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Abstract. We define four families of word-rewriting systems: the pre-
fix/suffix systems and the left/right systems. The rewriting of prefix
systems generalizes the prefix rewriting of systems: a system is prefix
(suffix) if a left hand side and a right hand side are overlapping only by
prefix (suffix). The rewriting of right systems generalizes the mechanism
of transducers: a system is right (left) if a left hand side overlaps a right
hand side only on the right (left).
We show that these systems have a rational derivation even if they are
not only finite but recognizable. Besides these four families, we give sim-
ple systems having a non rational derivation.

1 Introduction

A general approach to verify properties for systems is to decide whether for-
mulas are verified by their transition graphs: systems with isomorphic transition
graphs have the same properties. These graphs are in general infinite but we have
a hierarchy of graph families: finite graphs, regular graphs, prefix-recognizable
graphs, rational graphs. A family of infinite graphs has been defined in [MS 85] :
the connected regular graphs of finite degree meaning that they have a finite
number of non isomorphic connected components by decomposition by distance
from any vertex. The regular graphs of finite degree are the transition graphs of
pushdown automata (restricted to a rational configuration set) and are also the
prefix transition graphs of finite word-rewriting systems [Ca 90] : finite unions
of elementary graphs of the form (u a−→ v).W = {uw

a−→ vw | w ∈ W}
where u, v are words and W is a rational language. This family has been
extended in [Co 90] to all the regular graphs (or equational graphs): the graphs
generated by the deterministic graph grammars. A larger family is composed
of the prefix-recognizable graphs [Ca 96] which are the prefix transition graphs
of the recognizable word-rewriting systems: finite union of elementary graphs
of the form (U a−→ V ).W where U, V, W are rational languages. Finally, an
even larger family of graphs is the set of rational graphs studied in [Mo 00] :
the graphs recognized by transducers with labelled outputs. Clearly, all these
representations are heterogeneous and a central question is to find a simple and
uniform specification for all these graphs.
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A solution has been proposed in [CK 98] which considers the ‘Cayley graph’ of
any word-rewriting system: the set of transitions u

a−→ v if u, v are irreducible
words, a is a letter and ua derives into v. To represent as Cayley graphs
the regular graphs and the prefix-recognizable graphs, we translate the prefix
(resp. suffix) rewriting of systems [Bü 64] into the rewriting of particular sys-
tems, called prefix (resp. suffix) systems. A system is called prefix (resp. suffix) if
a left hand side and a right hand side are overlapping only by prefix (resp. suffix).
To represent as Cayley graphs the rational graphs, we translate the mechanism
of transducers into the rewriting of particular systems, called right systems. A
system is called right (resp. left) if a left hand side overlaps a right hand side
only on the right (resp. left). These systems yield a uniform characterization of
all the previous families of graphs.

In this paper, we show that these systems have a rational derivation: deriva-
tion relation itself (the reflexive and transitive closure by composition of the
rewriting) is recognizable by a transducer (a finite automaton where each label
is a couple of words), and we can construct such a transducer in polynomial
time. Such a result is general: a rational relation preserves rational and context-
free languages, and the composition of rational relations remains rational. Many
others properties are well known [Be 79], [AB 88]. Furthermore the derivation
is rational when the systems (left, right, prefix, suffix) are not only finite but
recognizable (and false for rational systems). Finally, it appears that we can have
a non rational derivation for the remaining families of rewriting systems, defined
by overlapping between the left hand sides and the right hand sides.

2 Rational and Recognizable Relations

We present notations and basic properties for rational relations and recognizable
relations.

For any set E, we denote by #E its cardinal and by 2E its powerset. Let IN be
the set of nonnegative integers and for any n ∈ IN, let [n] = {1, . . . , n} with
[0] = ∅.
A binary (total) operation · on a set E is a mapping from E×E into E and we
write a·b instead of ·(a, b). A set M with a binary operation · on M is a monoid if
· is associative: (a·b)·c = a·(b·c) for every a, b, c ∈ M , and has a (unique) neutral
element 1 : a·1 = 1·a = a for every a ∈ M . The powerset 2M of M is a monoid
for operation · extended by union to subsets: P ·Q = {a·b | a ∈ P ∧ b ∈ Q}
for every P, Q ⊆ M ; {1} is the neutral element. A subset P of a monoid M is a
submonoid of M if P is a monoid for · of M : P ·P ⊆ P and 1 ∈ P . The smallest
(for inclusion) submonoid of M containing P and called the submonoid generated
by P , is the following subset P ∗ =

⋃
n≥0 Pn with P 0 = {1} and Pn+1 = Pn·P

for every n. The subset P ∗ is also called the reflexive and transitive closure by ·
of P . Note that (P ∗)∗ = P ∗ and ∅∗ = {1}.
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We say that M is finitely generated if M = P ∗ for some finite P . We say that M
is free if M = P ∗ for some code P : there is no two factorizations in P ∗ of a same
element i.e. if a1. . .am = b1. . .bn for a1, . . . , am, b1, . . . , bn ∈ P then m = n
and ui = vi for all i.
We say that M is free finitely generated if M = P ∗ for some finite code P .
The set Rat(M) of the rational subsets of M is the smallest subset of 2M con-
taining the finite subsets of M and closed by the three operations ∪, ·, ∗.
We can also recognize the rational subsets by finite automata.
Let P be a subset of M . A (simple oriented labelled) P -graph G is a subset
of V ×P×V where V is an arbitrary set. Any (s, a, t) of G is a labelled arc
of source s, of target t, with label a, and is identified with the labelled tran-
sition s

a−→
G

t or directly s
a−→ t if G is understood. We denote by VG :=

{ s | ∃ a ∃ t, s
a−→ t ∨ t

a−→ s } the set of vertices of G. A graph is de-
terministic if a−→ is a function for every a ∈ P i.e. distinct arcs with the
same source have distinct labels: r

a−→ s ∧ r
a−→ t =⇒ s = t. The set

2V×P∗×V of P ∗-graphs with vertices in V is a monoid for the composition:
G o H := { r

a·b−→ t | ∃ s, r
a−→
G

s ∧ s
b−→
H

t } for any G, H ⊆ V ×P ∗×V ;

its neutral element is { s
1−→ s | s ∈ V } (in fact 2V×P∗×V is the pow-

erset monoid of the partial semigroup V ×P ∗×V with the partial operation
(r, a, s) o (s, b, t) = (r, a·b, t)).
The relation u−→

G∗ denoted by u
=⇒

G
or simply by u

=⇒ if G is understood, is the

existence of a path in G labelled u ∈ P ∗. The labels L(G, E, F ) of paths from a
set E to a set F is the following subset of P ∗: L(G, E, F ) := { u ∈ M | ∃ s ∈
E, ∃ t ∈ F, s

u
=⇒

G
t }; in particular 1 ∈ L(G, E, F ) when E ∩ F 6= ∅.

A P -automaton A is a P -graph G whose vertices are called states, with a subset
I of initial states and a subset F of final states; the automaton recognizes the
subset L(A) = L(G, I, F ) of P ∗. An automaton is finite if its graph is finite.
An automaton is deterministic if its graph is deterministic and there is a unique
initial state. This permits to express a standard result on rational subsets:
Given a subset P of a monoid M , Rat(P ∗) is equivalently
— the smallest subset of 2M containing ∅ and {a} for each a ∈ P , and closed

by ∪ , · , ∗
— the set of subsets recognized by the finite P -automata
— the set of subsets recognized by the finite deterministic P -automata.

Given monoids M and N , the cartesian product M×N = { (m, n) | m ∈
M ∧ n ∈ N } is a monoid for the operation defined by (m, n)·(m′, n′) =
(m ·

M
m′, n ·

N
n′) for every m, m′ ∈ M and every n, n′ ∈ N . A relation R from

M into N is a subset of M×N and we write also u R v for (u, v) ∈ R. In
particular R is a rational relation if R belongs to Rat(M×N) i.e. R is rec-

ognized by a finite (and deterministic) M×N -automaton: any transition
(u,v)−→

is written simply
u/v−→ . For any relations R, S from M into N , we have R·S =

{ (m·m′, n·n′) | m R m′ ∧ n S n′ } and R∗ is the reflexive and transitive closure
by · of R. As usual, we denote by R−1 = { (v, u) | u R v } the inverse of R
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and R(P ) = { v | ∃ u ∈ P, u R v } is the image by R of P ⊆ M . In particular
Dom(R) = R−1(N) is the domain of R and Im(R) = R(M) is the image of R.
Note that for R ∈ Rat(M×N), we have R−1 ∈ Rat(N×M), Dom(R) ∈ Rat(M)
and Im(R) ∈ Rat(N).
Note that the family 2M×M of binary relations on M coincides with the set
2M×{1}×M of (unlabelled) ∅∗-graphs: (u, v) coincides with the transition u

1−→ v.
So 2M×M is a monoid for the relational composition R o S = { (u, w) | ∃ v, u R v ∧
v S w } for every R, S ⊆ M×M with the neutral element Id

M
= { (u, u) | u ∈

M }. Furthermore for every R ⊆ M×M , R? =
⋃

n≥0 R(n) is the reflexive and
transitive closure of R for o : R(0) = Id

M
and R(n+1) = R(n)

o R.

Another family of subsets of a monoid M are defined by inverse morphism. A
mapping h from M into a monoid N is a (monoid) morphism if h(1) = 1 and
h(a·b) = h(a)·h(b) for every a, b ∈ M . A subset P of M is recognizable if there
exists a morphism h from M into a finite monoid N such that P = h−1(h(P ));
we denote by Rec(M) the family of recognizable subsets of M .
Recognizable subsets are also recognizable by automata. We say that a P -graph
G is (source) complete if for every a ∈ P , every vertex s ∈ VG is source of an
arc labelled a : ∃ t, s

a−→ t. We say also that G is path-deterministic if G∗ is
deterministic: u

=⇒ is a function for every u ∈ P ∗ i.e. if r
u

=⇒ s and r
u

=⇒ t then

s = t. Given a subset P of a monoid M , Rec(P ∗) is the set of subsets recognized
by the path-deterministic and complete P -automata having a finite set of states.
Another way to characterize a recognizable subset is by residual:

P ∈ Rec(M) ⇐⇒ { u−1P | u ∈ M } is finite
where the set Q−1P = { v | ∃ u ∈ Q, u·v ∈ P } is the left residual of P by
Q ⊆ M . We denote also by PQ−1 = { u | ∃ v ∈ Q, u·v ∈ P } the right residual
of P by Q. The characterizations of the rational and recognizable subsets by
automata permit to deduce usual facts:
— Rec(M) is a boolean algebra
— P ∩Q ∈ Rat(M) for every P ∈ Rat(M) and Q ∈ Rec(M)
— R(P ) ∈ Rat(N) for every R ∈ Rat(M×N) and P ∈ Rec(M)
— Rec(M) ⊆ Rat(M) if M is finitely generated (McKnight theorem)
— Rec(M) = Rat(M) if M is free finitely generated (Kleene theorem)
— R ∈ Rec(M×N) ⇐⇒ R =

⋃
i∈I Pi×Qi for I finite

with Pi ∈ Rec(M) , Qi ∈ Rec(N) (Mezei theorem)

We restrict now to rational and recognizable relations on words. Henceforth N
is an alphabet i.e. a finite set of symbols called letters.
The set N∗ = { (a1, . . . , an) | n ≥ 0 ∧ a1, . . . , an ∈ N } is a monoid for the
concatenation operator: (a1, . . . , am).(b1, . . . , bn) = (a1, . . . , am, b1, . . . , bn).
Any element (a1, . . . , an) is written simply a1. . .an and called a word, and the
neutral element () is denoted by ε and called the empty word. Note that a word
u over N of length |u| ∈ IN is a mapping from [|u|] into N represented by
u(1). . .u(|u|) = u. The mirror of any word u is the word ũ = u(|u|). . .u(1).
A language L is a set of words: L ⊆ N∗. Let L̃ = { ũ | u ∈ L } the mirror
of any language L, and let R̃ = { (ũ, ṽ) | u R v } the mirror of any binary
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relation R on N∗. When L and R are finite, we denote by |L| =
∑

u∈L |u|
the length of L and by |R| =

∑
(u,v)∈R |u|+ |v| the length of R ; in particular

|Dom(R)| + |Im(R)| ≤ |R|. Furthermore we denote by N
L

= { u(i) | u ∈
L ∧ i ∈ [|u|] } the alphabet of letters in L, and by NR = N

Dom(R)∪N
Im(R) the

alphabet of R. As N∗ is the free monoid generated by N , Rec(N∗) = Rat(N∗)
is the set of languages recognized by the (deterministic and/or complete) N -
automata. A rational relation on N∗, i.e. an element of Rat(N∗×N∗), is a relation
recognized by a finite N∗×N∗-automaton called a transducer. Furthermore R ∈
Rec(N∗×N∗) if and only if R =

⋃
i∈I Pi×Qi for some finite I with Pi, Qi ∈

Rat(N∗); in particular Id
N∗ ∈ Rat(N∗×N∗) − Rec(N∗×N∗). Another remark

is that R(P ) ∈ Rat(N∗) for every R ∈ Rat(N∗×N∗) and P ∈ Rat(N∗). A
crucial property which is not true for any monoid product is the Elgot-Mezei
theorem: Rat(N∗×N∗) is closed by composition. The family Rec(N∗×N∗) is also
closed by composition, and more generally R o S , S o R ∈ Rec(N∗×N∗) for every
R ∈ Rat(N∗×N∗) and S ∈ Rec(N∗×N∗). Obviously Rec(N∗×N∗) is closed by
mirror, and Rat(N∗×N∗) is also closed by mirror: for any N∗×N∗-graph G, we

have L(G, E, F )e = L(G̃, F, E) with G̃ = { q
eu/ev−→ p | p

u/v−→
G

q }.

3 Rational Derivation

We consider the word-rewriting systems (see for instance the survey [DJ 90] and
[BO 93]) associated with a language of admissible words such that any derivation
between admissible words contains only admissible words. Like in [Sé 93], we
define several subclasses of rewriting systems by considering the overlappings
between the left hand sides (of the rules) and the right hand sides, inside of the
admissible words. We extract two families of systems, the right systems and the
prefix systems, having a rational derivation even if the systems are recognizable
(Theorems 3.8 and 3.11). By mirror, we obtain two others families of systems,
the left systems and the suffix systems. Besides these four families, we give simple
systems having a non rational derivation.

A (word) rewriting system (R, C) is a binary relation R on N∗ and a language
C ⊆ N∗ of configurations (or admissible words). A system (R, C) is respectively
finite, recognizable, rational if C is rational, and if R is respectively finite,
recognizable, rational. The rewriting −→

R, C
according to any system (R, C) is

−→
R, C

:= { (xuy, xvy) ∈ C×C | u R v ∧ x, y ∈ N∗ }
the application of R under any left and right contexts, but restricted to con-
figurations. Furthermore the derivation ?−→

R, C
according to (R, C) is

?−→
R, C

:= { (u0, un) ∈ C×C | n ≥ 0 ∧ ∃ u1, . . . , un−1, u0 −→
R, C

u1 . . . un−1 −→
R, C

un }
the reflexive (restricted to C) and transitive closure of −→

R, C
by composition i.e.

?−→
R, C

=
⋃

n
n−→

R, C
where 0−→

R, C
= IdC and n+1−→

R, C
= n−→

R, C
o −→

R, C
∀ n ≥ 0.
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Note that for any system (R, C),

−→
eR, eC

= (−→
R, C

)e and −→
R−1, C

= (−→
R, C

)−1

hence ?−→
eR, eC

= ( ?−→
R, C

)e and ?−→
R−1, C

= ( ?−→
R, C

)−1.

When the configuration set C = N∗, it can be omitted: we usually say that the
relation R is a rewriting system and we denote by −→

R
its rewriting (instead

of −→
R, N∗) and by ?−→

R
its derivation. Note that −→

R, C
= −→

R
∩ C×C .

Even if the configuration set C is rational, it is possible by restriction to C
to control the rewriting of simple finite relations in order to get a non rational
derivation. This is shown in the following example.

Example 3.1 Consider the finite relation R = {(a, bd) , (b, c) , (c, a)} and
the rational configuration set C =

⋃
p6=q ∈{a,b,c} pd∗qd∗. This finite system

has a non rational derivation ?−→
R, C

because the language ?−→
R, C

(ab) ∩ ad∗bd∗ =

{ adnbdn | n ≥ 0 } is not rational.
However such a relation R is prefix and is left (R̃ is right) as defined below (cf.
Theorems 3.8 and 3.11), and in particular its derivation ?−→

R
is rational; it is

recognized by the following transducer:
ε/d

ε/ε

i/j
d/d

with (i, j) ∈ {(a, a) , (a, bd) , (a, cd) , (b, a) , (b, b) , (b, c) , (c, a) , (c, bd) , (c, c)}.

Thus we introduce a general condition on the systems to be study. A system
(R, C) is stable if it satisfies the following condition:

s
?−→
R

r
?−→
R

t ∧ s, t ∈ C =⇒ r ∈ C

Such a general condition is undecidable but there exists decidable sufficient con-
ditions like the closure of C by rewriting: −→

R
(C) ⊆ C. In particular any

relation R (on N∗) is stable. A basic property of any stable system is that its
derivation is the restriction to the configurations of the derivation of its relation.

Lemma 3.2 For any stable system (R, C), ?−→
R, C

= ?−→
R

∩ C×C .

For C rational, C×C is a recognizable relation, and Lemma 3.2 implies that
if ?−→

R
is a rational (resp. recognizable) relation then ?−→

R, C
is a rational (resp.

recognizable) relation. However we will give general families of systems (R, C)
such that ?−→

R, C
is rational, but not containing (R, N∗) in general.
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To study the rationality of derivation ?−→
R, C

we consider the composition −→
R, C

o −→
R, C

of two rewritings, and we examine the possible overlappings between the right
hand side of the rule applied in the first rewriting, with the left hand side of the
rule applied in the second rewriting. We extricate families of systems having a
rational derivation by discarding the undesirable overlapping rules.

It is easy to find simple finite relations having a non rational derivation.

Example 3.3 For R = {(ab, aabb)}, ?−→
R

(ab) = { anbn | n ≥ 1 } 6∈ Rat({a, b}∗)
hence ?−→

R
is not rational. Similarly the derivation of R−1 = {(aabb, ab)} is not

rational because ?−→
R−1

= ( ?−→
R

)−1. These relations are strict-internals as defined

below.

We say that a system (R, C) is domain-strict-internal if

∃ s, t ∈ N∗ ∃ (w, xuy) , (u, v) ∈ R , x, y 6= ε ∧ swt, sxuyt, sxvyt ∈ C

meaning that the following representation is allowed:
C

C

C

6= ε6= ε

Im(R)

Dom(R)

which is decidable for (R, C) rational: ∃ s, t ∈ N∗,

(R ∩ s−1Ct−1 × s−1Ct−1) o (Id
N+ .R.Id

N+ ∩ s−1Ct−1 × s−1Ct−1) 6= ∅
Let us illustrate the significance of the configuration set C for this definition.

Example 3.4 The relation R = {(ε, ab)} is domain-strict-internal and its
derivation is not rational because the language ?−→

R
(ε)∩a∗b∗ = { anbn | n ≥ 0 }

is not rational. On the other hand (R, (ab)∗) is not domain-strict-internal (and
is stable) and ?−→

R, (ab)∗
= Id(ab)∗ .({ε}×(ab)∗) is rational.

Similarly a system (R, C) is image-strict-internal if (R−1, C) is domain-strict-
internal, meaning that the following representation is allowed:

C

6= εC
CDom(R)

6= ε Im(R)

Finally a system is strict-internal if it is domain-strict-internal or image-strict-
internal.
Another notions of internal systems can be obtained by prefixity and suffixity.
A system (R, C) is domain-prefix-internal if

∃ s, t ∈ N∗ ∃ (w, uy) , (u, v) ∈ R , y 6= ε ∧ swt, suyt, svyt ∈ C

meaning that the following representation is allowed:
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Im(R)

C

6= εDom(R)

which is decidable for (R, C) rational:

∃ s, t ∈ N∗, (R ∩ s−1Ct−1 × s−1Ct−1) o (R.Id
N+ ∩ s−1Ct−1 × s−1Ct−1) 6= ∅

Similarly we say that (R, C) is

image-prefix-internal if (R−1, C) is domain-prefix-internal,
domain-suffix-internal if (R̃, C̃) is domain-prefix-internal,
image-suffix-internal if (R̃−1, C̃) is domain-prefix-internal.

Finally a system is prefix-internal if it is domain-prefix-internal or image-prefix-
internal. Similarly a system is suffix-internal if it is domain-suffix-internal or
image-suffix-internal. Furthermore a system is domain-internal if it is domain-
strict-internal or domain-prefix-internal or domain-suffix-internal. Similarly a
system is image-internal if it is image-strict-internal or image-prefix-internal or
image-suffix-internal.
Note that it is again easy to find non-internal relations having a non rational
derivation.

Example 3.5 For R = {(ba, ab)}, the language ?−→
R

((ab)∗) ∩ a∗b∗ is equal

to { anbn | n ≥ 0 } hence ?−→
R

is not rational. Such a relation is together
left-overlapping and right-overlapping as defined below.

We say that a system (R, C) is left-overlapping if

∃ s, t ∈ N∗ ∃ (u, yz) , (xy, v) ∈ R , x, y, z 6= ε ∧ sxut, sxyzt, svzt ∈ C

meaning that the following representation is allowed:

C

C

C

6= ε

6= ε

6= εDom(R)

Im(R)

Let us verify that we can decide whether a rational system (R, C) is left-
overlapping. Let $ be a new symbol (not in N). So

C$ = { u$v | uv ∈ C } = Id
N∗ .{(ε, $)}.Id

N∗ (C)

and R$ = { (u$v, w) | uv R w ∧ v 6= ε } = Id
N∗ .{($, ε)}.Id

N+ o R

are rational: C$ ∈ Rat((N ∪ {$})∗) and R$ ∈ Rat((N ∪ {$})∗×N∗).
Then (R, C) is left-overlapping if and only if it satisfies the following decidable
property: ∃ s, t ∈ N∗,

(Id
N+ .(ε, $).R ∩ s−1Ct−1 × s−1C$t

−1) o (R$ .Id
N+ ∩ s−1C$t

−1 × s−1Ct−1) 6= ∅
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Similarly a system (R, C) is right-overlapping if (R−1, C) is left-overlapping
(which is equivalent to (R̃, C̃) is left-overlapping), meaning that the following
representation is allowed:

C

C

C

6= ε

Dom(R)6= ε

Im(R) 6= ε

Finally a system is overlapping if it is left-overlapping or right-overlapping.

We are ready to give stable systems such that the derivation can be done in-
creasingly.
Precisely, we denote by −→

R, C
n the rewriting of (R, C) at letter position n + 1 :

xuy −→
R, C

n xvy for every u R v and xuy, xvy ∈ C with |x| = n .

This permits to define the following increasing derivation :
?

↪→
R, C

=
⋃

n≥0

n
↪→
R, C

where
0

↪→
R, C

= Id
C

and
n
↪→
R, C

=
⋃

`1≤...≤`n
−→
R, C

`1 o . . . o −→
R, C

`n
for every n > 0

with li−1 = li =⇒ −→
R, C

`i
is only according to R− {ε}×N∗.

This last condition means that the following derivation:
xuy −→

R
|x| xvy −→

R
|x| xwvy with u R v and ε R w

is not increasing. In fact in this derivation, the rule ε −→ w is on the ‘left’ of
the rule u −→ v and must be applied before to give the following increasing
derivation:

xuy −→
R

|x| xwuy −→
R

|xw| xwvy (assuming that w 6= ε).
Lemma 3.2 remains true for increasing derivations.

Lemma 3.6 For any stable system (R, C),
?

↪→
R, C

=
?

↪→
R

∩ C×C .

The increasing derivation coincides with the derivation for stable systems having
no overlapping configurations where the domain begins before the image.

Lemma 3.7 For any stable system (R, C) which is not left-overlapping, not
image-strict-internal and not image-suffix-internal, we have ?−→

R, C
=

?
↪→
R, C

.

Proof.
By definition, we have

?
↪→
R, C

⊆ ?−→
R, C

.

Let us prove the converse. As ?−→
R, C

= ?−→
R − {ε, ε}, C

, we may assume that (ε, ε) 6∈ R.
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We show the following four inclusions:

−→
u, v, C

≥ n o −→
ε, v′, C

n ⊆ −→
ε, v′, C

n o −→
u, v, C

> n

−→
u, v, C

> n o −→
u′, v′, C

n ⊆ −→
u′, v′, C

n o −→
u, v, C

≥ n with u, u′ 6= ε

−→
ε, v, C

> n o −→
u′, v′, C

n ⊆ −→
u′, v′, C

n o −→
ε, v, C

> n with u′, v′ 6= ε

−→
ε, v, C

> n o −→
u′, ε, C

n ⊆ −→
u′, ε, C

n o −→
ε, v, C

> n ∪ −→
ε, v, C

n o −→
u′, ε, C

> n

where −→
u, v, C

P =
⋃

n∈P −→
{(u, v)}, C

n for any integer subset P and with (u, v) ∈ R.

Using these inclusions, we sort increasingly any derivation by applying the bubble
sort.
2

A first class of rewriting systems with a decidable rational derivation is obtained
by generalizing the mechanism of a transducer. Let (G, E, F ) be a transducer:
G is a finite N∗×N∗-automaton and we assume that its vertex set VG is
disjoint of N . We convert G into the following relation:

R
G

= { (pu, vq) | p
u/v−→

G
q }

in such a way that the language recognized by the transducer is obtained by
derivation of R

G
as follows:

L(G, E, F ) = { (u, v) | pu
?−→

R
G

vq ∧ p ∈ E ∧ q ∈ F }
Such a system (R

G
, N∗V

G
N∗) is right meaning that it is not strict-internal, not

domain-prefix-internal, not image-suffix-internal, and not left-overlapping. So a
right system (R, C) is a system where the overlapping configurations have only
the following form:

C

Dom(R)

Im(R)C

C

It is important to remark that relation R
G

(on (N ∪ V
G
)∗) is not right: we

may have the overlapping configuration puwvq with puw ∈ Dom(RG) and
wvq ∈ Im(R

G
).

The derivation ?−→
R, C

of any finite right stable system (R, C) can be always

recognized by a transducer that we can construct from (R, C), and this can be
generalized to any recognizable right stable system.

Theorem 3.8 For any recognizable right stable system (R, C), the deriva-
tion ?−→

R, C
is an effective rational relation.

Proof.
i) Let us reduce the proof of this theorem to C = N∗.
Let (R, C) be a recognizable system: R is recognizable and C is rational.
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Furthermore we assume that (R, C) is stable and is right: it is not left-
overlapping, not strict-internal, not domain-prefix-internal and not image-suffix-
internal.
Let $, # be two new symbols: $, # 6∈ N . We consider the following system:

S = { (x#y, $v) | xy R v }
So S = {(ε, $)}.(Id

N∗ .{(#, ε)}).Id
N∗ o R) is recognizable.

As S ⊆ N∗
#N∗ × $N∗, S is a right relation (on (N ∪ {$, #})∗).

We verify that
?−→

R, C
= { (h#(s), h$(t)) ∈ C×C | s

?−→
S

t }
with for & ∈ {#, $}, h& is the morphism from (N ∪ {&})∗ to N∗ erasing & :

h(&) = ε and h(a) = a for every a ∈ N .
Thus

?−→
R, C

= ( ({(ε, #)} ∪ Id
N

)∗ o
?−→
S

o ({($, ε)} ∪ Id
N

)∗ ) ∩ C×C

implying that ?−→
R, C

is rational if ?−→
S

is rational for the recognizable right

relation S.

ii) Let R be a finite right relation.
Let us construct from R a transducer to recognize ?−→

R
.

Its finite set of states Q is

Q = { w | ∃ x, y ∈ N∗, xw ∈ Im(R) ∧ wy ∈ Dom(R) }
which contains ε. Its finite graph G is

G = H ∪ I

where H = { w
x/y−→ z | w, z ∈ Q ∧ wx R yz ∧ |x|, |y| minimal }

and I = { w
x/ε−→ wx | w, wx ∈ Q ∧ |x| ≥ 1 minimal }

∪ { yz
ε/y−→ z | z, yz ∈ Q ∧ |y| ≥ 1 minimal }

∪ { ε
a/a−→ ε | a ∈ N }

We take ε as the initial state and as the unique final state. We show that the
transducer (G, {ε}, {ε}) recognizes ?−→

R
.

To implement I and as #N can be large, we use a new symbol • to designate
any letter in N and the label •/• means any couple a/a for a ∈ N .
The minimality of |x| and |y| in H and I is useless but it permits to
construct a graph isomorphic to G with a (worst case) complexity O(|R|) in
space and O(|R|2#NR) in time i.e. linear in space and quadratic in time if
we assume that the number of letters is a constant.

iii) Let us extend (ii) to any recognizable right relation R. As R is recognizable,

R =
⋃p

i=1 L(Gi, ri, Fi)×L(G′
i, r

′
i, F

′
i )



On Word Rewriting Systems Having a Rational Derivation 59

where (Gi, ri, Fi)1≤i≤p and (G′
i, r

′
i, F

′
i )1≤i≤p are finite automata such that

their vertex sets V
G1

, V
G′

1
, . . . , V

Gp
, V

G′
p

are pairwise disjoint.

Let us construct from R a transducer to recognize ?−→
R

.
Let r be a new symbol. We define the following finite graph:

G = H ∪ I

with I = { r
a/a−→ r | a ∈ N } ∪

{ r
ε/ε−→ ri | i ∈ [p] } ∪ { s′

ε/ε−→ r | ∃ i ∈ [p], s′ ∈ F ′
i } ∪

{ s
a/ε−→ t | ∃ i ∈ [p], s

a−→
Gi

t } ∪ { s′
ε/a−→ t′ | ∃ i ∈ [p], s′ a−→

G′
i

t′ }

and H = { s
ε/ε−→ r′i | i ∈ [p] ∧ s ∈ Fi } ∪

{ t′
ε/ε−→ s | ∃ i, j ∈ [p], ∃ u 6= ε, u ∈ L(G′

i, t
′, F ′

i ) ∩ L(Gj , rj , s) }
We take r as the initial state and as the unique final state. We show that the
transducer (G, r, r) recognizes ?−→

R
.

2

Similarly a system (R, C) is left if (R̃, C̃) is right: (R, C) is not strict-internal,
not domain-suffix-internal, not image-prefix-internal, and not right-overlapping.
Note that (R, C) is left if and only if (R−1, C) is right. By Theorem 3.8 and as
the rational relations are preserved by mirror (or by inverse), the derivation of
any recognizable left stable system is also an effective rational relation. Note that
the condition for a right system to be not domain-prefix-internal is necessary to
have a rational derivation.

Example 3.9 For R = {($, a&) , (&, $b)}, ?−→
R

($)∩{a, b, $}∗ = { an
$bn | n ≥ 0 }

hence ?−→
R

is not rational. This relation R is not overlapping (not left-

overlapping and not right-overlapping), is not strict-internal (not domain-strict-
internal and not image-strict-internal), and is not image-internal (not image-
strict-internal, not image-prefix-internal and not image-suffix-internal). In par-
ticular, its derivation is increasing but the system is not right because it is
domain-prefix-internal (and domain-suffix-internal).

A second class of rewriting systems follows from the relation of prefix rewriting.
The prefix rewriting 7−→

R
of a system R is the restriction of the rewriting −→

R

obtained by applying the rules only by prefix:
uw 7−→

R
vw for every u R v and w ∈ N∗

meaning that the prefix rewriting 7−→
R

is the relation R.Id
N∗ . The prefix

derivation ?7−→
R

is the reflexive and transitive closure for the composition of the

prefix rewriting. Büchi has shown that the prefix derivation ?7−→
R

(u) of any finite
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relation from any word u is a rational language which can be constructed in
exponential time [Bü 64]. Boasson and Nivat have extended this result: the prefix
derivation ?7−→

R
of any recognizable relation R is a rational relation [BN 84]

and a transducer can be constructed in polynomial time [Ca 90]. To adapt this
result for rewriting systems, let us remark that for any system R, we have

x
?7−→
R

y ⇐⇒ $x
?−→
$R

$y

where $R = { ($u, $v) | u R v } with $ a new symbol.
We say that a rewriting system (R, C) is prefix if (R, C) is not overlapping
(not left-overlapping and not right-overlapping), not strict-internal (not domain-
strict-internal and not image-strict-internal), and not suffix-internal (it is not
domain-suffix-internal and not image-suffix-internal). So a prefix system is a
system where the overlapping configurations have only the following form:

C

Im(R)

Dom(R)

C

C

Note that (R, C) is prefix is equivalent to (R−1, C) is prefix.
A usual finite prefix system is a (unlabelled) pushdown automaton i.e. a finite
R ⊂ Q.P×Q.P ∗ with the language C = Q.P ∗ of configurations, where
P +Q = N (N is partitionned into the stack alphabet P and the state alphabet
Q); note that such a R (with C = N∗) is also a prefix relation.
The derivation of any prefix stable system is the restriction to the admissible
configurations of the concatenation closure of the prefix derivation of its relation.

Proposition 3.10 For any prefix stable system (R, C), we have
?−→

R, C
= ( ?7−→

R
)∗ ∩ C×C .

Proposition 3.10 permits to extend the rationality of the prefix derivation of any
recognizable relation to the derivation of any recognizable prefix stable system.

Theorem 3.11 For any recognizable prefix stable system (R, C), the deriva-
tion ?−→

R, C
is an effective rational relation.

Proof.
By Proposition 3.10, it remains to show that ?7−→

R
is a rational relation for any

recognizable relation R. This has been proved in [BN 84]. A short proof is due
to J.-M. Autebert and follows from Corollary 3.3 of [Ca 96] :

?7−→
R

= 7−→
S

= S·Id
N∗ for a recognizable relation S =

⋃q
i=1 Ui×Vi

such that for N a new alphabet in bijection to N , we have⋃q
i=1 U iṼi = ?−→

P
({ uṽ | u R v }∗) ∩ N

∗
N∗

where P = { (xx, ε) | x ∈ N }.
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Note that we can specify directly S from R :

S = {(ε, ε)} ∪ ⋃{ ?7−→
R−1

(U)× ?7−→
R

(V ) | (U, V ) ∈ R }
The construction of S hence of S.Id

N∗ can be done in polynomial time. But
we do not give a precise majoration of the order like for Theorem 3.11 (ii).
2

Similarly a system (R, C) is suffix if (R̃, C̃) is prefix: (R, C) is not overlapping,
not strict-internal and not prefix-internal. By Theorem 3.11 and as the rational
relations are preserved by mirror, the derivation of any suffix recognizable stable
system is also an effective rational relation.

Example 3.9 shows that we have non rational derivations for prefix finite systems
which can be domain-suffix-internal or image-suffix-internal (systems which are
not overlapping, not strict-internal, and not domain-suffix-internal or not image-
suffix-internal). This includes the basic systems [Sé 93] even if they are not strict-
internal, where a basic system is a not overlapping and not domain-internal
system (the inverse of the system defined in Example 3.9 is basic and not strict-
internal).
Furthermore we cannot combine our two theorems as shown below by modifying
slighty Example 3.9.

Example 3.12 The overlapping configurations of R = {($, a&) , (&b, $bb)} are
only prefix (N∗

$bbN∗) and right (N∗a&bN∗) but ?−→
R

is not rational because

the language ?−→
R

($b) ∩ {a, b, &}∗ = { an
&bn | n ≥ 1 } is not rational.

Finally Theorems 3.8 and 3.11 cannot be extended to respectively any rational
right stable system and any rational prefix stable system as shown in the follow-
ing example.

Example 3.13 The relation R = { ($xu$, $u$x) | u ∈ {a, b}∗ ∧ x ∈ {a, b} }
is rational and taking C = ${a, b}∗${a, b}∗, the rational system (R, C) has
only domain-prefix-internal overlapping configurations. So (R, C) is prefix and
is left but

?−→
R, C

∩ (${a, b}∗$)×($${a, b}∗) = { ($u$, $$ũ) | u ∈ {a, b}∗ }
is not a rational relation, hence ?−→

R, C
is not rational.
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