, ∀y 6∈ X, y ∈
S(X + y). Similarly, if x belongs to X, either X = {x} and x ∈ S(X) or
X−x is a simplex which belongs to ∆ and hence x ∈ S(X−x+x) and thus
x ∈ S(X). Altogether, X belongs to Σ(R).

– If ∆ is a subcomplex of a d-representation of V , then d ≥ dimP (∆):
Insert in the d total orders of the representation the faces of ∆ (different
from vertices) the following way: In the linear order <i, insert just after
the vertex x all the faces including x and vertices smaller than x (with
respect to linear order <i), sorted by increasing size and, for a same size, in
lexicographic order (with respect to <i). Then, the face-inclusion of X in Y
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in ∆ obviously correspond to X <i Y (for all 1 ≤ i ≤ d). Otherwise, if X
and Y are not compared in P (∆), there exists a ∈ X \ Y and b ∈ Y \ X.
As ∆ is a subcomplex of the d-representation, there exists a linear order i
such that a is greater than all the vertices of Y with respect to <i. Hence,
X >i Y . Similarly, there exists j such that Y >j X. Thus X and Y are
not comparable in the intersection of the d total orders. Altogether, P (∆) is
equal to the intersection of the d total orders and hence dim P (∆) ≤ d.

ut

3 Geometric Realizations of Simplicial Complexes

Consider an injective mapping f : V (∆) → IRn (this mapping is naturally
extended to map the subsets of V (∆) to the corresponding subsets of IRn). We
shall say that f is a geometric realization of ∆ in IRn if f(∆) is a geometric
simplicial complex, i.e. if

– for any face X of ∆, f(X) is a set of affinely independent points (i.e. defines
a simplex) of IRn,

– the intersection of two faces of f(∆) is a face of f(∆), that is, for any faces
X and Y of ∆:

Conv(f(X)) ∩ Conv(f(Y )) = Conv(f(X) ∩ f(Y )) (2)

where Conv(P ) denotes the convex hull of the point set P .

If V (∆) is a set of points in IRn, ∆ is thus a geometric simplicial complex if and
only if the identity is a geometric realization of ∆. We shall say that an abstract
simplicial complex ∆ is realizable in IRn if there exists a geometric realization of
∆ in IRn. We remark that the first of the two conditions we gave for f to be a
geometric realization implies n ≥ dim∆.

Lemma 2. If Conv(f(X)) ∩ Conv(f(Y )) = Conv(f(X) ∩ f(Y )) holds for any
two faces X and Y of an abstract simplicial complex ∆, then f is a geometric
realization of ∆.

Proof. The injectivity of f is straightforward as Conv(f({x}))∩Conv(f({y})) =
∅ whenever x 6= y. Thus, we only have to prove that the image of a set X ∈ ∆
is a set of affinely independent points. Let us prove it ad absurdum. Assume
x1, . . . , xk are elements of X having linearly dependent images by f . Up to a
relabeling of the xi, we may assume that there exists an integer 1 ≤ a < k,
and real numbers λ1, . . . , λk−1, such that f(xk) =

∑k
i=1 λif(xi),

∑k
i=1 λi = 1,

λ1, . . . , λa are negative and λa+1, . . . λk−1 are positive.
Then, define α =

∑k
i=a+1 λi. As the λi sum up to 1, all the λi are not

negative and α > 0. Hence, we have:

1
α

f(xk) +
a∑

i=1

(
−λi

α

)
f(xi) =

k−1∑
i=a+1

λi

α
f(xi) (3)
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Thus, Conv(f({x1, . . . , xa, xk})) ∩ Conv(f({xa+1, . . . , xk−1})) is not empty alt-
hough the faces {x1, . . . , xa, xk} and {xa+1, . . . , xk−1} of ∆ (sub-faces of X) are
disjoint; we are led to a contradiction. ut

Lemma 3. If Conv(f(X))∩Conv(f(Y )) is empty for any two disjoint faces X
and Y of an abstract simplicial complex ∆, then Conv(f(X)) ∩ Conv(f(Y )) =
Conv(f(X) ∩ f(Y )) holds for any two faces X and Y of ∆.

Proof. Let X and Y be any two non-disjoint faces of ∆ and let π be a point in
Conv(f(X))∩Conv(f(Y )). The point π may be expressed as a weighted average
of the points in f(X): π =

∑
x∈X α(x)f(x), where α is a mapping from V (∆)

to IR+ with sum 1 ans support Supp(α) ⊆ X. Similarly, π =
∑

y∈Y β(y)f(y),
where β is a function from V (∆) to IR+ with sum 1 and support Supp(β) ⊆ Y .
Let λ(z) = min(α(z), β(z)). This function is positive and has support Supp(λ) ⊆
X∩Y . Let s be its sum: s =

∑
z∈X∩Y λ(z). Let us show that s cannot be different

from 1: otherwise,

∑
x∈X

(
α(x)− λ(x)

1− s

)
f(x) =

∑
y∈Y

(
β(y)− λ(y)

1− s

)
f(y) (4)

and, if X ′ denotes the support of α − λ and Y ′ denotes the support of β − λ,
Conv(f(X ′))∩Conv(f(Y ′)) is not empty although the faces X ′ ⊆ X and Y ′ ⊆ Y
are disjoint. Hence, s = 1, what may only be achieved by α = β. Thus, π belongs
to Conv(f(X) ∩ f(Y )). ut

Theorem 2 (Folklore). Let ∆ be an abstract simplicial complex and let f :
V (∆) → IRn be a mapping. Then, f is a geometric realization of ∆ in IRn if
and only if Conv(f(X)) and Conv(f(Y )) are disjoint, for any two disjoint faces
X, Y of ∆.

Proof. If f is a geometric realization then disjoint sets in ∆ are maped into
disjoint simplices. Conversely, if disjoint faces are maped into set having disjoint
convex hulls, then the intersection of the convex hulls of the images of any two
faces X and Y of ∆ is the convex hull of the image of their intersection, according
to Lemma 3. Then, according to Lemma 2, f is a geometric realization of ∆ in
IRn. ut

4 Geometric Realization of a d-Representation

In the following, we consider a d-representation R = (<1, . . . , <d) of a set V
and a mapping f from V to IRd, such that fi is strictly positive and strictly
increasing with respect to <i (for 1 ≤ i ≤ d). We denote by P the image of
V and ∆(P ) the image of Σ(R). As f is clearly injective, ∆(P ) and Σ(R) are
isomorphic.
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Let X ⊆ P be a subset of points, σ(X) denotes the point with coordinates
σi(X) = maxπ∈X πi and Θ(X) denotes the closed set Θ(X) = {π, ∀1 ≤ i ≤
n, πi ≤ σi(X)}. According to these definitions and according to the definition of
Σ(R), a point set X ⊆ P is a face of ∆(P ) if and only if

– any point in X belongs to the frontier of Θ(X),
– no point of P belongs to the interior of Θ(X).

Theorem 3. Let R = (<1, . . . , <d) be a d-representation of a set V . Let f be
any mapping from V to IRd, such that fi is strictly positive and increasing with
respect to <i sufficiently fast (that is: the ratio of consecutive values of fi is bigger
than A ≥ 1 +

√
d), let (λ1, . . . , λd) be d-uple of positive real numbers different

from (0, . . . , 0) and let H be the hyperplane of IRd defined by
∑

i λixi = 1.
Then, the mapping φ : V → H defined by φi(x) = fi(x)∑

j λjfj(x) is a geometric

realization of Σ(R) in H ≈ IRd−1.

Proof. We shall first prove that ∆(P ) ∗ O is a geometric simplicial complex,
that is that Conv(X) ∩Conv(Y ) is empty for any two disjoint sets of ∆(P ) ∗O
(according to Theorem 2). As, for any face X ∈ ∆(P )∗O, X ∪{O} is also a face
of ∆(P )∗O, it is necessary and sufficient to prove that Conv(X∪{O})∩Conv(Y )
is empty for any two faces X, Y of ∆(P ) or, equivalently, that there exists an
hyperplane H passing through O and which separates X from Y . As no point
of X belongs to Θ(Y ), each point x ∈ X has a coordinate bigger than the
corresponding one of σ(Y ). Hence, the set I = {i,∃x ∈ X, xi > σi(Y )} is not
empty. Similarly, the set J = {j,∃y ∈ Y, yi > σi(X)} is also not empty. Let
a(x) =

∑
i∈I

xi

σi(Y ) and b(x) =
∑

j∈J
xj

σj(X) . We have: a(x) ≥ A for any x ∈ X

as there exists an index i, for which xi > 1 and hence xi ≥ A; To the opposite,
a(y) < 1 + d−1

A for y ∈ Y , as only one coordinate of y may reach the maximum
value. Similarly, b(x) < 1 + d−1

A for any x ∈ X and b(y) ≥ A for any y ∈ Y . As
A ≥ 1 +

√
d, we have A > 1 + d−1

A . Thus, the hyperplane defined by a(x) = b(x)
passes through O and separates X (for which a(x) > b(x) from Y (for which
a(x) < b(x)) and ∆(P ) ∗O will be a geometric simplicial complex.

Now, consider the hyperplane H ′ defined by
∑

i λixi = ε, where ε is a suf-
ficiently small positive real number, so that H ′ separates O from P . Then, the
intersection of ∆(P ) ∗O and H ′ is a geometric realization of ∆(P ) ≈ Σ(R) and
so is its homothetic image defined by the image of Σ(R) by the mapping φ. ut

5 Triangulation

Lemma 4. Let R = (<1, . . . , <d) be a d-representation of V with complex Σ(R)
and let x be the maximum of <k. For i 6= k, let <′

i be the total order on V where
x precedes all the elements of V \ {x} and the element of V \ {x} are ordered
by <i. Then R′ = (<′

1, . . . , <
′
k−1, <k, <′

k+1, . . . , <d) is a d-representation which
complex Σ(R′) includes Σ(R).
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Proof. Denote by S′ the supremum section corresponding to R′. Let X be a
subset of V , then S(X) ⊆ S′(X) :

– If x 6∈ X, S′(X) = S(X),
– If x ∈ X, S′(X) = {x} ∪ S(X \ {x}) ⊇ S(X)

Thus, any element X of Σ(R) belongs to Σ(R′) : for all v ∈ V, v ∈ S(X ∪{v}) ⊆
S(X ∪ {v} and hence X ∈ Σ(R′). ut
A d-representation R = (<1, . . . , <d) on a set V is standard if |V | ≥ d and, for all
i 6= j, the maximum element of <i is one of the d−1 smallest elements of <j . The
maxima of the orders of a standard d-representation are the exterior elements
of this representation. The other elements of V are the interior elements. An
abstract simplicial complex is standard if it is the complex of some dimP (∆)-
representation. Notice that, for a standard abstract simplicial complex ∆, we
have: dim ∆ = dimP (∆)− 1.

Given any subset X of V and a d-representation R of V , we define the shade
function IX of X on V \X as IX(u) = {i ∈ [1, d],∀x ∈ X, u >i x}. Given any
subset X of V and a d-representation R of V , we define the shading order <X of
X on V \X as follows: u <X v ⇐⇒ (IX(u) ⊆ IX(v)) and (∀i ∈ IX(u), u <i v)

Lemma 5. Any standard representation will be pure. More precisely, let R =
(<1, . . . , <d) be a standard representation. If X is a face of Σ(R) which maximal
element x1 (with respect to <1) is not an exterior element of R, then, for every
dimX < k < d there exists a k-dimensional face which includes X and has x1
as a maximum element with respect to <1.

Proof. Let X be an element of Σ(R) different from the |X| first elements of <1
and assume |X| < d.

If X is included into the set {v1, . . . , vk} of the external elements of R, the
addition of any external element smaller or equal to x1 with respect to <1 will
do.

Otherwise, let x be an element of x which is maximal in X with respect to
two different total orders and let <k be one of them for which k 6= 1. Obviously,
x is not an external element of R as an external element is greater than an
internal with respect to exactly one total order. For the same reason, vk does
not belong to X and is smaller or equal to x1 with respect to <1. Let α be a
minimal element of the set {v 6∈ X, v <1 x1 and v <X vk} ∪ {vk}. As IX(α) 6= ∅
(otherwise, α 6∈ S(X+α) would contradict X ∈ Σ(R)) and as IX(α) ⊆ IX(vk) by
construction, we get: IX(α) = {k}. This ensures that S(X+α) = X+α. Assume
there exists an element y 6∈ X + α, such that y 6∈ S(X + α + y). As X ∈ Σ(R),
the element y belongs to S(X + y). As IX(α) = {k}, the only possibility for y
not to belong to S(X + α + y) corresponds to the situation where IX(y) = {k}
and y <k α, that is: y <X α. Moreover, y is smaller or equal to x1 with respect
to <1 (as 1 6∈ IX(y)) and this contradicts the minimality of α. ut

Theorem 4. Any abstract simplicial ∆ complex may be triangulated into a stan-
dard representation having the same face poset dimension.
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Proof. As a direct consequence of Theorem 1, ∆ is the subcomplex of some
d-representation R0. By successive applications of Lemma 4, there exists a stan-
dard d-representation R, such that Σ(R) includes Σ(R0) and hence includes ∆.
According to Lemma 5, Σ(R) is pure of dimension d− 1 and hence is a triangu-
lation of ∆. ut

6 Shellability of Standard Complexes

Shellability of pure simplicial complexes has been extensively studied. We shall
introduce here the vertex shellability, which is a generalization of the concept
introduced in [8] and which has proved its efficiency through numerous ap-
plications in quite different kind of problems related to planarity (see, for in-
stance, [6][7][9][13]). We shall prove that the concepts of shellability and vertex-
shellability are actually equivalent. Thatfor, recall that a pure abstract simpli-
cial complex ∆ of dimension d − 1 is shellable if all its (d − 1)-faces (that is:
all its elements of cardinality d) can be listed F1, . . . , Fs in such a way that(⋃j−1

i=1 Fi

)
∩ Fj is pure of dimension d − 2 for every 1 < j ≤ s (where Fi is

defined by: Fi = {X ∈ ∆, X ⊆ Fi}) or, equivalently, for 1 ≤ i < j ≤ s, any
subset X of Fi and Fj , there exists a (d − 2)-dimensional face Y ⊇ X and a
(d− 1)-dimensional face Fh (for some h < j) such that Y is included in both Fh

and Fj .
A pure abstract simplicial complex ∆ of dimension d− 1 is said to be vertex

shellable if all its vertices can be listed v1, . . . , vn in such a way that:

– {v1, . . . , vd} ∈ ∆,
– for all face σ ∈ ∆ with maximum vertex vk (k > d), there exists j < k, such

that vj 6∈ σ and σ − vk + vj ∈ ∆),
– for all vertex vk (k ≥ d), the abstract simplicial complex ∆k = {σ − vk, σ ∈

∆ and σ ⊆ {v1, . . . , vk}} is a pure d − 2 dimensional shellable simplicial
complex.

Lemma 6. Let ∆ be a pure d− 1 dimensional shellable simplicial complex and
let F1, . . . , Fs be a shelling order.

Assume there exists d < a < s, such that Fa is not included in
⋃

i<a Fi but
Fa+1 is. Then, F1, . . . , Fa−1, Fa+1, Fa, Fa+2, . . . , Fs is also a shelling order.

Proof. As
(⋃

i<a Fi

) ∩ Fa is a pure d− 2 dimensional simplicial complex and as
there exists α ∈ Fa\

⋃
i<a Fi, we get that there exists i < a, such that Fa−α ⊂ Fi.

As
(⋃

i<a Fi

)∪Fa+1 does not include α, we get that
(⋃

i<a Fi ∪ Fa+1
)∩Fa is a

pure d− 2 simplicial complex.
Moreover, let X be a face of both Fa+1 and Fj (j < a), with dimension

strictly less than d − 2. Then, as F1, . . . , Fs is a shelling order, there exists a
(d− 2)-dimensional face Y ⊇ X which is a face of Fa+1 and Fi (with i < a + 1).
If i = a then, as Y ⊂ Fa+1, the vertex α does not belong to Y and Y = Fa − α.
Hence, there exists j < a such that Y ⊂ Fj . Altogether,

(⋃
i<a Fi

) ∩ Fa+1 is a
pure (d− 2)-dimensional complex. ut
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Lemma 7. Let ∆ be a pure (d− 1)-dimensional abstract simplicial complex. If
∆ is shellable, then it is vertex shellable.

Proof. Assume ∆ is shellable. According to Lemma 6, there exists a shelling
order F1, . . . , Fs such that, for all d < a < s , if Fa is not included in

⋃
i<a Fi,

no Fb (with b > a) is included in
⋃

i<a Fi. Hence, as Fi \
(⋃

j<i Fj

)
includes at

most one element, we can list the vertices of ∆ the following way:

– begin with a list including the vertices of F1 and let a = 1.
– while a < s, add to the list the vertex (if any) of Fa+1 which is not in the

list and let a← a + 1.

Eventually, we get a list v1, . . . , vn of all the vertices of ∆, such that if i < j, all
the (d − 1)-faces of ∆ with maximum element vi precedes all the (d − 1)-faces
including vj in the shelling order. Thus, we get:

– {v1, . . . , vd} ∈ ∆.
– for all face σ ∈ ∆ with maximum vertex vk (k > d), there exists a face σ′

that precedes σ in the shelling order, such that σ − vk ∈ σ′. As σ′ precedes
σ and does not include vk, its maximal element is a vertex vi with i < k.
Hence, the vertex vj such that σ′ = σ − vk + vj is such that j < k.

– for all vertex vk (k ≥ d), let ∆k be the abstract simplicial complex ∆k =
{σ − vk, σ ∈ ∆ and σ ⊆ {v1, . . . , vk}}. Let Fa and Fb be the first and last
(d− 1)-dimensional face of the shelling order having vk as maximal element.
We shall prove that ∆k is a pure (d − 2)-dimensional abstract simplicial
complex having Fa − vk, . . . , Fb − vk as a shelling order: Consider in ∆k a
face X of Fi − vk and Fj − vk with a ≤ i < j ≤ b. Then, X + vk is a face
of Fi and Fj in ∆. Thus there exists a (d− 2)-dimensional face Y ⊇ X + vk

and h < j, such that Y ⊆ Fh. As vk belongs to Fh, we get h ≥ a. Hence,
there exists a face Fh − vk of ∆k having a (d − 3)-dimensional face Y − vk

including X and included in Fj , what ends our proof.
ut

Theorem 5. Let ∆ be a pure (d − 1)-dimensional abstract simplicial complex.
Then, ∆ is shellable if and only if it is vertex shellable.

Proof. According to Lemma 7, we only have to prove that the vertex shellability
of ∆ will imply its shellability.

Let v1, . . . , vn be a vertex shelling order. We list the (d − 1)-faces of ∆ the
following way:

– let F1 = {v1, . . . , vd} and let a = d.
– while a < s we add to the list the faces of ∆ having vk as a maximal element

in the order induced by the shelling order of ∆k.

Let 1 ≤ i < j ≤ s and let X be a subset of Fi and Fj and let vk be the maximal
element of Fj .
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– If vk 6∈ X, then there exists a (d− 1)-face Fh including Fj − vk with h < j,
according to the definition of a vertex shelling order. Obviously, X ⊆ Fj−vk.

– If vk ∈ X, then there exists a (d− 3)-face Y ⊇ X − vk of ∆k and a face Fh

having vk as a maximal element, such that h < j and Fh−vk ⊇ Y , according
to the shelling order of ∆k. Hence, Y + vk is a (d− 2)-face included in both
Fh and Fj (with h < j).

ut
Let R = (<1, . . . , <d) be a d-representation. Let X and Y be two (d − 1)-
dimensional simplices of Σ(R) and let xi (resp. yi) be the maximal element
of X (resp. Y ) with respect to <i (notice that X = {x1, . . . , xd} and Y =
{y1, . . . , yd}), the d-order is the total order on the (d− 1)-dimensional simplexes
of Σ(R) which is defined by:

∀X 6= Y ∈ Σ(R), (X < Y ⇐⇒ xk <k yk, where k = min{i, xi 6= yi}) (5)

Theorem 6. Any standard abstract simplicial complex will be shellable.
More precisely, let R = (<1, . . . , <d) be a standard representation. Then, the

d-order is a shelling order of Σ(R) and any of the <i is a vertex-shelling order.

Proof. We shall only prove that the d-order is a shelling order, as this obviously
implies that <1 is a vertex shelling order (according to the definitions of a vertex
shelling order and the fact that the d-order is a lexicographic order starting with
<1) and hence that <i is a vertex shelling order (by symmetry).

We shall prove that the d-order is a shelling order by induction over the
dimension d of the simplicial complex.

Let Fi be the ith face (i > 1) and let x be its maximal element with respect
to <1. As F1 is the only face including the d − 1 exterior elements v2, . . . , vk,
there exists, according to Lemma 5 a maximal face Fj including Fi − x and
which maximal element (with respect to <1) is strictly smaller than x and
hence j < i. Let Fa (a ≤ i) be the first simplicial complex containing x,(⋃a−1

j=1 Fj

)
∩ Fi = Fi − x and, according to the induction on the dimension,

if a < i,
(⋃i−1

j=a Fj − x
)
∩Fi − x is a pure simplicial complex of dimension d− 3

and hence,
(⋃i−1

j=a Fj

)
∩ Fi is a pure simplicial complex of dimension d− 2. Al-

together,
(⋃i−1

j=1 Fj

)
∩ Fi is a pure simplicial complex of dimension d− 2. ut

Theorem 7. Let ∆ be an abstract simplicial complex and d = dimP (∆). Then,
there exists a standard d-representation R = (<1, . . . , <d) V (∆) defining a tri-
angulation ∆+ of ∆, which is shellable and realizable in IRd−1.

Proof. According to Theorem 4, ∆ may be triangulated into ∆+ = Σ(R), where
R is a standard d-representation V (∆). ∆+ is shellable, according to Theorem 6
and its geometric realization follows from Theorem 3, using any sufficiently fast
increasing functions. ut
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