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Abstract. Absolute lower limits to the cost of cryptanalytic attacks are
quantified, via a theory of guesswork. Conditional guesswork naturally
expresses limits to known and chosen plaintext attacks. New inequalities
are derived between various forms of guesswork and variation distance.
The machinery thus offers a new technique for establishing the secu-
rity of a cipher: When the work-factor of the optimal known or chosen
plaintext attack against a cipher is bounded below by a prohibitively
large number, then no practical attack against the cipher can succeed.
As an example, we apply the technique to iterated cryptosystems, as the
Markov property which results from an independent subkey assumption
makes them particularly amenable to analysis.

1 Introduction

Research on provably secure ciphers often focuses on specific cipher properties
or resistance to specific families of attacks (see e.g. [E], [B] and [&=]). When
general attacks are considered, the adversary’s resource limitations are typically
built into the equation. In the Luby-Rackoff model (see [ or more recently
[E5]), the adversary is assumed to have bounded computational resources. In the
Decorrelation Theory of Vaudenay (see e.g. [ZH] and the references in [Z4]), the
adversary may have restricted data complexity (such as a bound on the num-
ber of plaintext-ciphertext pairs) or may be carrying out a constrained attack
(such as Differential Cryptanalysis ). In this paper, we summarize a different
approach to provable cipher security which is developed more fully in [E5]. Our
approach is to model a cipher as a group-valued random variable — following
Shannon — and derive absolute lower limits on the work-factor for discovering
its secret key.

This technique naturally applies to product ciphers and iterated cryptosys-
tems. Figure ll below depicts a hypothetical security profile for the behavior of
the product of finitely many ciphers as a function of the number of terms. In
order to begin to quantify this profile, we must find a meaningful measure of
security for which establishing the profile’s shape in certain places is a tractable
problem. Our primary interest is in the non-asymptotic shape of the curve —
because iterated cryptosystems cannot iterate forever.
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Fig. 1. A hypothetical profile of security as a function of the number of terms in
a product, or equivalently the number of rounds in an iterated cryptosystems,
assuming subkey independence.

We posit that a reasonable security measure is the expected work involved in
“guessing” the cipher’s key from the set of all keys which remain consistent with
acquired plaintext-ciphertext pairs. We call this measure guesswork (or more
generally conditional guesswork) and demonstrate its tractability by making use
of techniques from the modern theory of random walks on symmetric structures.

Starting in Sect. H and continuing in Sect. B a formal theory of guesswork
is developed which parallels information theory in a number of interesting ways.
In particular, (logarithmically) tight bounds involving guesswork are derived
in Theorem M, and variation distance plays a role similar to Kullback-Leibler
distance. With the help of these tools, we turn our attention in Sect. ll to quan-
tifying the shape of the security profile of Fig. Ml non-asymptotically. That is
to say, rather than in some unknown neighborhood of the point at infinity, we
establish provable security after a finite number of rounds.

2 Preliminaries

A basic familiarity with group theory i, and random variables and probabil-
ity spaces [H is assumed. We develop an abstract form of Shannon’s model of
private key ciphers [], in which the invertible encryption functions are taken
as elements of a group G. For a block cipher with a message space .# consisting
of all n-bit strings, the group G is naturally seen as a subgroup of the symmetric
group &_4 (whose elements consist of all permutations of .#).

2.1 Shannon’s Model

Secret keys and messages must be considered random from the viewpoint of a
cryptanalytic adversary. Thus, the eavesdropper on an insecure channel may be
thought of as performing a probabilistic experiment in which the message and
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key are values drawn at random according to certain probability distributions.
It is assumed that the key is statistically independent of the message, and that
the individual plaintext blocks of the message are statistically independent of
one anothefll. This allows the cipher itself to be treated as an independent ran-
dom variable. Furthermore, we may dispense with a distinction between the key
space and the group G generated by the encryption functions. Each possible key
corresponds to an element of GG, and any element of G which is not identified
with a key is taken to have probability 0. We may now formally define a cipher.

Definition 1. Given a finite message space .# and a subgroup G < 6 4, a
G-cipher or a cipher over G is a G-valued random variable.

Shannon wrote down a cipher as a linear combination of encryption functions,
with the coefficients taken to be the probabilities of the corresponding functions.
He naturally defined the product of ciphers by merely enforcing the distributive
laws. Shannon was essentially defining what is now commonly called the group
algebra. The natural product in the group algebra is equivalent to a kind of
convolution of probability distributions.

2.2 Product Ciphers and Convolution

Consider the situation where an encryption operation is the composition of two
independent encryption operations. This leads to the formal notion of the prod-
uct of two ciphers over a group. Let X and Y be independent G-ciphers with
probability distributions z(g) = P[X = ¢] and y(g) = P[Y = g]. The G-cipher
7 = XY is called a product cipher, Y is called the first component and X is
called the second component.

Let us examine the distribution z(g) = P [Z = ¢]:

2g) =) P[X=gh ' |Y =h|P[Y =]

heG
=Y P[X=gh Py =n] = 3 a(gh)y(n).
heG heG

Notice how much this last expression looks like convolution. In fact, if G were
the abelian group of integers modulo n and the multiplicative notation were
replaced by additive notation, z(g) would literally be the circular convolution of
the functions = and y. So, z(g) is a kind of generalized convolution and will be

written
zxylg) =Y x(gh™"y(h). (1)
heG

Thus the distribution of a product is described by the convolution of the com-
ponent distributions. Intuitively, convolutions “smooth out” distributions.

! Technically, plaintext blocks are typically independent only in the limit of large block
length, but the emphasis here is on chosen plaintext attacks which are always faster
than known plaintext attacks
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2.3 Variation Distance

Let 2 be a finite set with probability distributions p and g defined on it. Recall
(M or [{]) the variation distance between p and ¢ defined by

prqﬂzggghﬁg)*ﬁ@ﬂ- (2)

It is a standard observation that variation distance is half of the ¢1-norm, i.e.

1
lp = all = Zlp = alls,
and that the maximum in (B is achieved on the set
Y ={zec 2 |pl)=qx)}.

If X is a G-cipher and wu is the uniform distribution on G, then the closer
px is to uniformity, the harder it will be for any adversary to determine the
value of X. This general statement, which holds whether or not the adversary
is in possession of plaintext-ciphertext pairs, is formalized in Theorem WM and
Corollary H below.

3 Guesswork: The Uncertainty of Guessing

In this section, we develop the means to quantify fundamental statistical limits
to the amount of work required to determine the value of a random variable.
The notions of work discussed here have appeared before. In a broad sense they
are intimately connected to Lorenz’s theory of wealth distribution [E] (see also
[£7). Massey [ was the first to formulate, in open cryptology, what we shall
call the guesswork of a random variablel While it has correctly been pointed
out (e.g. ) that guesswork is not a meaningful predictor of practical attack
performance, we shall show that it is a very useful and tractable measure of the
fundamental limits to practical attacks.

3.1 Optimal Brute-Force Attacks

Let Z be a finite set and suppose that X is the 2 -valued random variable
determined by probability distribution p. We may arrange 2" so that the prob-
abilities p; = p(x;) satisfy

PLZ2P22 ... 2Pl (3)
2 We resist calling guesswork “guessing entropy”, as is done in B, because Theorem
B below is so closely analogous to Shannon’s First Theorem [@] that the natural

analogue of guesswork is really the expected codeword length of Shannon’s theorem,
as discussed in Remark M below. It perhaps makes more sense to call variation
distance a kind of (relative) entropy, because it appears in the upper and lower
bounds of Theorem H, just as entropy does in Shannon’s theorem. Thus to call
guesswork “guessing entropy” might lead to confusion.
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Many situations in cryptology and computer security force an adversary to con-
duct a brute-force attack in which the values of 2" are enumerated and tested
for a certain success condition. The only possible luxury afforded the adversary
is that he or she may know which events are more likely. For example, UNIX
passwords are routinely guessed with the aid of a public-domain software pack-
age called crack 2], which can be configured to test the most likely passwords
first. The safest bet for the cryptographer is to assume that the adversary has
complete knowledge of p and will conduct any brute-force attack optimally, i.e.
in the order given by (@M). This suggests the following definitions.

Definition 2. Let X be an % -valued random wvariable whose probabilities are
arranged according to (). The guesswork of X is given by

| %]

i=1

The following simple algorithm demonstrates the computational meaning behind
guesswork. The adversary is assumed to have access to the necessary optimal
enumerator and an oracle which tells whether they have guessed correctly.

Algorithm 1. Optimal brute-force attack against X which will always succeed
and has expected time complexity O(W(X)).

input: (i). An enumerator of the values of % in order of
nonincreasing probability. (ii). An oracle which answers
whether X = x.

output: The value of X.

for x € 2 do
if X = x then
return x.
endif
done

Clearly, the average computation time of Algorithm Bis W (X). Thus, guesswork
may be interpreted as the optimal expected work involved in guessing the value
of a random variable.

3.2 Guesswork and Variation Distance
It is easily seen that guesswork is bounded above by

< | 27|+ 1

W) <

(4)
and that equality is achieved if and only if X is uniformly distributed on 2
(see [ or [E5]). The next theorem offers tight upper and lower bounds on the
difference between guesswork and its maximum. The situation is analogous to
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Shannon’s First Theorem in which the average codeword length (the thing you
want to know) is bounded above and below by expressions involving entropy
(the thing you can often compute).

Theorem 1. Let 2 be a set of size n, and let X be an Z -valued random
variable defined by probability distribution p. Then,

n n+1
Pllp—ull < "%~ W(X) < nllp— ull. 5)

The theorem is proved in [E]. Note that when ||p — | is sufficiently small, the
upper and lower bounds of
n+1 n+1l n

_ _ < < Ny —
= —nllp -l < W(X) < = = Zjlp—ull (6)

are both positive. We see that as ||p — u|| — 0, W(X) approaches its maximum
within increasingly tight bounds.

Remark 1. For small values of the variation distance, () admits the approxima-
tion

W(X) = (1~ lp—ul).

In this form, an analogy to Shannon’s First Theorem [H] is rather apt, because
the optimal expected codeword length L* may similarly be approximated by

L* ~ log(n) — D(plfu),

where D(p||u) = log(n) + H(p) is the Kullback-Leibler distance to uniformity,
and H(p) is the entropy of p. Notice that ||p — u|| has a supremum of 1, while
D(p||lu) has a maximum of log(n).

Furthermore in Shannon’s theorem, the optimal codeword length is within 1
bit of the entropy. However entropy is a logarithmic quantity relative to guess-
work. In that sense, () says that the cost of being naive in a non-optimal search
is within 1 bit of the quantity log(n|p — ul|).

4 Security Measures for Known and Chosen Plaintext
Attacks

In this section we consider a cipher’s capacity for resisting known and chosen
plaintext attacks.

4.1 Conditional Guesswork and the Security Factors

In a known or chosen plaintext attack, a single encryption key is used to encrypt
a number of different plaintexts. An adversary who observes the corresponding
plaintext-ciphertext pairs is privy to partial information about the key. In this
section we quantify the intuitive notion that the resilience of a cipher against
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known or chosen plaintexts attacks can be measured by the amount of work
required to guess the key after information about the plaintext-ciphertext pairs
has been taken into account.

Formally if G is a subgroup of G _4, let X be a G-cipher representing a single
choice of a cipher’s key. Again let 2(g) = P [X = g], and let P! = (Py, Py, ..., P)
be an ¢-tuple of i.i.d. random variables describing a sequence of distinct plaintexts
in .# . Following [, let .# ) denote the set of /-tuples with distinct elements of
M. S_y and hence G acts on .# Y in the natural way, namely o(my, ..., m¢) =
(oma,...,omyg). Now define

C' = (XP,,XP,y,...,XP)) = (C1,Cs,...,Ch).

In other words, P! and C* are .#“)-valued random variables. We write p, ¢ €
O for instances of PY and C*. When contemplating the loss of security due
to observations of plaintext-ciphertext pairs, it is natural to define, by analogy
to conditional entropy, notions of conditional guesswork.

Definition 3. Given the quantities described above, the conditional guess-
work of X given C* and P’ is defined as

WX|CHL P = Y WX|C"=c P' =p)pi(e.p).
c,pEA (D)
The conditional guesswork of X given C* and that P* = p is defined as
W(X|C% Pf=p)= Y W(X|C' =c, P* = p)pe(clp)-
cc. (O

Here pj(c, p) is the joint distribution of C* and P*, while p.(c|p) is the conditional
distribution of C* given P’. These are respectively given by

pj(e,p) =P[C*=c,P'=p|, and pe(clp) =P [C'=c| P =p].

The two kinds of conditional guesswork will be used to quantify the perfor-
mances of optimal known and chosen plaintext attacks, justifying the following
definitions.

Definition 4. The known plaintext security factor of X against the obser-
vation of £ plaintext-ciphertext pairs is defined as

ve(X) = W(X|C", PY),

and the chosen plaintext security factor of X against a choice of £ plaintext-
ciphertext pairs is defined as

0,(X) = min W(X|C* P*=p).
peﬂ(z)

Finally, we define vo(X) = 0p(X) = W(X).
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Notice that the chosen plaintext security factor is independent of the plaintext
statistics, as one would expect. The next proposition establishes 6,(X) as a
principal figure of merit.

Proposition 1. 0,(X) < vp(X).

Proof. Simply expand out the formulas,

v(X)= Y W(X|C, P =ppp(p) > D 0u(X)pp(p) = 0u(X),
peA (D) pE. (D)

where pp(p) =P [Pe = p]. O

4.2 Observing Plaintext-Ciphertext Pairs

An elementary observation about group action leads to a fundamental fact. Put
simply, the guesswork W (X|C? = ¢, P* = p) is entirely determined by the dis-
tribution of X on a coset of a certain subgroup of G.

Lemma 1 (Coset Work Lemma). With X, C¢, P and c,p € .4 defined

as before, there is a gcp € G such that ¢ = gepp. The conditional guesswork
W(X|C" = ¢, P* = p),

is determined by the distribution of X on the left coset g.p,H, where H is the
stabilizer subgroup Stabg(p).

Proof. The proof uses familiar group action observations discussed in [E5]. Let
gep be the value of X. By definition ¢ = g.pp, and it is standard that

{9 € Glec=gp} = gep Staba(p) = gepH.

If X is the random variable (X|C¢ = ¢, PY = p), we have

PX=g|= oo 119 € gepl
0, otherwise,
by Bayes’s theorem. Now W()/f) = W(X|C* = ¢, P’ = p), which completes the
proof. a

The coset work lemma suggests optimal algorithms for attacking a cipher X.
Given ¢ plaintext-ciphertext pairs ¢,p € .#“), we may restrict the optimal
search for the value of X in Algorithm ll to a coset of H = Stabg(p). Thus we
have the following algorithms.



70 John O. Pliam

Algorithm 2 (Optimal Known Plaintext Attack). Defines algorithm kpa ,.

1. Collect into tuple p, ¢ random plaintexts according to their
natural statistics.

2. Collect into tuple c, the corresponding ciphertezts.

3. Invoke Algorithm B to optimally search gcp, Staba(p) for the
value of X, where ¢ = gepp.

Algorithm 3 (Optimal Chosen Plaintext Attack). Defines algorithm cpa,.

1. Let p minimize W (X|C*, P* = p).

2. Let c = Xp.

3. Invoke Algorithm @ to optimally search g Stabg(p) for the value

of X, where ¢ = gp.
The next proposition justifies the definitions of security factors vp(X) and 6,(X).
See 4] for a formal proof of this intuitive statement.

Proposition 2. Under the assumption that the various oracles respond instan-
taneously, the expected computation time of attacks kpa, and cpa, against X
are given by v(X) and 6,(X), respectively.

4.3 Uniformly Distributed and (Conditionally) Perfect Ciphers

Ciphers for which every achievable message permutation is equally likely have
extraordinary properties, making them worthy of special attention. There is one
such cipher for every subgroup G of the symmetric group &_4. Their security
factors greatly simplify and can often be explicitly computed. When G = G _,, we
shall show that the resulting uniformly distributed cipher is perfectin meaningful
ways.

Definition 5. For any G < &_4, the uniformly distributed G-cipher denoted
Ug s called the uniform G-cipher. In case G = 6 4, Us , will simply be
denoted U and called the perfect cipher.

The coset work lemma admits an immediate simplification for uniform ciphers.

Theorem 2. For everyp € #9,
1
W(UalC', P’ = p) = 2 (1 + [Staba(p)])
Proof. For specific ¢, p € .4, the coset work lemma tells us that
W(Us|C* = ¢, P! = p) = W (Uc),

where l/]gv is uniformly distributed on a coset of H = Stabg(p). By (@),

~ 1 1
W(0a) = 51+ lgeH]) = 51+ H]),

which is independent of c¢. The desired result follows. a
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For a uniform cipher, we immediately have that the chosen plaintext security
factor is a function only of the size of the smallest /~-message stabilizer.

Corollary 1. For any G < & _4,

1 .
0u(Us) = (1+ min, [Stabe(p)]).

For the perfect cipher U, which is uniformly distributed over the entire symmetric
group, we can obtain precise formulas for v,(U) and 6,(U).

Proposition 3.
14 (.| - 1)

ve(U) =6,U) = 5

Proof. For any tuple p € .# ), the stabilizer subgroup of p in &_4 is the sym-
metric group on the remaining messages .# — {p}. Each stabilizer therefore has
(|-#|—£)! elements, and we may apply Corollary lto obtain 6,(U). Furthermore,
we have

v(U)= > W(UIC!, P =p)pp(p) = 0:(U) Y pp(p) = 0:(U).
peA (D) pE (O

O

What Proposition B tells us is that we can determine exactly the expected
performance of the optimal known and chosen plaintext attacks kpa, and cpa,
against a perfect cipher. Provided ¢ < |.#|, these attacks reduce to very long
brute-force searches. The addition of a new plaintext-ciphertext pair reduces the
size, in bits, of the effective search space by

(2] - 0)!

log ¢ (U) —logfe+1(U) = log {m

} <logl|.#|.

Thus, for a cipher of block length n, |.#| = 2™ and each new plaintext-ciphertext
pair reduces the search space by no more than n bits. But by Stirling’s formula

log 0y (U) =~ log|6. 4| =~ n2™ bits.

In other words, in order to reduce the search space to within a reasonably attack-
able size, on the order of 2" distinct plaintext-ciphertext pairs must be obtained.
By that time the adversary has a table of all 2™ possible ciphertexts from which
they can look up any desired target plaintext. One cannot expect a block ci-
pher to perform better than this. We now explicitly prove what this discussion
suggests, namely that the perfect cipher is as secure as any cipher.

Theorem 3. For any G-cipher with G < G _4,

Vg(X) < Vg(U), and Qg(X) < Qg(U).
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Proof. Since G < & _4, Stabg(p) < Stabg , (p), so that any distribution on a
coset of Stabg (p) can be thought of as distribution on a coset of H = Stabg _, (p).
Once again invoking the coset work lemma along with the fact that the uniform
distribution is majorized by any other distribution (see [[Z] or [I2]), we obtain

1+ |H]

W(X|Ct=¢,Pl=p) <W(U|C' =¢, Pt =p) = 5

The theorem is essentially proved. Pedantically, one should expand out the for-
mulas for vy(X) and 0,(X) (see [E]). O

4.4 The Security Factors and Variation Distance

Theorem M gave us, in terms of variation distance, tight bounds on the difference
between guesswork and its maximum value. If we wish variation distance to have
a deeper security meaning, it is natural to seek similar bounds on conditional
guesswork.

Theorem 4. For permutation group G < 6 _4, let X be a G-cipher with prob-
ability distribution x. If p € .49 and H = Stabg(p), then

1+ |H]

W(X|Ct, P =p) > 5

— Gl |z = ul].

The proof of Theorem B, which is presented in detail in [, is essentially based
on the decomposition of the group algebra IRG into a direct sum of vector spaces
isomorphic to the smaller group algebra IRH. This is a special case of a very
important construction called the induced representation (see ] and [E5]).

We may bound 6,(X) by an expression which is a function of the varia-
tion distance ||z — ul|, and as in Corollary Wl the size of the smallest {-message
stabilizer.

Corollary 2. For any G < 6_4 and any G-cipher X with probability distribu-
tion x,

1
0002 3 (14 min, [Staba(p) ) - |61 ol

[\

Proof. By definition, 6,(X) = W(X|C*?, P* = p), where p minimizes the condi-
tional guesswork. Writing H = Stabg(p), we observe

0u(X) = W(X|C*, P* = p)

1+ |H|

> LG —
1

> - (1 + min |[Stabg(p )) — |G| |z — ul],
2 pG//{ £)

which was to be proved. a
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Just as the lower bound on W (X) of (@) is vacuously negative unless ||z — ul|
is smaller than 1/2, so too the lower bound given in Corollary Bwill be negative
unless ||z — u|| is sufficiently small. To see when this happens, let H be one of
the smallest /~-message stabilizers, and rearrange the inequality of the corollary
as ]

0(X) > 11 (1~ 2(G H] [l — ul)). ™)
When represented in this way, the lower bound on 6,(X) becomes meaningful
only when ||z — u|| is less than 1/(2[G: H]). It is not terribly surprising that
resistance to chosen plaintext attacks should come at some measurable cost.

5 Applications to Iterated Cryptosystems

5.1 Generalized Markov Ciphers and the Cut-Off Phenomenon

Under the assumption of subkey independence, an iterated cryptosystem is
equivalent to the product of finitely many independent and identically dis-
tributed G-ciphers. The sequence of all such products — as the number of rounds
r ranges from 0 to co — defines a random walk on G whose underlying Markov
chain has many important security properties.

Formally, let (X;)$2; be an infinite sequence of i.i.d. G-ciphers, each with
probability distribution x(g) = P [X; = g|. Define the sequence (Z,)%2, of G-
ciphers by Zp = 1 and Z, = X, --- X2X1. Applying (Hl), we see that the distri-
bution of Z, is given by an r-fold convolution of = with itself

P[Z, = g] =2 (g).
The next result follows from Proposition l below.
Proposition 4. The sequence (Z;) is a Markov chain with state space G.

This fact allows us to generalize the definition of a Markov cipher given by Lai,
Massey and Murphy [H]. Our motivation is itself a generalization of theirs. The
idea of a Markov cipher in [ was used to model resistance to Differential Crypt-
analysis as a function of the number of rounds. Similarly we seek to quantify the
resistance of an iterated cryptosystem to all known and chosen plaintext attacks,
as a function of the number of rounds.

Definition 6. With = and (X;) defined as above, the G-cipher Z, =
X, - XoXy, is called the (generalized ) Markov cipher generated by r rounds
of x, and (Z;) will be called the Markov chain generated by x.

There are a multitude of different Markov chains resulting from the action of
(Z;) on various G-sets. The following proposition is proved in [L3].

Proposition 5. Let x be a probability distribution on a finite group G, and
let (Z;) be the Markov chain generated by x. If # is a G-set, and Yy is an
independent % -valued random variable, then the sequence (Y; = Z;Yp)i>0, s a
Markov chain on the state space % . The transition matriz is doubly stochastic
and is completely determined by x.
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Recent decades have witnessed a renaissance in Markov chain research spear-
headed by Aldous and Diaconis (see [il], [f]). An important frequent observation
of this research has been that many random walks on groups and other discrete
structures exhibit cut-off phenomena, in which there is a rapid transition from
order to uniform randomness. The phenomena is often quantified in terms the
variation distance ||x*" — u||, and in fact 1 —||*" — u|| often follows a profile like
the one in Fig. ll Proofs of cut-off phenomena for special cases abound in the
literature. They sometimes employ representation theoretic arguments as in [,
and they sometimes employ more probabilistic arguments as in [].

In the next section, we explore how probabilistic arguments can establish the
non-asymptotic behavior of an iterated cryptosystem. In [[E5] some cryptological
implications of the representation theoretic approach are explored.

5.2 Strong Uniform Times

Following [ and [ Chap. 4], we introduce some basic definitions useful in
making probabilistic arguments for establishing the behavior of ||2*" — ul|.

Let N = {1,2,...}, and take G™ to be the set of infinite sequences of elements
of G. A stopping rule is a function

t:GN — INU {00},

such that if ¢(g1, g2, ...) = 4, then t(g1, G2, ...) = ¢ whenever g; = g;, j <. If Z;
is a sequence of G-valued random variables, then the IN-valued random variable
T =t(Z1, Zs, .. .) is called a stopping time. In essence, the stopping rule identifies
the first time that a certain condition is met in a sequence of group elements,
and the stopping time describes random fluctuations in the first occurrence of
that condition.

Of course, we are interested in the evolution of Markov ciphers and their
approach to uniformity. Let Z, be the Markov cipher generated by r rounds of
x. If the condition being met by a stopping time T is sufficient to guarantee
uniformity of Z,., in other words if

PlZ,=g|T<r]= for allg € G,

1
G|’
then T is called a strong uniform time (for x). As one might intuitively ex-

pect, the statistics of a strong uniform time can characterize the approach to
uniformity of the Markov cipher.

Lemma 2 (Aldous, Diaconis [#]). Let x be a probability distribution on a
finite group G, and let T be a strong uniform time for x. Then

|le*" —u|| < P[T >r], forall r>0.
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5.3 An Example: Top-to-Random Shuffle

Consider shuffling a deck of k cards by repeatedly removing the top card and
returning it to a random position in the deck. Each step can be modeled by
choosing a random permutation in &y, of the form ~; = (i...21) with probability
x(y;) = 1/k, 1 < i < k. There is a strong uniform time for x defined in the
following way. Let ¢; be a stopping rule expressing the first time that 4 is
chosen. At this point the specific card j has been moved from the top to the
bottom of the deck. Let tx_1 be the first time after ¢; that j returns to the top
of the deck. At this point each permutation of the remaining cards is equally
likely. At ¢ = tx_1+1, in other words after the j on top of the deck is placed at
random within the deck, each permutation of the deck is equally likely. If (Z;)
is the Markov chain generated by x, then the random time T = t4(Z1, Za, .. .) is
a strong uniform time for x.

Aldous and Diaconis show in [l] that the probability P [T > r] is governed
by the “coupon-collector’s problem” and is bounded by

P[T >klogk+ck]<e™© ¢>0,k>0.
Thus we have a cut-off point g = klogk, and

|l*" — || < e~ r=ro)/k > g

The simplicity of the top-to-random shuffle allows it to be implemented as an
iterated cryptosystem. Consider the shuffle permutations acting on the k = 2"
bit strings of length n. By considering these bit strings as binary representations
of the integers {0, ...,2" — 1}, the following algorithm implements one round of

the shuffle.

Algorithm 4. Defines function TopToRand (n, %), which implements one round
of the top-to-random shuffle. We assume the existence of a pseudo-random num-
ber generator (PRNG) satisfying 1 < random(n) < n, and uniformly distributed
thereon.

input: The block length n, and the plaintext input, represented as
an integer 0 <3 < 2",
output: The ciphertext output.

function TopToRand (n,i):
m < random(2").
if i <m then
return i — 1 mod m.
else
return 7.
endif

Unfortunately, the previous algorithm does not achieve security within a
practical number of rounds because for a reasonable block length, the cut-off
point rg = n2" is too large. Nevertheless, the example shows that there exists a
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cipher with an efficient round function, and for which an explicit cut-off point
can be computed. Furthermore, using () and (@), we can also compute explicit
bounds on the guesswork and chosen plaintext security factor. For r > rg,

271 n
W(Z) = o [1 -2t

and . \
00(Z,) > % [1 _ Qneﬂef(rfro)/?"} )

The lower bound on 6y(Z,) makes use of the fact that all -message stabilizers
of Gan have size (2™ — ¢)!. As soon as the quantities in brackets are positive,
the lower bounds on W (Z,) and 0¢(Z,) grow quickly toward intractably large
quantities, forcing even the most endowed adversary to work “forever” guessing
the key.

6 Conclusion

We have successfully demonstrated that inequalities involving guesswork, con-
ditional guesswork and variation distance can be used to establish the number
of rounds necessary to achieve provable security in an iterated cryptosystem.
Though in the example given here, that number of rounds grows exponentially
with the block length, the iterations could still be applied to a smaller message
space to produce provably secure S-boxes. Ongoing research suggests that iter-
ated cryptosystems exist in which the round function is computationally efficient
and number of rounds required for provable security is a polynomial in the block
length. Some caveats to this approach include:

— We assume the existence of a cryptographically strong pseudo-random func-
tion. To date such functions are based on hard open problems and bounded
computational resources.

— Variation distance is relatively sensitive to small deviations away from unifor-
mity. It may therefore prove to be overly conservative as a security measure.

— Direct application of these techniques to existing block ciphers such as DES
is not expected to be fruitful because it is known that keys of nonzero prob-
ability are sparse in a large group. Furthermore, it took several decades of
open research to establish (finally in &) the precise group for DES. Nev-
ertheless, in the design of new ciphers, the group G is easily treated as a
design parameter. Large candidate groups which are smaller than Gan in-
clude various wreath products.
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