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Abstract. Given an orthogonal representation H with n vertices and
bends, we study the problem of computing a planar orthogonal dra-
wing of H with small area. This problem has direct applications to the
development of practical graph drawing techniques for information vi-
sualization and VLSI layout. In this paper, we introduce the concept of
turn-regularity of an orthogonal representation H, provide combinato-
rial characterizations of it, and show that if H is turn-regular (i.e., all
its faces are turn-regular), then a planar orthogonal drawing of H with
minimum area can be computed in O(n) time, and a planar orthogo-
nal drawing of H with minimum area and minimum total edge length
within that area can be computed in O(n7/4 log n) time. We also apply
our theoretical results to the design and implementation of new practical
heuristic methods for constructing planar orthogonal drawings. An ex-
perimental study conducted on a test suite of orthogonal representations
of randomly generated biconnected 4-planar graphs shows that the per-
centage of turn-regular faces is quite high and that our heuristic drawing
methods perform better than previous ones.

1 Introduction

Orthogonal drawings are drawings of graphs in which every edge is represented
by a chain of horizontal and vertical segments. An orthogonal representation is
an equivalence class of orthogonal drawings that have the same “shape” (see
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Fig. 1). This class is formally described by specifying the bends along each edge
and the angles between consecutive edges around each vertex. In this paper
we consider planar orthogonal representations, that is, equivalence classes of
orthogonal drawings for which at least one of the drawings is planar. Given a
planar orthogonal representation H, the problem of finding a planar orthogonal
grid drawing of H with small area is usually referred to as the compaction of H.

Orthogonal representations and planar orthogonal drawings have been exten-
sively investigated (see, e.g., [1, 9, 11, 12, 14, 15, 16, 18, 27, 28, 29, 30]) because
of their direct applications to the development of practical graph drawing tech-
niques for information visualization [6]. In particular, it has been experimentally
shown that drawing algorithms for general graphs based on the compaction of
orthogonal representations with minimum number of bends perform better in
practice than other known orthogonal drawing algorithms [7, 25]. Orthogonal
representations and related concepts, such as slicing floorplans, are also widely
used in VLSI layout compaction algorithms (see, e.g., [19, 21, 22, 26, 31]).
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Fig. 1. Three planar orthogonal drawings of a graph. Two drawings of the same
orthogonal representation are shown in (a) and (b), while a drawing of a different
orthogonal representation is shown in (c). The drawing in (a) has optimal area among
all planar drawings of that orthogonal representation.

Despite the significant body of research on orthogonal representations, the
development of effective compaction techniques remains a challenging task. It has
been conjectured for a long time [30], and recently proved [24], that the optimal
compaction of planar orthogonal representations, i.e., computing a minimum
area planar orthogonal grid drawing of a given planar orthogonal representation,
is an NP-complete problem. The only class of planar orthogonal representations
for which a polynomial-time optimal compaction algorithm is known is the trivial
class of orthogonal representations whose faces are all rectangular [6].

From a practical perspective, the compaction algorithms used by current
graph drawing libraries and systems, such as AGD1, GDToolkit2, and the Graph
Drawing Server3, are all variations of the compaction technique presented in [18,
1 http://www.mpi-sb.mpg.de/AGD/
2 http://www.dia.uniroma3.it/˜gdt/
3 http://www.cs.brown.edu/cgc/graphserver/
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27], which is based on the idea of splitting faces into rectangles. Since the splitting
imposes unnecessary constraints on the geometry, the resulting drawings may
have substantially suboptimal area.

The importance of compaction techniques for graph visualization applicati-
ons is confirmed by a recent work of Klau and Mutzel [20]. They consider the
problem of assigning coordinates to vertices and edge bends of an orthogonal
representation so that the total edge length is minimized. The problem is formu-
lated as an integer linear program, whose practical performance is fairly good.
Also, they show that the problem can be solved in polynomial time for those
orthogonal representations in which there is only one possible relative position
of any two vertices that results in a planar drawing; in this case, the inequalities
of the corresponding ILP formulation form a totally unimodular matrix. The
problem of minimizing the area of the drawing is not considered.

The main results of this paper can be summarized as follows.

– Given a planar orthogonal representation H, we define the concept of turn-
regularity of a face of H, which is based on the structure of the sequence of
left and right turns encountered when traversing the face. We show that the
turn-regularity of a face can be tested in linear time.

– We relate turn-regularity to the concept of switch-regularity [8]. Namely, we
characterize the turn-regularity of a face f in terms of the switch-regularity
of two upward orientations of f .

– We introduce the concept of orthogonal relation between two vertices of H.
This relation establishes the relative position of the two vertices in any planar
orthogonal drawing of H. We show that an orthogonal relation is defined
between every two vertices of H if and only if all the faces of H are turn-
regular.

– We show that if H is turn-regular (i.e., all its faces are turn-regular), then
any orthogonal drawing of H such that the orthogonal relations between
every two vertices are satisfied is planar.

– We show that if H is turn-regular, then a planar orthogonal drawing of H
with optimal area can be computed in O(n) time and space, where n is
the number of vertices and bends of H. Furthermore, a planar orthogonal
drawing of H with optimal area and minimum total edge length within that
area can be computed in O(n7/4 log n) time.

– We present the results of an experimental study on a test suite of planar
orthogonal representations of randomly generated biconnected 4-planar gra-
phs. The experiments show that the percentage of turn-regular faces is quite
high (the average value is 89%). Motivated by this result, we have designed
compaction heuristics based on the idea of “face turn-regularization”. Na-
mely, we decompose non-turn-regular faces into turn-regular ones, and then
perform an optimal compaction of the resulting planar orthogonal repre-
sentation. We implemented our compaction algorithms and experimentally
observed that the improvement in area is substantial when compared to the
compaction algorithms available in state-of-the-art graph drawing libraries.
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Due to space limitations, some technical lemmas, the proofs, and some figures
are omitted in this extended abstract. A full version of this paper is available
on-line at ftp://ftp.cs.brown.edu/pub/techreports/99/cs99-04.ps.Z.

2 Preliminaries

2.1 Basic Definitions

We assume familiarity with graph terminology and basic properties of planar
graphs (see, e.g., [5, 17]). The graphs we consider are assumed to be connected.
For background on graph drawing, see [6].

An st-digraph is an acyclic digraph with a single source s (vertex with no
incoming edges) and a single sink t (vertex with no outgoing edges). A planar
st-digraph is an st-digraph that is planar and embedded with vertices s and t on
the boundary of the external face. An important property of planar st-digraphs
is that the incoming edges of each vertex v appear consecutively around v, as do
the outgoing edges. Also, the boundary of each face f consists of two directed
paths enclosing f , with common origin and destination.

A planar graph whose vertices have degree at most four is said to be 4-
planar. Let G be an embedded 4-planar graph and let f be a face of G. In the
following, we always traverse the boundary of f so that f is on the left, i.e.,
counterclockwise if f is internal and clockwise if f is external. The boundary of
f consists of an alternating circular sequence of vertices and edges. Note that
if G is not biconnected, there may be two occurrences of the same edge and
multiple occurrences of the same vertex on the boundary of f . We denote by af

the number of vertices (or edges) of f , each counted with its multiplicity.
Informally speaking, an orthogonal representation of an embedded 4-planar

graph G describes an equivalence class of orthogonal drawings of G with “similar
shape”. It consists of a “decorated” version of G where each pair of consecutive
edges around a vertex v is assigned an angle multiple of π/2 and each edge (u, v)
is assigned a sequence of bends going from u to v, each a left or right turn. In
this paper we consider planar orthogonal representations, that is, equivalence
classes of orthogonal drawings for which at least one of the drawings is planar;
in the rest of the paper, we omit the word planar when referring to orthogo-
nal representations. For a detailed definition of orthogonal representation, see,
e.g., [6].

Since each bend can be replaced by a dummy vertex of degree 2, in the rest of
the paper we assume, for the sake of simplicity, that orthogonal representations
have no bends. We also assume that different drawings of the same orthogonal
representation are iso-oriented, i.e., each edge has the same direction and its
end-vertices are in the same relative position.

2.2 Switch-Regularity

We recall some terminology and results from [2, 8, 10]. A drawing of a digraph
is said to be upward if edges are mapped to curves monotonically increasing in a



12 S.S. Bridgeman et al.

common direction, for instance the vertical one. A digraph is upward planar if it
admits an upward planar drawing. As we are going to show in the next section,
upward planar drawings and orthogonal representations are strictly related. We
recall here some notations and results that will be useful in the rest of the paper.

A vertex v of an embedded planar digraph G is said to be bimodal if all the
incoming edges of v appear consecutively around it in the embedding, and so do
the outgoing edges. If all the vertices of G are bimodal then G and its embedding
are called bimodal. Let f be a face of a bimodal embedded planar digraph G. A
vertex v of f with incident edges e1 and e2 on the boundary of f is a switch of f
if e1 and e2 are both incoming or both outgoing edges (note that e1 and e2 may
coincide if the digraph is not biconnected). In the former case v is a sink-switch
of f , in the latter a source-switch of f . Observe that a source (sink) of G is a
source-switch (sink-switch) of all its incident faces; a vertex of G that is not a
source or a sink is a switch of all its incident faces except two. We denote by
2nf the number of switches of f .

Assign S and L labels to the switches of each face of a bimodal embedded
planar digraph G such that (see Fig. 2a): (i) each source or sink of G has exactly
one L label; (ii) for each face f , the number of L-labeled switches assigned to f
is equal to nf − 1 if f is an internal face, and to nf + 1 if f is the external face.
The S-labeled (L-labeled) source-switches are called sS-switches (sL-switches)
and the S-labeled (L-labeled) sink-switches are called tS-switches (tL-switches).
The circular sequence of labels of f so obtained is a labeling of f and is denoted
by σf . Also, Sσf

(Lσf
) denotes the number of S-labels (L-labels) of σf . A face

f of G labeled in this manner is upward consistent.
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Fig. 2. (a) A bimodal embedded planar digraph G with an upward consistent labeling
of its faces. (b) An upward planar drawing of G corresponding to the upward consistent
labeling in (a). (c) A complete saturator of G; s and t are represented as white circles,
and saturating edges are represented as dashed segments.

Theorem 1. [2] A bimodal embedded digraph is upward planar if and only if
all its faces have an upward consistent labeling.
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Let G be a bimodal embedded digraph such that all its faces have an up-
ward consistent labeling. For each face of G, the S-label (L-label) assigned to a
switch intuitively indicates that the angle formed by the two edges identifying
the switch is smaller (larger) than π in an upward planar drawing of G. Any such
drawing is said to correspond to the upward consistent labeling of the faces of
G. On the other hand, given an upward planar drawing of a bimodal embedded
digraph G, an upward consistent labeling for each face of G can be obtained
by simply checking whether the angle formed by each pair of edges identifying
a switch is smaller or larger than π. Figure 2b shows an upward planar dra-
wing (corresponding to the upward consistent labeling) of the embedded planar
digraph in Fig. 2a.

Given an embedded upward planar digraph G, a saturator of G is a set of
vertices and edges, not belonging to G, with which we augment G. More precisely,
a saturator consists of two vertices s and t, edge (s, t), and a set of edges (u, v)
(each edge a saturating edge) such that:

– Vertices u and v are switches of the same face, or u = s and v is an sL-switch
of the external face, or u is a tL-switch of the external face and v = t.

– If, u, v 6= s, t, either u is an sS-switch and v is an sL-switch or u is a tL-switch
and v is a tS-switch. In the former case we say that u saturates v and in the
latter case we say that v saturates u.

– The faces obtained with the insertion of a saturating edge are upward con-
sistent.

A saturator of G is said to be complete if for every face f and for every switch
u of f labeled L, u is an end-vertex of an edge of the saturator (see Fig. 2c).
Clearly, adding to G a complete saturator yields a planar st-digraph.

Lemma 1. [8] Every upward planar embedding admits a complete saturator.

An upward planar embedding may have, in general, several complete satu-
rators. The class of embedded upward planar digraphs for which there exists a
unique complete saturator has been characterized in [8]. The characterization
is based on a certain type of labeling. Namely, let G be an embedded upward
planar digraph. An internal face f of G has a switch-regular labeling if σf does
not contain two distinct maximal subsequences σ1 and σ2 of S-labels such that
Sσ1 > 1 and Sσ2 > 1. An external face f of G has a switch-regular labeling if σf

does not contain two consecutive S-labels. (Note that a switch-regular labeling
is called just regular labeling in [8].) A face of G with a switch-regular labeling
is a switch-regular face. For example all faces of Fig. 2a are switch-regular. An
embedded upward planar digraph is switch-regular if all its faces have a switch-
regular labeling. The corresponding embedding is also called switch-regular.

Theorem 2. [8] An upward planar embedding has a unique complete saturator
if and only if it is switch-regular.
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3 Turn-Regularity and Switch-Regularity

3.1 Orthogonal Relations

Let G be an embedded 4-planar graph, H be an orthogonal representation of G,
Γ be a planar drawing of H, and v be a vertex of G. We denote by x(v) and
y(v) the x- and y-coordinates of the point representing v in Γ . We define four
binary relations on the vertex set of G: for each pair {u, v} of vertices of G, these
relations determine the relative position of u and v in all planar drawings of H.

– u <x v if x(u) < x(v) for all planar drawings of H; in this case, we say that
u is left of v and that v is right of u.

– u =x v if x(u) = x(v) for all planar drawings of H; in this case, we say that
u is x-aligned with v.

– u <y v if y(u) < y(v) for all planar drawings of H; in this case, we say that
u is below v and that v is above u.

– u =y v if y(u) = y(v) for all planar drawings of H; in this case, we say that
u is y-aligned with v.

We refer to the first two binary relations as x-relations and to the second two
binary relations as y-relations. As an example, in the orthogonal representation
in Fig. 1 v2 <x v8, v6 =x v7, v2 <y v3, and v1 =y v5.

We define three new binary relations on the vertex set of G, obtained by
combining an x-relation and a y-relation: =x ∧ <y, <x ∧ =y, and <x ∧ <y.
These three binary relations together with the binary relations <x and <y are
collectively referred to as orthogonal relations. As an example, in the orthogonal
representation in Fig. 1 v5 =x v4 ∧ v5 <y v4, v1 <x v8 ∧ v1 =y v8, and v1 <x

v7 ∧ v1 <y v7, while no orthogonal relation holds for {v4, v6}.

3.2 Turn-Regularity

To characterize those orthogonal representations that have an orthogonal rela-
tion for each pair of vertices, we introduce the notion of turn-regularity.

Let G be an embedded 4-planar graph, H be an orthogonal representation
of G, and f be a face of G. For each occurrence of vertex v on the boundary of
f , let prev(v) and next(v) be the edges preceding and following v, respectively,
on the boundary of f . Note that prev(v) and next(v) may coincide if the graph
is not biconnected. We associate with each occurrence of v one or two corners.
Namely:

– If the angle internal to f between prev(v) and next(v) is π/2 in H, we
associate with v one convex corner, and say that v corresponds to a left
turn.

– If the angle internal to f between prev(v) and next(v) is π in H, we associate
with v one flat corner, and say that v corresponds to a flat turn.

– If the angle internal to f between prev(v) and next(v) is 3π/2 in H, we
associate with v one reflex corner, and say that v corresponds to a right
turn.
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– If the angle internal to f between prev(v) and next(v) is 2π in H, we associate
with v an ordered pair of reflex corners, and say that v corresponds to a U-
turn.

Hence, a circular sequence of corners can be associated with the boundary of f .
For each corner c of f , let turn(c) = 1 if c is convex, turn(c) = 0 if c is flat, and
turn(c) = −1 if c is reflex. As an example, in Fig. 3 a convex corner is associated
with v1, a flat corner with v2, a reflex corner with v3, and an ordered pair of
reflex corners with v4. The grey portion of Fig. 3 represents the rest of the graph.

v1

v2

v3 v4

Fig. 3. A face of an orthogonal representation. The grey portion represents the rest
of the graph.

For each ordered pair {ci, cj} of corners associated with vertices of f , let
rotation(ci, cj) =

∑
c turn(c) for all corners c along the boundary of f from ci

(included) to cj (excluded). If ci and cj are associated with distinct vertices vi

and vj , respectively, rotation(ci, cj)·π/2 is the net angle turned between prev(vi)
and prev(vj). As an example, in Fig. 3 let c1, c2, and c3 be the corners associated
with v1, v2, and v3, respectively, and let {c′

4, c
′′
4} be the ordered pair of corners

associated with v4; rotation(c1, c2) = 3, rotation(c3, c
′
4) = 1, rotation(c3, c

′′
4) = 0,

and rotation(c3, c1) = −3.
Two reflex corners ci and cj are called kitty corners if rotation(ci, cj) = 2

or rotation(cj , ci) = 2. In Fig. 1, the corners associated with vertices v4 and v6
are kitty corners. A face of an orthogonal representation is turn-regular if it has
no kitty corners. As an example, the face shown in Fig. 3 is turn-regular. An
orthogonal representation is turn-regular if all its faces are turn-regular.

3.3 Turn-Regularity and Switch-Regularity

Let G be an embedded 4-planar graph, H be an orthogonal representation of G,
and Γ be a planar drawing of H. Let Γr be an orientation of Γ such that all
vertical segments are directed upward and all horizontal segments are directed
rightward, and let Γ` be an orientation of Γ such that all vertical segments
are directed upward and all horizontal segments are directed leftward. Observe
that Γr is an upward planar drawing in the North-East direction and that Γ`

is an upward planar drawing in the North-West direction. Γr and Γ` induce
two orientations on H. We denote the oriented orthogonal representations by
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Hr and H`. In turn, Hr and H` induce two orientations on G. We denote the
embedded 4-planar digraphs by GH

r and GH
` , respectively. Observe that GH

r and
GH

` are embedded upward planar digraphs. Also, note that different orthogonal
representations of G induce, in general, different orientations on G; since we
work with a fixed orthogonal representation of a graph, we use Gr and G` in the
rest of the paper, omitting the reference to H.

Theorem 3. An orthogonal representation H of an embedded 4-planar graph G
is turn-regular if and only if the embedded upward planar digraphs Gr and G`

are both switch-regular.

(a) (b)

Fig. 4. (a) Gr (edges represented as solid segments) and a complete saturator (edges
represented as dashed segments). (b) G` (edges represented as solid segments) and a
complete saturator (edges represented as dotted segments).

4 Orientations and Paths

Let G be an embedded 4-planar graph and H be a turn-regular orthogonal re-
presentation of G. As seen in Section 2.2, a complete saturator of an embedded
upward planar digraph consists of two vertices s and t and a set of (directed)
saturating edges. Figure 4a shows a complete saturator of graph Gr correspon-
ding to the oriented orthogonal representation Hr. Figure 4b shows a complete
saturator of graph G` corresponding to the oriented orthogonal representation
H`. In the rest of the paper we never consider the saturating edges of Gr and G`

incident with s or t, even when not explicitly stated. Let f be an internal face
of H; a maximal vertical or horizontal chain of f is said to be unconstrained if
both its end-vertices correspond to a right turn of f . Note that an unconstrained
maximal chain of f may consist of a single, degree one vertex.
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We now construct two partially-directed graphs, one representing the “left”
relation between maximal vertical chains of H, the other representing the “be-
low” relation between maximal horizontal chains of H. The graph representing
the “left” relation between maximal vertical chains of H is constructed as fol-
lows. We first augment H with the saturating edges of Gr and G` incident with
an end-vertex of an unconstrained maximal vertical chain of H. We then ori-
ent the horizontal edges of H from left to right, reverse the orientation of the
saturating edges of G`, and leave the vertical edges of H not oriented so that
they can be traversed in both ways. We denote by Hx the resulting graph (see
Fig. 5a). Similarly, the graph representing the “below” relation between maximal
horizontal chains of H is constructed as follows. We first augment H with the
saturating edges of Gr and G` incident with an end-vertex of an unconstrained
maximal horizontal chain of H. We then orient the vertical edges of H from
bottom to top and leave the horizontal edges of H not oriented so that they can
be traversed in both ways. We denote by Hy the resulting graph (see Fig. 5b).

u3

v3

u2

v2

v1

u1

u3

v3

u2

v2

v1

u1

(a) (b)

Fig. 5. (a) Hx. (b) Hy. Both graphs are obtained using the complete saturators shown
in Fig. 4.

The following theorem shows how turn-regularity characterizes those ortho-
gonal representations for which the “left” relation between maximal vertical
chains and the “below” relation between maximal horizontal chains are uniquely
determined.

Theorem 4. Let H be an orthogonal representation of an embedded 4-planar
graph. Hx and Hy are uniquely determined if and only if H is turn-regular.

Note that Hx and Hy are no longer orthogonal representations, and may,
in general, be non-planar. From the definition of saturator, it follows that each
saturating edge from Gr and G` used in the construction of Hx and Hy has both
end-vertices on the same face of H. Two saturating edges in Hx or Hy are said
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to cross each other if their end-vertices appear alternately on the boundary of
a common face of H. In the rest of the paper we refer to the maximal chains of
non-oriented edges of Hx as maximal vertical chains of Hx, and denote by mvc(v)
the maximal vertical chain of Hx containing vertex v. Analogously, we refer to
the maximal chains of non-oriented edges of Hy as maximal horizontal chains
of Hy, and denote by mhc(v) the maximal horizontal chain of Hy containing
vertex v.

5 Turn-Regularity and Orthogonal Relations

In this section we use graphs Hx and Hy to characterize all possible orthogo-
nal relations in a turn-regular orthogonal representation. This leads to a cha-
racterization of turn-regular orthogonal representations in terms of orthogonal
relations. We denote by u → v a directed path from vertex u to vertex v in Hx

containing at least a horizontal edge or in Hy containing at least a vertical edge,
and by u 6→ v the absence of such a path from vertex u to vertex v.

Lemma 2. For each pair {u, v} of vertices of Hx the following conditions hold:

1. mvc(u) = mvc(v) if and only if u =x v
2. u → v if and only if u <x v
3. v → u if and only if v <x u
4. mvc(u) 6= mvc(v), u 6→ v, and v 6→ u if and only if no x-relation can be

established between u and v.

As an example, we identify in the graph Hx shown in Fig. 5a three pairs of
vertices corresponding to the various cases of Lemma 2: u1 and v1 belong to the
same maximal vertical chain, there exists a directed path from u2 to v2, while
there is neither a path between u3 and v3, nor they belong to the same maximal
vertical chain.

Lemma 3. For each pair {u, v} of vertices of Hy the following conditions hold:

1. mhc(u) = mhc(v) if and only if u =y v
2. u → v if and only if u <y v
3. v → u if and only if v <y u
4. mhc(u) 6= mhc(v), u 6→ v, and v 6→ u if and only if no y-relation can be

established between u and v.

Lemma 4. Let G be an embedded 4-planar graph and H be a turn-regular or-
thogonal representation of G. For each pair {u, v} of vertices of G, exactly one
orthogonal relation holds (see Table 1).

We are interested in those orthogonal representations for which there is an or-
thogonal relation between each pair of vertices. As the following theorem shows,
this class of orthogonal representations is characterized by turn-regularity.

Theorem 5. An orthogonal representation H of an embedded 4-planar graph
is turn-regular if and only if there is an orthogonal relation between every two
vertices of H.
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Table 1. Orthogonal relations for a pair {u, v} of vertices in a turn-regular orthogonal
representation H.
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6 Turn-Regularity and Drawing Algorithms

In this section we first study the problem of efficiently checking whether an
orthogonal representation is turn-regular. Then we show how an optimal area
orthogonal drawing of a turn-regular orthogonal representation can be computed.

Theorem 6. A turn-regular orthogonal representation of an embedded 4-planar
graph with n vertices and bends can be recognized in O(n) time and space.

The optimal area drawings that we want to compute are planar. The next
theorem guarantees the planarity of drawings that satisfy the orthogonal relati-
ons of a turn-regular orthogonal representation.

Theorem 7. Let H be a turn-regular orthogonal representation of an embedded
4-planar graph, and let Γ be an orthogonal drawing of H such that, for each pair
{u, v} of vertices of H, the orthogonal relation between u and v is satisfied. Then
Γ is planar.

We are now ready to present two different algorithms that compute optimal
area drawings of turn-regular orthogonal representations. These algorithms are
variations of the two compaction procedures described in [6]. For the first al-
gorithm, we define two digraphs, denoted Dx and Dy. Dx is obtained from Hx

by shrinking each maximal vertical chain to a single vertex, by removing possi-
ble multiple edges, and by adding a super-source and a super-sink (see Fig 6a).
Thus, there is a one-to-one correspondence between maximal vertical chains of
Hx and vertices of Dx, and a many-to-one correspondence between directed edge
of Hx and edges of Dx. Note that in the shrinking process we “preserve the em-
bedding”, i.e., the circular ordering of the edges around each vertex v of Dx is
induced by the circular ordering of the directed edges “around” the maximal
vertical chain of Hx corresponding to v. Dy is obtained analogously from Hy by
shrinking the maximal horizontal chains (see Fig 6b).

Property 1. Dx and Dy are planar st-digraphs.

Theorem 8. Let H be a turn-regular orthogonal representation of an embedded
4-planar graph, and let n be the number of vertices and bends of H. A planar
orthogonal drawing of H with optimal area can be constructed in O(n) time and
space.

Theorem 9. Let H be a turn-regular orthogonal representation of an embedded
4-planar graph, and let n be the number of vertices and bends. A planar ortho-
gonal drawing of H with optimal area A and whose total edge length is optimal
among all drawings with area A can be constructed in O(n7/4 log n) time and
O(n) space.

We recall that the minimum number of bends for an orthogonal representa-
tion of a 4-planar graph with n vertices is O(n) [3, 29]. The algorithm described
in [27] produces such an orthogonal representation, and there exist various al-
gorithms for producing an orthogonal representation with a sub-optimal O(n)
number of bends (see, e.g, [4, 23, 28]).
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(a) (b)

Fig. 6. (a) Dx. (b) Dy. The corresponding graphs Hx and Hy, from Fig. 5, are repre-
sented in grey.

7 Experiments

In this section, we present the results of an experimental study on a test suite of
planar orthogonal representations of randomly generated biconnected 4-planar
graphs. The analysis of the test suite has shown that the percentage of turn-
regular faces is quite high. Motivated by this result, we have designed compaction
heuristics based on the idea of “face turn-regularization”.

7.1 Compaction Heuristics

We have implemented a compaction algorithm for orthogonal representations
based on the results described in the previous sections. Namely, let H be a
given orthogonal representation of an embedded 4-planar graph. The algorithm
proceeds as follows:

– H is first tested for turn-regularity, using the algorithm described in Theo-
rem 6.

– If H is turn-regular, the algorithm computes an orthogonal drawing of H
with optimal area and optimal total edge length within that area by applying
the techniques in Theorem 9.

– If H contains some faces that are not turn-regular, an algorithm is applied
to make these faces turn-regular. The algorithm adds dummy vertices and
edges to H, creating a new orthogonal representation H ′ that is turn-regular.
The techniques in Theorem 9 are then used to find a drawing Γ ′ of H ′

with optimal area and optimal total edge length within that area. Finally,
the dummy vertices and edges are removed from Γ ′ to yield an orthogonal
drawing Γ of H. In general the orthogonal drawing Γ does not have optimal
area and total edge length.
Two simple approaches are used to make non-turn-regular faces turn-regular:
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1. The first approach is an improvement of the standard rectangularization
method described in [6, 27]. When a dummy edge is inserted, a dummy
vertex is added only if it really needed. Each non-turn-regular face is
divided into two or more smaller, rectangular faces.

2. The second approach recursively adds a straight edge (randomly chosen
to be either horizontal or vertical) between each pair of kitty corners,
until the face has been decomposed in smaller (but not necessarily rectan-
gular) turn-regular faces. In general, this technique adds a much smaller
number of dummy edges than the first approach.

In the following, we call the two heuristic compaction algorithms derived
from the two turn-regularization approaches described above Heur1 and Heur2,
respectively. They are implemented in the GDToolkit library4.

7.2 Test Suite and Experimental Results

Heuristics Heur1 and Heur2 were tested on a set of 530 randomly generated
biconnected 4-planar graphs with number of vertices in the range 10 . . . 3000.
The results are compared with a third compaction heuristic, StdComp, in which
all faces, both turn-regular and not, are decomposed into rectangles using the
rectangularization method of Heur1.

The graphs in the test suite have been generated with a technique used
in other experimental studies on orthogonal drawings [1]. Each biconnected 4-
planar graph is generated from a cycle of three vertices by performing a random
series of InsertVertex and InsertEdge operations. The InsertVertex operation
subdivides an existing edge into two new edges separated by a new vertex. The
InsertEdge operation inserts a new edge between two existing vertices on the
same face. Any biconnected planar graph can be generated by a sequence of
these two operations. Also, for each graph to be generated, the density of the
graph, i.e., the number of edges divided by the number of vertices, is randomly
chosen before the generation algorithm is run.

Our first experiment consisted in studying the percentage of turn-regular
faces in the graphs of our test suite. We have found that the percentage of turn-
regular faces increases logarithmically with the density of the graphs, stabilizes
at around 95%, and has an average value of 89% (see Fig. 7).

We have then analyzed the results of the three heuristics. In particular, we
have considered, for Heur1 and Heur2, the improvement in the drawing area,
total edge length, and maximum edge length with respect to StdComp. Heur2
performs better than Heur1 in most cases; also, the improvement in area and
total edge length of Heur2 with respect to StdComp increases with the number
of vertices of the graph (see Fig. 8). The average improvements of area and total
edge length are 25% and 19%, respectively, for graphs with 3000 vertices; and
there are some graphs in the test suite for which the area improvement is more
than 45%.
4 http://www.dia.uniroma3.it/˜gdt/
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Fig. 7. The percentage of turn-regular faces of each graph. The x-axis indicates the
density. The horizontal line indicates the average value.

We have also executed the three heuristics on a very large graph with 10, 000
vertices. The drawing computed by Heur2 improves the area by 41% and the
total edge length by 22% with respect to the drawing computed by StdComp.

8 Conclusions and Future Work

We introduced the notion of turn-regularity which allows the characterization of
a class of orthogonal representations that are optimally compactable in terms of
area in polynomial-time. In particular, given a turn-regular orthogonal represen-
tation of an embedded 4-planar graph, we provided a linear-time algorithm to
compute a planar drawing with minimum area, and a polynomial-time algorithm
to compute a planar drawing with optimal area and minimum total edge length
within that area.

We provided several implementations of heuristics for making orthogonal re-
presentations turn-regular and we used them in the compaction algorithm, in
place of the standard rectangularization step. Experiments on a randomly gene-
rated test suite of biconnected 4-planar graphs showed that the new compaction
strategy performs much better than the standard one, especially for very large
graphs.

The results presented in this paper motivate some future work, which inclu-
des:

– To continue the experimental study of the described heuristics on non-
biconnected 4-planar graphs, comparing their behavior also with that of
VLSI compaction algorithms.

– To investigate other effective heuristics for making an orthogonal represen-
tation turn-regular by adding a small number of edges.
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Fig. 8. The average percentage improvement in area, total edge length, and maximum
edge length of Heur1 and Heur2 with respect to StdComp. The x-axes indicate the num-
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Turn-Regularity and Planar Orthogonal Drawings 25

– To find other families of orthogonal representations for which an optimal
area drawing can be computed in polynomial time.

– The problem of computing an orthogonal representation with the minimum
number of bends has been extensively investigated in a variable embedding
setting [9, 11, 13]. It would be interesting to study the compaction problem
when it is possible to change the embedding of the input graph.
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