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Abstract. We describe the design of Yarrow, a family of cryptographic
pseudo-random number generators (PRNG). We describe the concept of
a PRNG as a separate cryptographic primitive, and the design principles
used to develop Yarrow. We then discuss the ways that PRNGs can fail
in practice, which motivates our discussion of the components of Yarrow
and how they make Yarrow secure. Next, we define a specific instance
of a PRNG in the Yarrow family that makes use of available technology
today. We conclude with a brief listing of open questions and intended
improvements in future releases.

1 Introduction

Random numbers are critical in every aspect of cryptography. Cryptographers
design algorithms such as RC4 and DSA, and protocols such as SET and SSL,
with the assumption that random numbers are available. Even as straightforward
an application as encrypting a file on a disk with a passphrase typically needs
random numbers for the salt to be hashed in with the passphrase and for the
initialization vector (IV) used in encrypting the file. To encrypt e-mail, digitally
sign documents, or spend a few dollars worth of electronic cash over the internet,
we need random numbers.

Specifically, random numbers are used in cryptography in the following ap-
plications:

– Session and message keys for symmetric ciphers, such as triple-DES or Blow-
fish.

– Seeds for routines that generate mathematical values, such as large prime
numbers for RSA or ElGamal-style cryptosystems.

– Salts to combine with passwords, to frustrate offline password guessing pro-
grams.

– Initialization vectors for block cipher chaining modes.
– Random values for specific instances of many digital signature schemes, such

as DSA.
– Random challenges in authentication protocols, such as Kerberos.
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– Nonces for protocols, to ensure that different runs of the same protocol are
unique; e.g., SET and SSL.

Some of those random numbers will be sent out in the clear, such as IVs and
random challenges. Other of those random numbers will be kept secret, and used
as keys for block ciphers. Some applications require a large quantity of random
numbers, such as a Kerberos server generating thousands of session keys every
hour, and others only a few. In some cases, an attacker can even force the random
generator to generate thousands of random numbers and send them to him.

Unfortunately, random numbers are very difficult to generate, especially on
computers that are designed to be deterministic. We thus fall back on pseudo-
random1 numbers. These are numbers that are generated from some (hopefully
random) internal values, and that are very hard for an observer to distinguish
from random numbers.

Given the importance of generating pseudo-random numbers for crypto-
graphic applications, it is somewhat surprising that little formal cryptanalysis
of these generators exist. There are methodologies for generating randomness
on computer systems [DIF94,ECS94], and ad hoc designs of generators [Gut98],
but we are aware of only one paper cryptanalyzing these designs [KSWH98a].

1.1 What Is a Cryptographic PRNG?

In our context, a random number is a number that cannot be predicted by an
observer before it is generated. If the number is to be in the range 0 . . .2n − 1,
an observer cannot predict that number with probability any better than 1/2n.
If m random numbers are generated in a row, an observer given any m − 1 of
them still cannot predict the m’th with any better probability than 1/2n. More
technical definitions are possible, but they amount to the same general idea.

A cryptographic pseudorandom number generator, or PRNG, is a crypto-
graphic mechanism for processing somewhat-unpredictable inputs, and generat-
ing pseudorandom outputs. If designed, implemented, and used properly, even
an attacker with enormous computational resources should not be able to dis-
tinguish a sequence of PRNG outputs from a random sequence of bits.

There are a great many PRNGs in use in cryptographic applications. Some
of them (such as Peter Gutmann’s PRNG in Cryptlib [Gut98], or Colin Plumb’s
PRNG in PGP [Zim95]) are apparently pretty well designed. Others (such as the
RSAREF 2.0 PRNG [RSA94], or the PRNG specified in ANSI X9.17 [NIST92])
are appropriate for some applications, but fail badly when used in other appli-
cations [KSWH98a].

1 It is important to distinguish between the meaning of pseudorandom numbers in
normal programming contexts, where these numbers merely need to be reasonably
random-looking, and in the context of cryptography, where these numbers must
be indistinguishable from real random numbers, even to observers with enormous
computational resources.
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A PRNG can be visualized as a black box. Into one end flow all the internal
measurements (samples) which the system designer believed might be unpre-
dictable to an attacker. Out of the other end, once the PRNG believes it is in
an unguessable state, flow apparently random numbers. An attacker might con-
ceivably have some knowledge or even control over some of the input samples to
the PRNG. An attacker might have compromised the PRNG’s internal state at
some point in the past. An attacker might have an extremely good model of the
“unpredictable” values being used as input samples to the PRNG, and a great
deal of computational power to throw at the problem of guessing the PRNG’s
internal state.

Internally, a PRNG needs to have a mechanism for processing those (hope-
fully) unpredictable samples, a mechanism for using those samples to update
its internal state, and a mechanism to use some part of its internal state to
generate pseudorandom outputs. In some PRNG designs, more-or-less the same
mechanism does all three of these tasks; in others, the mechanisms are clearly
separated.

1.2 Why Design a New PRNG?

We designed Yarrow because we are not satisfied with existing PRNG designs.
Many have flaws that allowed attacks under some circumstances (see [KSWH98a]
for details on many of these). Most of the others do not seem to have been
designed with attacks in mind. None implement all the defenses we have worked
out over the last two years of research into PRNGs.

Yarrow is an enhancement of a proprietary PRNG we designed several years
ago for a client. We kept improving our design as we discovered new potential
attacks.

1.3 A Guide to the Rest of the Paper

The remainder of this paper is as follows: In Section 2 we discuss the reasons
behind our design choices for Yarrow. In Section 3 we discuss the various ways
that cryptographic PRNGs can fail in practice. Then, in Section 4, we will discuss
the basic components of Yarrow, and show how they resist the kinds of failures
listed earlier. Section 5 gives the generic design ideas and their rationale. Finally,
we will consider open questions relating to Yarrow, and plans for future releases.

In the full paper we will define Yarrow-160, a precisely defined PRNG, and
discuss entropy calculation.

2 Yarrow Design Principles

Our goal for Yarrow is to make a PRNG that system designers can fairly easily
incorporate into their own systems, and that is better at resisting the attacks
we know about than the existing, widely-used alternatives.

We pose the following constraints on the design of Yarrow:
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1. Everything is reasonably efficient. There is no point in designing a PRNG
that nobody will use, because it slows down the application too much.

2. Yarrow is so easy to use that an intelligent, careful programmer with no
background in cryptography has some reasonable chance of using the PRNG
in a secure way.

3. Where possible, Yarrow re-uses existing building blocks.

Yarrow was created using an attack-oriented design process. This means we
designed the PRNG with attacks in mind from the beginning. Block ciphers
are routinely designed in this way, with structures intended to optimize their
strength against commonly-used attacks such as differential and linear crypt-
analysis. The Yarrow design was very much focused on potential attacks. This
had to be tempered with other design constraints: performance, flexibility, sim-
plicity, ease of use, portability, and even legal issues regarding the exportability
of the PRNG were considered. The result is still a work-in-progress, but it resists
every attack of which we are aware, while still being a usable tool for system
designers.

We spent the most time working on a good framework for entropy-estimation
and reseeding, because this is so critical for the ultimate security of the PRNG,
and because it is so often done badly in fielded systems. Our cryptographic
mechanisms are nothing very exciting, just various imaginative uses of a hash
function and a block cipher. However, they do resist known attacks very well.

2.1 Terminology

At any point in time, a PRNG contains an internal state that is used to generate
the pseudorandom outputs. This state is kept secret and controls much of the
processing. Analogous to ciphers we call this state the key of the PRNG.

To update the key the PRNG needs to collect inputs that are truly random,
or at least not known, predictable or controllable by the attacker. Often used
examples include the exact timing of key strokes or the detailed movements of
the mouse. Typically, there are a fairly large number of these inputs over time,
and each of the input values is fairly small. We call these inputs the samples.

In many systems there are several sources that each produce samples. We
therefore classify the samples according to the source they came from.

The process of combining the existing key and new sample(s) into a new key
is called the reseeding.

If a system is shut down and restarted, it is desirable to store some high-
entropy data (such as the key) in non-volatile memory. This allows the PRNG
to be restarted in an unguessable state at the next restart. We call this stored
data the seed file.

3 How Cryptographic PRNGs Fail

In this section, we consider some of the ways that a PRNG can fail in a real-
world application. By considering how a PRNG can fail, we are able to recognize
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ways to prevent these failures in Yarrow. In other cases, the failures cannot be
totally prevented, but we can make them less likely. In still other cases, we can
only ensure a quick recovery from the compromised state.

3.1 How PRNGs Are Compromised

Once the key of a PRNG is compromised, its outputs are predictable; at least
until it gets enough new samples to derive a new, unguessable key. Many PRNGs
have the property that, once compromised, they will never recover, or they will
recover only after a very long time.

For these reasons, it makes sense to consider how a PRNG’s key can be
compromised, and how, once keys are compromised, they may be exploited.

Entropy Overestimation and Guessable Starting Points. We believe that
this is the most common failing in PRNGs in real-world applications. It is easy
to look at a sequence of samples that appears random and has a total length
of 128 bits, feed it into the PRNG, and then start generating output. If that
sequence of samples turns out only to have 56 bits of entropy, then an attacker
could feasibly perform an exhaustive search for the starting point of the PRNG.

This is probably the hardest problem to solve in PRNG design. We tried to
solve it by making sure that the entropy estimate is very conservative. While it is
still possible to seriously overestimate the starting entropy, it is much less likely
to happen, and when it does the estimate is likely to be closer to the actual
value. We also use a computationally-expensive reseeding process to raise the
cost of attempting to guess the PRNG’s key.

Mishandling of Keys and Seed Files. Keys and seed files are easy to mis-
handle in various ways, such as by letting them get written to the swap file by
the operating system, or by opening a seed file, but failing to update it every
time it is used. The Yarrow design provides some functions to simplify the man-
agement of seed files. An excellent discussion of some methods for avoiding key
compromise appears in [Gut98].

Implementation Errors. Another way that the key of the PRNG can be
compromised is by exploiting some implementation error. Errors in the imple-
mentation are impossible to prevent. The only preventative measures we found
for Yarrow was to try to make the interface reasonably simple so that the pro-
grammer trying to use Yarrow in a real-world product can use it securely without
understanding much about how the PRNG works.

This is an area we are still working on. It is notoriously difficult to make
security products easy to use for most programmers, and of course, it is very
hard to be certain there are no errors in the Yarrow generator itself.

One thing we can do is to make it easy to verify the correct implementation of
a Yarrow PRNG. We have carefully designed Yarrow to be portable and precisely
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defined. This allows us to create test vectors that can be used to verify that a
Yarrow implementation is in fact working correctly. Without such test vectors
an implementor would never be able to ensure that her Yarrow implementation
was indeed working correctly.

Cryptanalytic Attacks on PRNG Generation Mechanisms. Between re-
seedings, the PRNG output generation mechanism is basically a stream cipher.
Like any other stream cipher, it is possible that the one used in a PRNG will
have some cryptanalytic weakness that makes the output stream somewhat pre-
dictable or at least recognizable. The process of finding weaknesses in this part
of the PRNG is the same as finding them in a stream cipher.

We have not seen a lot of PRNGs that were easily vulnerable to this kind of
attack. Most PRNGs’ generation mechanisms are based on strong cryptographic
mechanisms already. Thus, while this kind of attack is always a concern, it usually
does not seem to break the PRNG. To be safe, we have designed Yarrow to be
based on a block cipher; if the block cipher is secure, then so is the generation
mechanism. This was done because there are quite a number of apparently-secure
block ciphers available in the public domain.

Side-Channel Attacks. Side-channel attacks are attacks that use additional
information about the inner workings of the implementation [KSWH98b]: timing
attacks [Koc96], and power analysis [Koc98] are typical examples. Many PRNGs
that are otherwise secure fall apart when any additional information about their
internal operations are leaked. One example of this is the RSAREF 2.0 PRNG,
which can be implemented in a way that is vulnerable to a timing attack.

It is probably not possible to protect against side-channel attacks in the
design of algorithms. However, we do try to avoid obvious weaknesses, specifically
any data-dependent execution paths.

Chosen-Input Attacks on the PRNG. An attacker is not always limited to
just observing PRNG outputs. It is sometimes possible to gain control over some
of the samples sent into the PRNG, especially in a tamper-resistant token. Some
PRNGs, such as the RSAREF 2.0 PRNG, are vulnerable to such attacks. In the
worst case the attacker can mount an adaptive attack in which the samples are
selected based on the output that the PRNG provides. To avoid this kind of
attack in Yarrow, all samples are processed by a cryptographic hash function,
and are combined with the existing key using a secure update function.

3.2 How Compromises Are Exploited

Once the key is compromised, it is interesting to consider how this compromise
is exploited. Since it is not always possible to prevent an attacker from learning
the key, it is reasonable to spend some serious time and effort making sure the
PRNG can recover its security from a key compromise.
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Permanent Compromise Attacks. Some PRNGs, such as the one proposed
in ANSI X9.17, have the property that once the key has been compromised, an
attacker is forever after able to predict their outputs. This is a terrible property
for a PRNG to have, and we have made sure that Yarrow can recover from a
key compromise.

Iterative Guessing Attacks. If the samples are mixed in with the key as they
arrive, an attacker who knows the PRNG key can guess the next “unpredictable”
sample, observe the next PRNG output, and test his guess by seeing if they agree.
This means that a PRNG which mixes in samples with 32 bits of entropy every
few output words will not recover from a key compromise until the attacker is
unable to see the effects of three or four such samples on the outputs. This is
called an iterative guessing attack, and the only way to resist it is to collect
entropy samples in a pool separate from the key, and only reseed the key when
the contents of the entropy pool is unguessable to any real-world attacker. This
is what Yarrow does.

Backtracking Attacks. Some PRNGs, such as the RSAREF 2.0 PRNG, are
easy to run backwards as well as forward. This means that an attacker that has
compromised the PRNG’s key after a high-value RSA key pair was generated
can still go back and learn that high-value key pair. We include a mechanism in
Yarrow to limit backtracking attacks to a limited number of output bytes.

Compromise of High-Value Keys Generated From Compromised Key.
Of course, the biggest cost of a compromised PRNG is that it leads to com-
promised system-keys if the key generation process uses the PRNG. If the key
that is being generated is very valuable, the harm to the system owner can be
very large. As we mentioned, the iterative guessing attacks require us to collect
entropy in a pool before reseeding the generator with it. When we are about
to generate a very valuable key, it is preferable to have whatever extra entropy
there is in the PRNG’s key. Therefore, the user can request an explicit reseed of
the generator. This feature is intended to be used rarely and only for generating
high-value secrets.

4 The Yarrow Design: Components

In this section, we discuss the components of Yarrow, and how they interact. A
major design principle of Yarrow is that its components are more-or-less inde-
pendent, so that systems with various design constraints can still use the general
Yarrow design.

The use of algorithm-independent components in the top level design is a key
concept in Yarrow. Our goal is not to increase the number of security primitives
that a cryptographic system is based on, but to leverage existing primitives as
much as possible. Hence, we rely on one-way hash functions and block ciphers,
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Fig. 1. Generic block diagram of Yarrow

two of the best-studied and most widely available cryptographic primitives, in
our design.

There are four major components:

1. An Entropy Accumulator which collects samples from entropy sources,
and collects them in the two pools.

2. A Reseed Mechanism which periodically reseeds the key with new entropy
from the pools.

3. A Generation Mechanism which generates PRNG outputs from the key.
4. A Reseed control that determines when a reseed is to be performed.

Below, we specify each component’s role in the larger PRNG design, we
discuss the requirements for each component in terms of both security and per-
formance, and we discuss the way each component must interact with each other
component. Later in this paper, we will discuss specific choices for these compo-
nents.

4.1 Design Philosophy

We have seen two basic design philosophies for PRNGs.
One approach assumes that it is usually possible to collect and distill enough

entropy from the samples that each of the output bits should have one bit of real
entropy. If more output is required than entropy has been collected from the sam-
ples, the PRNG either stops generating outputs or falls back on a cryptographic
mechanism to generate the outputs. Colin Plumb’s PGP PRNG and Gutmann’s
Cryptlib PRNG both fall into this category. In this kind of design, entropy is
accumulated to be immediately reused as output, and the whole PRNG mecha-
nism may be seen as a mechanism to distill and measure entropy from various
sources on the machine, and a buffer to store this entropy until it is used.

Yarrow takes a different approach. We assume that we can accumulate enough
entropy to get the PRNG into an unguessable state (without such an assumption,
there is no point designing a PRNG). Once at that starting point, we believe we
have cryptographic mechanisms that will generate outputs an attacker cannot
distinguish from random outputs. In our approach, the purpose of accumulating
entropy is to be able to recover from PRNG key compromises. The PRNG is
designed so that, once it has a secure key, even if all other entropy accumulated
is predictable by, or even under the control of, an attacker, the PRNG is still
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secure. This is also the approach taken by the RSAREF, DSA, and ANSI X9.17
PRNGs.

The strength of the first approach is that, if properly designed, it is possible
to get unconditional security from the PRNG. That is, if the PRNG really does
accumulate enough entropy to provide for all its outputs, even breaking some
strong cipher like triple-DES will not be sufficient to let an attacker predict
unknown PRNG outputs. The weakness of the approach is that the strength of
the PRNG is based in a critical way on the mechanisms used to estimate and
distill entropy. While this is inevitably true of all PRNGs, with a design like
Yarrow we can afford to be far more conservative in our entropy estimates, since
we are not expecting to be able to distill enough entropy to provide for all our
outputs. In our opinion, entropy estimation is the hardest part of PRNG design.
By contrast, the design of a generation mechanism that will resist cryptanalysis
is a relatively easy task, making use of available cryptographic primitives such
as a block cipher.

Practical cryptographic systems rely on the strength of various algorithms,
such as block ciphers, stream ciphers, hash functions, digital signature schemes,
and public key ciphers. We feel that basing the strength of our PRNG on well-
trusted cryptographic mechanisms is as reasonable as basing the strength of our
systems on them.

This approach raises two important issues, which should be made explicit:

1. Yarrow’s outputs are cryptographically derived. Systems that use Yarrow’s
outputs are no more secure than the generation mechanism used. Thus, un-
conditional security is not available in systems like one-time pads, blind
signature schemes, and threshold schemes. Those mechanisms are capable of
unconditional security, but an attacker capable of breaking Yarrow’s gener-
ation mechanism will be able to break a system that trust Yarrow outputs
to be random. This is true even if Yarrow is accumulating far more entropy
from the samples than it is producing as output.

2. Like any other cryptographic primitive, a Yarrow generator has a limited
strength which we express in the size of the key. Yarrow-160 relies on the
strength of three-key triple-DES and SHA-1, and has an effective key size
of about 160 bits. Systems that have switched to new cryptographic mech-
anisms (such as the new AES cipher, when it is selected) in the interests
of getting higher security should also use a different version of Yarrow to
rely on those new mechanisms. If a longer key is necessary, then a future
“larger” version of Yarrow should be used; it makes no sense to use a 160-bit
PRNG to generate a 256-bit key for a block cipher, if 256 bits of security
are actually required.

4.2 Entropy Accumulator

Entropy Accumulation. Entropy accumulation is the process by which a
PRNG acquires a new, unguessable internal state. During initialization of the
PRNG, and for reseeding during operation, it is critical that we successfully
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accumulate entropy from the samples. To avoid iterative guessing attacks and
still regularly reseed the PRNG it is important that we correctly estimate the
amount of entropy we have collected thus far. The entropy accumulation mech-
anism must also resist chosen-input attacks, in the sense that it must not be
possible for an attacker who controls some of the samples, but does not know
others, to cause the PRNG to lose the entropy from the unknown samples.

In Yarrow, entropy from the samples is collected into two pools, each a hashing
context. The two pools are the fast pool and the slow pool; the fast pool provides
frequent reseeds of the key, to ensure that key compromises have as short a
duration as possible when our entropy estimates of each source are reasonably
accurate. The slow pool provides rare, but extremely conservative, reseeds of the
key. This is intended to ensure that even when our entropy estimates are very
optimistic, we still eventually get a secure reseed. Alternating input samples are
sent into the fast and slow pools.

Each pool contains the running hash of all inputs fed into it since it was last
used to carry our a reseed.

In Yarrow-160, the pools are each SHA-1 contexts, and thus are 160 bits wide.
Naturally, no more than 160 bits of entropy can be collected in these pools, and
this determines the design strength of Yarrow-160 to be no greater than 160 bits.

The following are the requirements for the entropy accumulation component:

1. We must expect to accumulate nearly all entropy from the samples, up to
the size of a pool, even when the entropy is distributed in various odd ways
in those samples, e.g., always in the last bit, or no entropy in most samples,
but occasional samples with nearly 100 bits of entropy in a 100-bit sample,
etc.

2. An attacker must not be able to choose samples to undo the effects of those
samples he does not know on a pool.

3. An attacker must not be able to force a pool into any kind of weak state,
from which it cannot collect entropy successfully.

4. An attacker who can choose which bits in which samples will be unknown
to him, but still has to allow n unknown bits, must not be able to narrow
down the number of states in a pool to substantially fewer than 2n.

Note that this last condition is a very strong requirement. This virtually
requires the use of a cryptographic hash function.

Entropy Estimation. Entropy estimation is the process of determining how
much work it would take an attacker to guess the current contents of our pools.
The general method of Yarrow is to group the samples into sources and estimate
the entropy contribution of each source separately. To do this we estimate the
entropy of each sample separately, and then add these estimates of all samples
that came from the same source.

The assumption behind this grouping into sources is that we do not want
our PRNG’s reseeding taking place based on only one source’s effects. Other-
wise, one source which appears to provide lots of entropy, but instead provides
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relatively little, will keep causing the PRNG to reseed, and will leave it vulner-
able to an iterative guessing attack. We thus allow a single fast source to cause
frequent reseeding from the fast pool, but not the slow pool. This ensures that
we reseed frequently, but if our entropy estimates from our best source are wildly
inaccurate, we still will eventually reseed from the slow pool, based on entropy
estimates of a different source. Recall that samples from each source alternate
between the two pools.

Implementors should be careful in determining their sources. The sources
should not be closely linked or exhibit any significant correlations.

The entropy of each sample is measured in three ways:

– The programmer supplies an estimate of entropy in a sample when he writes
the routine to collect data from that source. Thus, the programmer might
send in a sample, with an estimate of 20 bits of entropy.

– For each source a specialized statistical estimator is used to estimate the
entropy of the sample. This test is geared towards detecting abnormal situ-
ations in which the samples have a very low entropy.

– There is a system-wide maximum “density” of the sample, by considering
the length of the sample in bits, and multiplying it by some constant factor
less than one to get a maximum estimate of entropy in the sample. Currently,
we use a multiplier of 0.5 in Yarrow-160.

We use the smallest of these three estimates as the entropy of the sample in
question.

The specific statistical tests used depends on the nature of the source and
can be changed in different implementations. This is just another component,
which can be swapped out and replaced by better-suited components in different
environments.

4.3 Generating Pseudorandom Outputs

The Generation Mechanism provides the PRNG output. The output must have
the property that, if an attacker does not know the PRNG’s key, he cannot
distinguish the PRNG’s output from a truly random sequence of bits.

The generation mechanism must have the following properties:

– Resistant to cryptanalytic attack,
– efficient,
– resistant to backtracking after a key compromise,
– capable of generating a very long sequence of outputs securely without re-

seeding.

4.4 Reseed Mechanism

The Reseed Mechanism connects the entropy accumulator to the generating
mechanism. When the reseed control determines that a reseed is required, the
reseeding component must update the key used by the generating mechanism
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with information from one or both of the pools being maintained by the entropy
accumulator, in such a way that if either the key or the pool(s) are unknown to
the attacker before the reseed, the key will be unknown to the attacker after the
reseed. It must also be possible to make reseeding computationally expensive to
add difficulty to attacks based on guessing unknown input samples.

Reseeding from the fast pool uses the current key and the hash of all inputs
to the fast pool since the last reseed (or since startup) to generate a new key.
After this is done, the entropy estimates for the fast pool are all reset to zero.

Reseeding from the slow pool uses the current key, the hash of all inputs to
the fast pool, and the hash of all inputs to the slow pool, to generate a new key.
After this is done, the entropy estimates for both pools are reset to zero.

4.5 Reseed Control

The Reseed Control mechanism must weigh various considerations. Frequent
reseeding is desirable, but it makes an iterative guessing attack more likely.
Infrequent reseeding gives an attacker that has compromised the key more in-
formation. The design of the reseed control mechanism is a compromise between
these goals.

We keep entropy estimates for each source as the samples have gone into
each pool. When any source in the fast pool has passed a threshhold value, we
reseed from the fast pool. In many systems, we would expect this to happen
many times per hour. When any k of the n sources have hit a higher threshhold
in the slow pool, we reseed from the slow pool. This is a much slower process.

For Yarrow-160, the threshhold for the fast pool is 100 bits, and for the
slow pool, is 160 bits. At least two different sources must be over 160 bits in
the slow pool before the slow pool reseeds, by default. (This should be tunable
for different environments; environments with three good and reasonably fast
entropy sources should set k = 3.)

5 The Generic Yarrow Design and Yarrow-160

In this section, we describe the generic Yarrow design. This is a generic descrip-
tion, using an arbitrary block cipher and hash function. If both algorithms are
secure, and the PRNG gets sufficient starting entropy, our construction results
in a strong PRNG. We also discuss the specific parameters and primitives used
in Yarrow-160.

We need two algorithms, with properties as follows:

– A one-way hash function, h(x), with an m-bit output size,
– A block cipher, E(), with a k-bit key size and an n-bit block size.

The hash function is assumed to have the following properties:

– Collision intractable.
– One-way.
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Fig. 2. Generation mechanism

– Given any set M of possible input values, the output values are distributed
as |M | selections of the uniform distribution over m-bit values.

The last requirements implies several things. Even if the attacker knows
most of the input to the hash function, he still has no effective knowledge about
the output unless he can enumerate the set of possible inputs. It also makes
it impossible to control any property of the output value unless you have full
control over the input.

The block cipher is assumed to have the following properties:

– It is resistant to known-plaintext and chosen-plaintext attacks, even those
requiring enormous numbers of plaintexts and their corresponding cipher-
texts,

– Good statistical properties of outputs, even given highly patterned inputs.

The strength (in bits) of the resulting PRNG is limited by min(m, k). In
practice even this limit will not quite be reached. The reason is that if you take
an m bit random value and apply a hash function that produces m bits of output,
the result has less than m bits of entropy due to the collisions that occur. This
is a very minor effect, and overall results in the loss of at most a few bits of
entropy. We ignore this small constant factor, and say that the PRNG has a
strength of min(m, k) bits.

Yarrow-160 uses the SHA1 hash function for h(), and three-key
triple-DES for EK().

5.1 Generation Mechanism

Figure 2 shows the generator which is based on using the block cipher in counter
mode.

We have an n-bit counter value C. To generate the next n-bit output block,
we increment C and encrypt it with our block cipher, using the key K. To
generate the next output block we thus do the following:

C ← (C + 1) mod 2n

R← EK(C)
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where R is the next output block and K is the current PRNG key.
If the key is compromised at a certain point in time, the PRNG must not leak

too many ‘old’ outputs that were generated before the compromise. It is clear
that this generation mechanism has no inherent resistance to this kind of attack.
For that reason, we keep count of how many blocks we have output. Once we
reach some limit Pg (a system security parameter, 1 ≤ Pg ≤ 2n/3), we generate
k bits of PRNG output, and use them as the new key.

K ← Next k bits of PRNG output

We call this operation a generator gate. Note that this is not a reseeding opera-
tion as no new entropy is introduced into the key.

In the interests of keeping an extremely conservative design, the maximum
number of outputs from the generator between reseedings is limited to min{2n,
2k/3Pg} n-bit output blocks. The first term in the minimum prevents the value
C from cycling. The second term makes it extremely unlikely that K will take
on the same value twice. In practice, Pg should be set much lower than this, e.g.
Pg = 10, in order to minimize the number of outputs that can be learned by
backtracking.

In Yarrow-160, we use three-key triple-DES in counter mode to
generate outputs, and plan to apply the generator gate every ten
outputs. (That is, Pg = 10.)

Security Arguments.

Normal Operations. Consider an attacker who can, after seeing a long sequence
of outputs from this generator under the same key K, extract the key. This can
be converted into a chosen plaintext attack on the cipher to extract its key.

Consider an attacker who can, after seeing a long sequence of outputs from
this generator under the same key, predict a single future or past output value.
The algorithm used by the attacker performs a chosen-plaintext attack on the
underlying block cipher, allowing the prediction of (part of) one ciphertext after
some number of encryptions of chosen plaintexts have been seen. This is enough
of a demonstrated weakness to rule the cipher out for many uses, e.g. in CBC-
MAC.

Backtracking Protection. Consider an attacker who can use the outputs after a
generator gate has taken place to mount an attack on the data generated before
the generator gate. The same attacker can mount his attack on the generator
without the generator gate by using k known bits of the generator output to form
a new key, using that key to generate a sequence of outputs, and then applying
the attack. (This is possible as the counter value C is assumed to be known to
the attacker.) Thus, a generator gate cannot expose previous output values to
attack without also demonstrating a weakness in the generation mechanism in
general.
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Consider an attacker who compromises the current key of the PRNG some-
how. Suppose he can learn a previous key from the current key. To do this,
he must be able to extract the key of the block cipher given a small number
of bits of the generator’s output. Thus, the attacker must defeat the generator
mechanism to defeat the generator gate mechanism.

Consider an attacker who can predict the next key generated by the generator
gate. The same method he uses to do this can be used to predict the next PRNG
output, if the generator is used without generator gate.

Limits on Generator Outputs. As the number of output blocks from the
basic generator available to the attacker grows closer to and beyond 2n/2 it
becomes easier and easier to distinguish the cipher’s outputs from a real random
sequence. A random sequence should have collisions in some n-bit output blocks,
but there will be no repetitions of output blocks in the output from running a
block cipher in counter mode. This means that a conservative design should re-
key long before this happens. This is the reason why we require the generator gate
to be used at least once every 2n/3 output blocks. Note that Pg is a configurable
parameter and can be set to smaller values. Smaller values of Pg increase the
number of generator gates and thus decrease the amount of old data an attacker
can retrieve if he were to find the current key. The disadvantage of very small
Pg values is that performance suffers, especially if a block cipher is used that
has an expensive key schedule.

Each time we use the generator gate, we generate a new key from the old
key using a function that we can assume to behave as a random function. This
function is not the same function for each generator gate, as the counter C
changes in value. There are therefore no direct cycles for K to fall into. Any cycle
would require C to wrap around, which we do not allow between reseedings. To
be on the safe side we do restrict the number of generator gate operations to
2k/3 which makes it extremely unlikely that the same value K will be used twice
between reseedings.

Implementation Ideas. The use of counter mode allows several output blocks
to be computed together, or even in parallel. A hardware implementation can
exploit this parallelism using a pipelined design, and software implementations
could use a bit-sliced implementation of the block cipher for higher performance.
Even for simple software implementations it might very well be more efficient
to produce many blocks at a time and to buffer the output in a secure memory
area. This improves the locality of the code, and can improve the cache-hit ratio
of the program.

5.2 Entropy Accumulator

To accumulate the entropy from a sequence of inputs, we concatenate all the
inputs. Once we have collected enough entropy we apply the hash function h to
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the concatenation of all inputs. We alternate applying samples from each source
to each pool.

In Yarrow-160, we use the SHA1 hash function to accumulate in-
puts in this way. We alternate feeding inputs from each source into
the fast and slow pools; each pool is its own SHA1 hash context, and
thus effectively contains the SHA1 hash of all inputs fed into that
pool.

Security Arguments. If we believe that an attacker cannot find collisions in
the hash function, then we must also believe that an attacker cannot be helped
by any collisions that exist.

Consider the situation of an attacker trying to predict the whole sequence
of inputs to be fed into the user’s entropy accumulator. The attacker’s best
strategy is to try to generate a list of the most likely input sequences, in order of
decreasing probability. If he can generate a list that is feasible for him to search
through which has a reasonable probability (say, a 10−6 chance) of containing the
actual sequence of samples, he has a worthwhile attack. Ultimately, an attacker
in this position cannot be resisted effectively by the design of the algorithm,
though we do our best. He can only be resisted by the use of better entropy
sources, and by better estimation of the entropy in the pool.

Now, how can the entropy accumulator help the attacker? Only by reducing
the total number of different input sequences he must test. However, in order
for the attacker to see a single pair of different input sequences that will lead to
the same entropy pool contents he must find a pair of distinct input sequences
that have the same hash value.

Implementation Ideas. All common hash functions can be computed in an
incremental manner. The input string is usually partitioned into fixed size blocks,
and these blocks are processed sequentially by the hash function. This allows
an implementation to compute the hash of the sequence of inputs on the fly.
Instead of concatenating all inputs and applying the hash function in one go
(which would require an unbounded amount of memory) the software can use a
fixed size buffer and compute the hash partially whenever the buffer is full.

As with the generator mechanism, the locality of the code can be improved by
using a buffer that is larger than one hash function input block. The entropy ac-
cumulator would thus accumulate several blocks worth of samples before hashing
the entire buffer.

The entropy accumulator should be careful not to generate any overflows
while adding up the entropy estimates. As there is no limit on the number of
samples the accumulator might have to process between two reseeds the imple-
mentation has to handle this case.

5.3 Reseed Mechanism

The reseeding mechanism generates a new key K for the generator from the
entropy accumulator’s pool and the existing key. The execution time of the
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reseed mechanism depends on a parameter Pt ≥ 0. This parameter can either
be fixed for the implementation or be dynamically adjusted.

The reseed process consists of the following steps:

1. The entropy accumulator computes the hash on the concatenation of all the
inputs into the fast pool. We call the result v0.

2. Set vi := h(vi−1|v0|i) for i = 1, . . . , t.
3. Set K ← h′(h(vPt |K), k).
4. Set C ← EK(0).
5. Reset all entropy estimate accumulators of the entropy accumulator to zero.
6. Wipe the memory of all intermediate values
7. If a seed file is in use, the next 2k bits of output from the generator are

written to the seed file, overwriting any old values.

Step 1 gathers the output from the entropy accumulator. Step 2 uses an
iterative formula of length Pt to make the reseeding computationally expensive
if desired. Step 3 uses the hash function h and a function h′, which we will define
shortly, to create a new key K from the existing key and the new entropy value
vPt . Step 4 defines the new value of the counter C.

The function h′ is defined in terms of h. To compute h′(m, k) we construct

s0 := m

si := h(s0| . . . |si−1) i = 1, . . .

h′(m, k) := first k bits of (s0|s1| . . .)
This is effectively a ‘size adaptor’ function that converts an input of any

length to an output of the specified length. If the input is larger than the desired
output, the function takes the leading bits of the input. If the input is the same
size as the output the function is the identity function. If the input is smaller
than the output the extra bits are generated using the hash function. This is a
very expensive type of PRNG, but for the small sizes we are using this is not a
problem.

There is no security reason why we would set a new value for the counter C.
This is done to allow more implementation flexibility and still maintain compat-
ibility between different implementations. Setting the counter C makes it simple
for an implementation to generate a whole buffer of output from the generator
at once. If a reseed occurs, the new output should be derived from the new seed
and not from the old output buffer. Setting a new C value makes this simple:
any data in the output buffer is simply discarded. Simply re-using the existing
counter value is not compatible as different implementations have different sizes
of output buffers, and thus the counter has been advanced to different points.
Rewinding the counter to the virtual ‘current’ position is error-prone.

To reseed the slow pool, we feed the hash of the slow pool into the fast pool,
and then do a reseed. In general, this slow reseed should have Pt set as high as
is tolerable.

In Yarrow-160, this is done as described above, but using SHA1
and triple-DES. We generate a three-key triple-DES key from the
hash of the contents of the pool or pools used, and the current key.
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Security Arguments. Consider an attacker who starts out knowing the gen-
erator key but not the contents of the entropy pool hash v0. The value vPt is
a pure function of v0, so the attacker has no real information about vPt . This
value is then hashed with K, and the result is size-adjusted to be the new key.
As the result of the hash has as much entropy as vPt has, the attacker loses his
knowledge about K.

Consider an attacker in the opposite situation: he starts out knowing the
samples that have been processed, but not the current generator key. The at-
tacker thus knows vPt . However, an attacker with no knowledge of the key K
cannot predict the result of the hash, and thus ends up knowing nothing about
the new key.

5.4 Reseed Control

The reseed control module determines when a reseed is to be performed. An ex-
plicit reseed occurs when some application explicitly asks for a reseed operation.
This is intended to be used only rarely, and only by applications that generate
very high-valued random secrets. Access to the explicit reseed function should
be restricted in many cases.

The reseed periodically occurs automatically. The fast pool is used to reseed
whenever any of its sources have an entropy estimate of over some threshhold
value. The slow pool is used to reseed whenever at least two of its sources have
entropy estimates above some other threshhold value.

In Yarrow-160, the fast pool threshhold is 100 bits, and the slow
pool threshhold is 160 bits. Two sources must pass the threshhold for
the slow pool to reseed.

6 Open Questions and Plans for the Future

Yarrow-160, our current construction, is limited to at most 160 bits of security
by the size of its entropy accumulation pools. Three-key triple-DES has known
attacks considerably better than brute-force; however, the backtracking preven-
tion mechanism changes keys often enough that the cipher still has about 160
bits of security in practice.

At some point in the future, we expect to see a new block cipher standard,
the AES. Yarrow’s basic design can easily accommodate a new block cipher.
However, we will also have to either change hash functions, or come up with some
special hash function construction to provide more than 160 bits of entropy pool.
For AES with 128 bits, this will not be an issue; for AES with 192 bits or 256
bits, it will have to be dealt with. We note that the generic Yarrow framework
will accomodate the AES block cipher and a 256-bit hash function (perhaps
constructed from the AES block cipher) with no problems.

In practice, we expect any weaknesses in Yarrow-160 to come from poorly
estimating entropy, not from cryptanalysis. For that reason, we hope to continue
to improve the Yarrow entropy estimation mechanisms. This is the subject of
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ongoing research; as better estimation tools become available, we will upgrade
Yarrow to use them.

We still have to create a reference implementation of Yarrow-160, and create
test vectors for various parameter sets. These test vectors will test all aspects
of the generator. This will probably require the use of Yarrow-160 versions with
different parameters then the ones used in Yarrow-160; the details of this remain
to be investigated.

The reseed control rules are still an ad-hoc design. Further study might yield
an improves set of reseed control rules. This is the subject of ongoing research.

7 On the Name “Yarrow”

Yarrow is a flowering perennial with distinctive flat flower heads and lacy leaves,
like Queen Anne’s Lace or wild carrot. Yarrow stalks have been used for div-
ination in China since the Hsia dynasty, in the second millennium B.C.E. The
fortuneteller would divide a set of 50 stalks into piles, then repeatedly use modulo
arithmetic to generate two bits of random information (but with a nonuniform
distribution).

Here is the full description of the method: The most notable things are: one,
it takes an amazing amount of effort to generate two random bits; and two, it
does not produce a flat output distribution, but, apparently, 1/16 - 3/16 - 5/16
- 7/16.

The oracle is consulted with the help of yarrow stalks. These stalks are short
lengths of bamboo, about four inches in length and an eighth inch in diameter.
Fifty stalks are used for this purpose. One is put aside and plays no further part.
The remaining 49 stalks are first divided into two random heaps. One stalk is
then taken from the right-hand heap and put between the ring finger and the
little finger of left hand. Then the left-hand heap is placed in the left hand,
and the right hand takes from it bundles of 4, until there are 4 or fewer stalks
remaining. This remainder is placed between the ring finger and the middle
finger of the left hand. Next the right-hand heap is counted off by fours, and
the remainder is placed between the middle finger and the forefinger of the left
hand. The sum of the stalks now between the fingers of the left hand is either
9 or 5. (The various possibilities are 1 + 4 + 4, or 1 + 3 + 1, or 1 + 2 + 2,
or 1 + 1 + 3; it follows that the number 5 is easier to obtain than the number
9.) At this first counting off of the stalks, the first stalk—held between the little
finger and the ring finger—is disregarded as supernumerary, hence one reckons
as follows: 9 = 8, or 5 = 4. The number 4 is regarded as a complete unit, to
which the numerical value 3 is assigned. The number 8, on the other hand, is
regarded as a double unit and is reckoned as having only the numerical value
2.Therefore, if at the first count 9 stalks are left over, they count as 2; if 5 are
left, they count as 3. These stalks are now laid aside for the time being.

Then the remaining stalks are gathered together again and divided anew.
Once more one takes a stalk from the pile on the right and places it between the
ring finger and the little finger of the left hand; then one counts off the stalks
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as before. This time the sum of the remainders is either 8 or 4, the possible
combinations being 1 + 4 + 3, or 1 + 3 + 4, or 1 + 1 + 2, or 1 + 2 + 1, so
that this time the chances of obtaining 8 or 4 are equal. The 8 counts as a 2, the
4 counts as a 3. The procedure is carried out a third time with the remaining
stalks, and again the sum of the remainders is 8 or 4.

Now from the numerical values assigned to each of the three composite re-
mainders, a line is formed with a total value of 6, 7, 8, or 9.

Yarrow stalks are still used for fortunetelling in China, but with a greatly
simplified method: shake a container of 100 numbered yarrow stalks until one
comes out. This random number is used as an index into a table of fortunes.
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