
The State Explosion Problem

from Trace to Bisimulation Equivalence

François Laroussinie and Philippe Schnoebelen

Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex France

{fl,phs}@lsv.ens-cachan.fr

Abstract. We show that any relation between the simulation preorder
and bisimilarity is EXPTIME-hard when systems are given as networks
of finite state systems (or equivalently as automata with boolean vari-
ables, etc.). We also show that any relation between trace inclusion and
ready trace equivalence or possible-futures equivalence is EXPSPACE-
hard for these systems.
These results match the already known upper bounds and partially an-
swer a conjecture by Rabinovich. They strongly suggest that there is no
way to escape the state explosion problem when checking behavioural
relations.
For the branching-time relations, our proof uses a new construction that
immediately applies to timed automata, a family of systems for which
these complexity results are new.

1 Introduction

The model-checking approach to automated or computer-aided verification is
now widely recognized as a promising development for system design, especially
in the area of critical systems [CGL96]. The main practical limitation of model-
checking is the well-known state explosion problem: the systems we check are
built by composing several subsystems, they use variables and/or clocks, and a
flat equivalent transition system would have an exponential number of states.
Therefore, even if model-checking flat systems is tractable, verifying non-flat
systems has been a major challenge since the beginning.

The state explosion problem can be considered from a pragmatic or from
a theoretical angle. The pragmatical approach aims, e.g., at designing symbolic
methods that may bypass the state explosion in many practical cases [BCM+92].
The theoretical approach studies the structural complexity of model-checking
non-flat systems, i.e. systems described as combinations of finite-state compo-
nents. The goal here is to understand better which verification problems have
to face state explosion in an intrinsic way, which special way of combining sub-
systems could avoid state explosion, and what are the theoretical limits of all
approaches, even the best pragmatical ones.

But what exactly are these non-flat systems ? Different models exist: syn-
chronized products of finite-state automata are a natural possibility, automata

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 192–207, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The State Explosion Problem from Trace to Bisimulation Equivalence 193

acting on boolean variables are another one, as well as 1-safe Petri nets. From
a structural complexity perspective, these brands of non-flat systems can all
be succinctly encoded into each other and the complexity results hold robustly
across many variant presentations. In this paper we consider synchronized prod-
ucts of automata (see section 2) but we keep the more general terminology of
“non-flat systems” in this introduction.

An overview of existing results. The literature is limited but the main questions
have been answered:
Classical verification problems: The complexity classes of the main ques-

tions for non-flat systems, like reachability, termination, deadlock-freedom,
etc., are known (e.g., these three examples are PSPACE-complete). Most of
these problems have been investigated in the framework of 1-safe Petri nets,
where they were natural questions since the beginning. An excellent survey
is [Esp98].

Temporal logic: Model-checking PLTL, CTL, or CTL∗ formulas on non-flat
systems is PSPACE-complete [KVW98]. Model-checking the branching-time
mu-calculus is EXPTIME-complete, even when restricted to the alternation-
free fragment [Rab97b, KVW98].

Behavioural equivalences and preorders: Trace equivalence of non-flat sys-
tems is EXPSPACE-complete [Rab97a] while bisimilarity is EXPTIME-
complete [JM96], as is simulation equivalence [HKV97].

Behavioural equivalences. This third set of problems is where the existing results
are the most incomplete when assessing the state explosion problem. One of the
difficulties here is that the linear time – branching time spectrum contains dozens
of different semantical equivalences [Gla90] (cf. Fig. 1).

However, some general methods apply to several equivalences at once:
(1) [JM96] shows EXPTIME-completeness of seven truly concurrent variants of
bisimulation. One single construction suffices for the lower bounds since all seven
equivalences coincide in the absence of concurrency.
(2) [Rab97a] shows that all equivalences lying between trace equivalence and
bisimilarity are PSPACE-hard. Note that this apply to all classical equivalences
from [Gla90] and also to any new equivalence, however fancy, one would care to
define 1.

Rabinovich’s result is impressive, even more since it has been convincingly
argued [Gla90, Pnu85, Mil89] that any interesting equivalence lies between these
two extremes. However, the result is not optimal since not one relation between
trace equivalence and bisimilarity is known to be in PSPACE for non-flat sys-
tems. Indeed, [Rab97a] conjectures that all these equivalences are EXPTIME-
hard.

1 A similar approach appears in [Jan95] where a single construction shows undecid-
ability, over P/T nets, of all equivalences between trace equivalence and bisimilarity.

194 François Laroussinie and Philippe Schnoebelen

Our contribution.

equivalence
failure

equivalence

equivalence

2-nested simulation

possible-futures

completed trace

bisimulation

equivalence

equivalence

ready simulation

ready trace

trace

simulation

failure trace readiness
equivalenceequivalence

Fig. 1. The linear time – branching

time spectrum [Gla90]

We partially answer
Rabinovich’s conjecture. We prove EXP-
TIME-hardness of all equivalences (actu-
ally any relation) lying between the sim-
ulation preorder and strong bisimilarity,
and EXPSPACE-hardness of all equiva-
lences (actually any relation) lying be-
tween trace inclusion and ready trace
equivalence or possible-futures equiva-
lence.

These results have several important
corollaries. First, they close (on non-flat
systems) the gap between lower-bound
and upper-bound for the 11 relations van
Glabbeek singles out as most fundamental
in his linear time – branching time spec-
trum.

Secondly, they entail EXPTIME-
hardness (over non-flat systems) of all
model-checking problems for temporal or
modal logics able to specify bisimilar-
ity or simulation. For example, since the
branching-time modal mu-calculus can
state bisimilarity through a simple (modal
depth 2) formula [And93], EXPTIME-
hardness of bisimilarity entails EXPTIME-hardness of model-checking mu-
calculus formula over non-flat systems (a result already known from [KVW98,
Rab97b]).

Finally, our technique is interesting in itself: our construction for the
branching-time relations differs from the approach in [JM96] 2. It originates
from our investigations of complexity questions for Timed Automata [AL99]
and readily gives EXPTIME-hardness of all relations between (strong timed–)
bisimilarity and simulation. To our knowledge this is the first complexity char-
acterization of behavioural equivalences over these models.

Plan of the paper. We first give basic definitions on (flat and non-flat) systems,
the behavioural equivalences we need (§ 2) and alternating Turing machines
(§ 3). We then prove our generic EXPTIME lower bound (§ 4) and our generic
EXPSPACE lower bound (§ 5). Upper bounds are given when they match the
lower bounds.

Acknowledgments. This work owes much to the comments and suggestions we
got from L. Jategaonkar and the anonymous referees who saw an earlier version.

2 Additionally, an incorrect labeling of the nets and the omission of some crucial part
of the construction make the proof of Theo. 5.7. in [JM96] hard to repair [Jat99].

The State Explosion Problem from Trace to Bisimulation Equivalence 195

2 Equivalences and Preorders between Non-flat Systems

Transition systems. A flat (transition) system is a tuple C = 〈Σ, Q,−→〉 where
Σ is a finite alphabet, Q is a finite set of states, and −→⊆ Q × Σ × Q is the
transition relation. The size |C| of C is |Σ| + |Q| + |−→|. As usual, we write
q

a−→ q′ when (q, a, q′) ∈−→, and let ready(q) denote the set of actions ready in
q, i.e. {a ∈ Σ | q a−→ q′ for some q′}.

Traces. A trace from q ∈ Q is any w = a1 . . . an ∈ Σ∗ such that there exists
q0, q1, . . . , qn ∈ Q with q = q0 and qi−1

ai−→ qi for i = 1, . . . , n (written q0
w−→

qn). If Xi = ready(qi) for i = 0, . . . , n, then (X0, a1, X1, a2, X2, . . . , an, Xn) is
a ready trace from q. We write Tr(q) (resp. RT (q), PF (q)) for the set of traces
(resp. ready traces, possible futures) from q (where (w, S) ∈ Σ∗ × P(Σ∗) is a
possible future of p if there exists q s.t. p

w−→ q and S = Tr(q)). Trace inclusion,
trace equality, ready trace equivalence and possible-futures equivalence, denoted
⊆Tr, =Tr, =RT and =PF , have the obvious definition.

Bisimulations. A simulation over C is any R ⊆ Q × Q satisfying the following
transfer property: for all qRq′ and q

a−→ r, there is a q′ a−→ r′ s.t. q′Rr′. A
bisimulation is any symmetric simulation. The largest simulation over C exists,
is denoted v, and is called the simulation preorder. The largest bisimulation is
denoted ↔ and is called bisimilarity.

The hierarchy of equivalences. [Gla90, Gla93] survey the main behavioural
equivalences (and preorders) used in the semantics of concurrent systems. Van
Glabbeek list dozens of different possibilities between the weakest (trace equiv-
alence) and the strongest (bisimilarity). The most important stepping stones in
this hierarchy are given in Fig. 1.

As usual, for any such behavioural relation R, we write (C, q)R(C ′, q′) when
q R q′ inside a disjoint sum system C + C ′. We write C R C′ when C and C′

come with (often implicit) initial states, and (C, q0)R (C′, q′0).

Non-flat systems. A non-flat system is a product of flat systems. Formally, it is a
vector S = (C1, . . . , Ck) where Ci = 〈Σi, Qi,−→i〉 for i = 1, . . . , k. The flatten-
ing CS of S is the transition system 〈Σ, Q,−→〉 given by Σ

def= Σ1∪· · ·∪Σk, Q
def=

Q1× · · ·×Qk and where −→ is the set of all triples ((q1, . . . , qk), a, (r1, . . . , rk))
from Q×Σ ×Q s.t. for i = 1, . . . , k either qi

a−→i ri or (a 6∈ Σi and qi = ri). In
this paper we only need binary synchronization, i.e. where a given a belongs to
at most two different Σi.

For a behavioural relationR, deciding whether SRS ′ means deciding whether
CS R CS′ . A naive algorithm for this problem is any algorithm that computes
CS and CS′ . Let |S| def= |C1|+ · · ·+ |Ck|. Then |CS | is O(|C1|× · · ·× |Ck|), hence
O(2|S|). This is known as state explosion.

196 François Laroussinie and Philippe Schnoebelen

Non-flat systems in the literature. [Rab97b] uses automata acting on boolean
variables (or more generally on variables with a finite domain), [Esp98, JM96]
use 1-safe labeled Petri nets. Product of finite automata are sometimes called
concurrent systems [KVW98, Rab97a]. When relabeling of actions is allowed,
any of these models can be directly translated into any other 3. For maximal
generality, we prove our hardness results for products without relabeling (and
our upper bounds through naive algorithms that easily handle relabelings) which
is one more way we strengthen the results from [Rab97a].

3 Alternating Machines

An Alternating Turing Machine [CKS81] (an ATM for short) is a tuple A =
〈Q, Σ, δ, l, q0, qF 〉 where Q = {q, . . . } is the set of states, Σ = {a, ..} is the tape
alphabet containing a special blank symbol (denoted by ♦), δ ⊆ Q × Σ × Q ×
Σ × {L, R} is the set of transitions, q0 ∈ Q is the initial state, qF ∈ Q is the
final (accepting) state and l : Q→ {∨,∧} labels each state as either disjunctive
or conjunctive.

Q is thus partitioned by l into Q∨ and Q∧. We use letters r, r′, . . . to denote
conjunctive states, s, s′, . . . for disjunctive states and q, q′, . . . for both. W.l.o.g.
we require that q0, qF ∈ Q∨, that Σ = {a, b}, that each q 6= qF is the source of a
transition, and that an ATM has clean alternation, i.e. it moves from disjunctive
to conjunctive states and vice versa. We assign to each transition in δ a number
k ∈ {1, . . . , |δ|} and we will denote by tk the k-th transition.

A configuration of A (also called an instantaneous description, or an i.d.) is a
triple α = (q, i, w) where q ∈ Q is the current state, w ∈ Σ∗ is a word describing
the tape content, and 0 < i ≤ |w| is the position of the head on the tape (i.e. A
is currently seeing w(i)). We use letters β, . . . to denote disjunctive i.d.’s (that
is, i.d.’s with a disjunctive control state) and γ, . . . for the conjunctive i.d.’s. An
i.d. (q, i, w) is final iff q = qF .

An ATM moves like an usual non-deterministic TM: if α = (q, i, w), w(i) = a
and (q, a, q′, b, D) ∈ δ, then A may move from α to α′ = (q′, i′, w′), written
α −→ α′, where w′ is w updated by writing a b in position i and i′ is i + 1 if
D = R or i− 1 if D = L. (As usual, if i′ falls outside of w′, we pad w′ with an
extra ♦ and perhaps readjust i′.) We say α′ is a successor of α : there can only
be a finite number of such successors.

The moves of an ATM starting from some i.d. α0 can be arranged into a
tree: the root node is labeled with α0, and any node labeled by some α has one
child for every α′ s.t. α −→ α′. The order of the branches is not relevant so that
there is only one tree starting from a given α0. We call it the run of A from α0.
3 There exist other varieties of non-flat systems. Quite often they rely on a direct

synchronization mechanism and can be accounted for in our formalism. The few
exceptions (e.g., the Message Sequence Charts of [MPS98] or the Communicating
Hierarchical State Machine of [AKY99]) have only recently been considered from a
complexity-theoretic point of view, and they are obvious candidates for continuations
of our work.

The State Explosion Problem from Trace to Bisimulation Equivalence 197

The run of A on some input word x is its run from α(x) def= (q0, 1, x). Note that
a run may be infinite, and that a node is a leaf if and only if it is labeled by a
configuration without any successor.

For ATM’s, accepting runs are defined by seeing the run as an AND-OR tree.
Formally, for n ∈ N, we say a run rooted at some disjunctive β is accepting in n
steps iff it is a final configuration or n ≥ 1 and one of its children is accepting in
n − 1 steps, while a run rooted at some conjunctive 4 γ is accepting in n steps
iff n ≥ 1 and all its children are accepting in n − 1 steps (and there is at least
one child). We say A accepts x in n steps iff the run from α(x) is accepting in
n steps. A word x is accepted by A iff there exists n ≥ 0 s.t. A accepts x in n
steps.

We say A is linearly-bounded on x if any configuration (q, w, i) in the run
of A on some x has |w| ≤ |x| (that is, the machine never uses more tape than
what is needed by the input). A classical result says that the problem LB-ATM-
ACCEPT :

input: an ATM A and a word x ∈ Σ∗ s.t. A is linearly-bounded on x,
output: yes iff A accepts x, no otherwise.

is EXPTIME-complete.

4 EXPTIME-Hard Relations

Theorem 4.1. Any relation lying between the simulation preorder and bisimi-
larity is EXPTIME-hard on non-flat systems.

This is our main technical result and the rest of this section is devoted to the
proof, a logspace reduction from LB-ATM ACCEPT. The proof of EXPTIME-
hardness of bisimilarity in [JM96] is also based on a reduction from LB-ATM
ACCEPT but, as mentioned in the introduction, the encoding is quite different.

The proofs of the next two lemmas assume familiarity in handling simulations
and bisimulations.

4.1 Modeling an ATM by a Non-flat System

Let A, w0 be an ATM with a word of length n such that A = 〈Q, Σ, δ, l, q0, qF 〉 is
linearly-bounded on w0. We build a concurrent system SA,w0 = (B, C1, . . . , Cn)
which models the run of A over w0. Each Ci models the i-th tape cell: it can
be in state a or b, and its initial state is w0(i). The tape cell synchronizes with
the head of the ATM, hence for each transition tk = (q, e, q′, e′, d) ∈ δ, Ci has
a transition e

tk,i−→ e′. See Fig. 2 for an example of Ci component for a set of
transitions.
B is the control part of A. Write Q− = {q− | q ∈ Q} (resp. Q+ = {q+ . . . })

for a set of copies of states from Q tagged by a “−” (resp. by a “+”). The states
of B is QB

def= Q−×{1, . . . , n}∪Q+
∨×{1, . . . , n}∪Q+

∧×{1, . . . , n}×{t1, . . . , t|δ|}.
4 Remember qF 6∈ Q∧.

198 François Laroussinie and Philippe Schnoebelen

a b

t3, i

t2, i

t1, i

t4, i

t6, i

t5, i

t3 = (r1, a, s2, a, L)

t4 = (r1, a, s3, b, R)

t1 = (s1, a, r1, b, R)

t2 = (s1, b, r2, b, R)

...

t5 = (r2, b, s3, a, R)
t6 = (r2, a, s4, a, L)

Fig. 2. System Ci

A state (q−, i) of B encodes a control state of A and a position of A’s head
over the tape. For each tk = (q, e, q′, e′, d) ∈ δ and for any i, B has a transition
(q−, i)

tk,i−→ (q′−, i + d) where i + d denotes i + 1 (resp. i− 1) if d = R and i < n
(resp. d = L and i > 1).

These transitions are called “type 1” and they synchronize with the corre-
sponding transitions from the Ci’s: a transition labeled “tk, i” is enabled in SA,w0

iff the current control state is q, the position of the head is i, and if Ci contains
the right value. Firing this transition modifies the value of Ci, the control state
and the head position so that the behaviour of A and its tape is faithfully emu-
lated by the type 1 transitions.

s−1, 1

r−2, 2

s4
−, 1s−3, 3s−2, 1

type 1 types 2,3 types 4,5

s+
2, 1

t3, 2

r+
1, 2, t3 r+

1, 2, t4

s3
+, 3

t5, 2

t2, 1
t2, 1

t3, 2

t1, 1

s+
1, 1

t4, 2

r+
2, 2, t5 r+

2, 2, t6

s4
+, 1

t6, 2

t5, 2
t4, 2

t1, 1 t2, 1

t4, 2
t3, 2

t1, 1
t1, 1

t2, 1 t2, 1

t1, 1

t5, 2

t6, 2

t6, 2

Kinds of transitions:

r−1, 2

Fig. 3. (Part of) system B

An example of such type 1 transitions is displayed in the left part of Fig. 3,
assuming δ as in the previous example.

The q+ states behave slightly differently. To begin with, disjunctive and con-
junctive states are not dealt in the same way. Assume s ∈ Q∨ is disjunctive. For
each tk = (s, e, r, e′, d) and tk′ = (r, f, s′, f ′, d′) in δ, for any i, B has a (type 2)

The State Explosion Problem from Trace to Bisimulation Equivalence 199

transition (s+, i)
tk,i−→ (r+, i + d, tk′). These transitions correspond to “firing tk

and picking tk′ as next transition”.
The transitions for conjunctive states are defined accordingly: if tk is some

(r, e, s, e′, d), then B has (type 3) transitions (r+, i, tk)
tk,i−→ (s+, i + d).

Here is the idea behind these transitions: assume an i.d. s, i, w is not accept-
ing. A strategy for establishing this had an opponent firing any transition tk from
s, and the defender may picking a tk′ (one must exist) leading to a rejecting i.d.,
etc. In SA,w0 , this strategy is implemented by having s− (the opponent) firing
a type 1 transition tk, forcing s+ to fire the type 2 tk transition that selects tk′

for the next move.

The (type 4) transitions move from s− states to the Q+ part: formally B has

all (s−, i)
tk,i−→ (r+, i′, tk′) s.t. (s+, i)

tk,i−→ (r+, i′, tk′). The purpose is to allow in
s− everything allowed in s+.

The (type 5) transitions allow firing any tk′ from a (r+, i, tk) where B has
already commited to tk. Assume tk = (r, e, s, e′, d), then for all tk′ 6= tk starting
from r, i.e. tk′ is some (r, f, s′, f ′, d′), B has one of the following transitions
depending on the values of e and f :

– (r+, i, tk)
tk′ ,i−→ (s′−, i + d′) if e = f . For example, see transition “t4, 2” from

(r+
1 , 2, t3) or transition “t3, 2” from (r+

1 , 2, t4) in Fig. 3.

– (r+, i, tk)
tk′ ,i−→ (s′+, i + d′) if e 6= f . For example, see transition “t6, 2” from

(r+
2 , 2, t5) or transition “t5, 2” from (r+

2 , 2, t6) in Fig. 3.

Intuitively if tk and tk′ are both enabled (according to the value of Ci), then the
transition leads to the corresponding s− state, otherwise it leads to the corre-
sponding s+ state.

Finally, B has special (type 6) transitions in (q−F , i) states: (q−F , i) acc−→ (q−F , i).
These are the only transitions without synchronization, they do not exist from
the q+

F states and they distinguish between the Q− and the Q+ parts of B.
With this we have completed the description of B. The size of SA,w0 is O(n×

|Q| × |δ|2) and SA,w0 can be built using only four counters, that is in space
ln(n) + ln(|Q|) + 2 ln(|δ|).

4.2 Relating A on w0 and SA;w0

A configuration of SA,w0 has the form 〈ρ, e1, . . . , en〉 where ρ is a B state and
ei ∈ {a, b} is a Ci state. We write such a configuration as 〈ρ, w〉 where w ∈ Σn

is given by w(i) = ei for i = 1, . . . , n.
〈ρ, w〉 is said to be disjunctive (resp. conjunctive) depending on whether ρ

contains a disjunctive or conjunctive state of A.
We now link i.d.’s of A and configurations of SA,w0 : Given an i.d. α = (q, i, w),

α− denotes the SA,w0 configuration 〈(q−, i), w〉. Given a disjunctive i.d. β =
(s, i, w), β+ represents 〈(s+, i), w〉. Given a conjunctive i.d. γ = (r, i, w) and a
transition tk whose source node is r, γ+

k denotes 〈(r+, i, tk), w〉.

200 François Laroussinie and Philippe Schnoebelen

Lemma 4.2. If A does not accept w0, then 〈(q−0 , 1), w0〉 ↔ 〈(q+
0 , 1), w0〉.

Proof. Remember that β, . . . (resp. γ, . . .) denote disjunctive (resp. conjunctive)
i.d.’s. Consider the following relation R between the configurations of SA,w0 :

R
def= {(β−, β+) | β is rejecting} ∪ Id ∪
{(γ−, γ+

k) | γ −→k β and γ and β are rejecting}
We can show that R is bisimulation: since A rejects w0, then
(〈(q−0 , 1), w0〉, 〈(q+

0 , 1), w0〉) ∈ R, and it remains to check that R has the transfer
property in both directions (see Appendix A for details).

Lemma 4.3. If A accepts w0, then 〈(q−0 , 1), w0〉 6v 〈(q+
0 , 1), w0〉.

Proof. By induction on the number of steps for accepting. See Appendix B.

Corollary 4.4. For any relation R s.t. ↔ ⊆ R ⊆v, A does not accept w0 iff
〈(q−0 , 1), w0〉R〈(q+

0 , 1), w0〉.
which concludes the proof of Theorem 4.1.

4.3 Upper Bounds

Theorem 4.1 is in a sense optimal since the lower bounds it exhibits are optimal
for the relations singled out in Fig. 1:

Theorem 4.5. Bisimulation, 2-nested simulation, ready simulation, and simu-
lation on non-flat systems are EXPTIME-complete.

Proof (sketch). There only remain to show membership in EXPTIME. In all four
cases this can be done by a reduction to model checking of a simple branching-
time mu-calculus formula. Such a reduction expresses a relation R via a mu-
calculus formula ϕR in a way s.t. CRC′ iff (C̃, C̃′) |= ϕR where C̃ is a variant of
C where the actions have been relabeled to avoid conflicts with C ′. For bisimu-
lation this is done in [And93], and the same technique apply to the other equiva-
lences. We then rely on EXPTIME-completeness of mu-calculus model-checking
for non-flat systems [KVW98, Rab97b]. ut

4.4 Extension to Timed Automata

Timed Automata [AD94] can be seen as a special kind of non-flat systems. We
denote by N the set of natural numbers and by R the set of non–negative real
numbers. If Cl = {x, y, . . . } is a set of clocks, L(Cl) denotes clocks constraints
over Cl, that is the set of formulas built using boolean connectives over atomic
formulas of the form x ./ m or x− y ./ m with x, y ∈ Cl, m ∈ N and ./∈ {=, <
, >,≤,≥}. A time assignment v for Cl is a function from Cl to R. We denote by
RCl the set of time assignments for Cl. For v ∈ RCl and d ∈ R, v + d denotes

The State Explosion Problem from Trace to Bisimulation Equivalence 201

the time assignment which maps each clock x in Cl to the value v(x) + d. For
Cl′ ⊆ Cl, [Cl′ ← 0]v denotes the assignment for Cl which maps each clock in
Cl′ to the value 0 and agrees with v over Cl\Cl′. Given a condition g ∈ L(Cl)
and a time assignment v ∈ RCl, we note v |= g when g holds for v. We define
the timed automata (TA):

Definition 4.6. A timed automaton TA over Σ is a tuple 〈N, η0, Cl, E〉 where
N is a finite set of nodes, η0 ∈ N is the initial node, Cl is a finite set of clocks,
E ⊆ N×L(Cl)×Σ×2Cl×N corresponds to the set of edges: e = 〈η, g, a, r, η′〉 ∈ E
represents an edge from the node η to the node η′ with action a, r denotes the set
of clocks to be reset and g is the enabling condition (the guard) over the clocks
of TA. We use the notation η

g,a,r−→ η′.

A configuration of TA is a pair (η, v) where η is a node of TA and v a time as-
signment for Cl. Informally, the system starts at node η0 with the assignment v0

which maps all clocks to 0. The values of the clocks may increase synchronously
with time. At any time, the automaton whose current node is η can change node
by following an edge 〈η, g, a, r, η′〉 ∈ E provided the current values of the clocks
satisfy g. With this transition the clocks in r get reset to 0. Let Θ denote the
set of delay actions {ε(d) | d ∈ R}. Formally the semantics of TA is defined as a
labeled timed transition system:

Definition 4.7. A labeled timed transition system over Σ is a tuple S =
〈S, s0,−→〉, where S is a set of states, s0 is the initial state, −→⊆ S×(Σ∪Θ)×S
is a transition relation. We require that for any s ∈ S and d ∈ R, there exists a

unique state sd such that s
ε(d)−→ sd and that (sd)e = sd+e.

The labeled timed transition system associated with TA is 〈STA, s0, −→TA〉,
where STA is the set of configuration of TA, s0 is the initial configuration (η0, v0),
and −→TA is the transition relation defined as follows:

(η, v) a−→(η′, v′) iff ∃ 〈η, g, a, r, η′〉 ∈ E s.t. v |= g and v′ = [r ← 0]v

(η, v)
ε(d)−→(η′, v′) iff η = η′ and v′ = v + d

The standard notion of bisimulation (and simulation) can be naturally ex-
tended to timed systems [Čer93]: A strong timed (bi)simulation between TA and
TB is a (bi)simulation between the associated labeled timed transition systems.

Theorem 4.8. Any relation lying between the simulation preorder and bisimi-
larity is EXPTIME-hard on timed automata.

Proof (sketch). Let A, w0 be an ATM with a word of length n. We transform
the automaton B defined in section 4.1 into a timed automaton TB in such a
way that the clocks Cl of TB encode the tape content. This encoding is used
in [AL99]. The transitions of TB use guards over the clocks to ensure a correct
behavior, and reset operations are used to modify the tape content according to
the performed transition. Therefore we obtain a single timed automaton instead
of a parallel composition of finite automata.

202 François Laroussinie and Philippe Schnoebelen

TB uses 2n + 1 clocks: {x1, . . . , xn, y1, . . . , yn, t}. The clock t is used to en-
sure a delay of length 1 between two transitions of TB. The clocks xi and
yi encode the value of the i-th tape cell by the following convention: Ci = a
(resp. Ci = b) iff xi = yi (resp. xi < yi). Let ti be the ATM transition

(q, e, q′, e′, d) : the transition (q, k)
ti,k−→ (q′, k + d) we used in B is replaced

by a transition (q, k)
t=1∧g,ti,r−→ (q′, k + d) where g is xi = yi (resp. xi < yi) if

e = a (resp. e = b), the reset set r is {t, xi} (resp. {t, xi, yi}) if e′ = b (resp.
e′ = a). The initialization of the tape with the input word w0 can be encoded by

adding the transitions init−
t=1,s0,rw−→ (q−0 , 1) and init+

t=1,s0,rw0−→ (q+
0 , 1), where

rw0 = {t} ∪ {xi | w0(i) = b}. The acc transition of B are kept in TB.
Lemmas 4.2 and 4.3 still hold for the initial configurations (init−, u0) and
(init+, v0) where u0 and v0 map any clock in Cl to 0.

Remark 4.9. Note that bisimulation and simulation for timed automata are
EXPTIME-complete since the model-checking problem for the timed µ-
calculus (which allows to express bisimilarity and similarity) is EXPTIME-
complete [AL99].

5 EXPSPACE-Hard Relations

Theorem 5.1. Any relation lying between trace inclusion and the intersection
of ready trace equivalence and possible-futures equivalence is EXPSPACE-hard
on non-flat systems.

Proof (sketch). We adapt the proof, from [JM96], that trace inclusion is EXP-
SPACE-hard on non-flat systems.

Their proof is a reduction from the problem of deciding whether the lan-
guage defined by a regular expression with interleaving is Σ∗, which is known
to be EXPSPACE-complete [MS94]. Given any regular expression e built from
{∪, ∗, ., ‖} with |e| = n, Jategaonkar and Meyer build a non-flat system Net(e)
over the alphabet Σ∪{1,

√} s.t. Tr(Net(e)) is (the prefix-closure of) {14na114n

. . .14nak14n√ | a1 . . . ak ∈ L(e)}.
Let =RT.PF be the equivalence defined as the intersection of =RT and =PF .

We can modify the previous model in a simple way to obtain Net(e, n) with n ≥
|e| so that, for L(e) = Σ∗ iff Net(e, n) =RT.PF Net(Σ∗, n) iff Net(Σ∗, n) ⊆Tr

Net(e, n). This will entail the result.
The main idea is to add a state end from which the enabled transitions

are labeled by Σ ∪ {1} and lead to end. From any state q, we add transitions
q

Σ−→ end. By this way we have that RT (Net(e, n)) is (the prefix-closure of)

�
(

4nz }| {
{1}, 1, . . . , {1}, 1, Σ, a1, {1}, 1, . . . , Σ, ak, {1}, 1, . . . , {√},√, ∅) | a1 . . . ak ∈ L(e)

	

S �
(

4nz }| {
{1}, 1, . . . , {1}, 1, Σ, b1, {1}, 1, . . . , Σ, bk, {1}) | b1, . . . , bk ∈ Σ

	

The State Explosion Problem from Trace to Bisimulation Equivalence 203

and PF (Net(e, n)) is the set of pairs (w, S) s.t. w = 14na114n . . .1k ∈
Tr(Net(e, n)) and S is the prefix-closure of S1 ∪ S2 or S2 with:

S1 = {w′ | w.w′√ ∈ Tr(Net(e, n))}
S2 = {w′ = 14n−kb114n . . . bl14n | b1 . . . bl ∈ Σ∗}

Note that for (w, S) ∈ PF (Net(Σ∗, n)), S is the prefix-closure of:

{w′ = 14n−kb114n . . . bl14n√ | b1 . . . bl ∈ Σ∗}
Clearly, Net(Σ∗, n) ⊆Tr Net(e, n) iff Net(e, n) =RT Net(Σ∗, n) iff
Net(e, n) =PF Net(Σ∗, n) iff L(e) = Σ∗. This gives the result. ut

5.1 Upper Bounds

Theorem 5.1 is in a sense optimal since the lower bounds it exhibits are optimal
for the relations singled out in Fig. 1:

Theorem 5.2. Possible-futures equivalence, ready trace equivalence, failure
trace equivalence, readiness equivalence, failures equivalence, completed trace
equivalence and trace equivalence on non-flat systems are EXPSPACE-complete.

Proof (sketch). We only need to prove membership in EXPSPACE. In all cases,
this can be done by the naive algorithm, noting that the problems are in
PSPACE for flat systems (by simple reductions to language equivalence of non-
deterministic automata).

6 Conclusion

We have shown that for non-flat systems, any relation between the simulation
preorder and bisimilarity is EXPTIME-hard, and that any relation between trace
inclusion and ready trace equivalence is EXPSPACE-hard.

This is a partial answer to the questions raised by Rabinovich [Rab97a] 5.
Indeed, these results cover a large array of relations, and they give lower bounds
matching the (obvious) upper bounds in the 11 relations van Glabbeek singles
out as most prominent in his branching time – linear time spectrum.

For the EXPTIME-hard relations, our construction also applies to timed
automata, where the lower bounds were not known.

This theoretical study has practical implications. It strongly suggests that
there is no way to escape state explosion when checking non-flat systems for some
behavioural relation, at least not by some smart choice of which behavioural
equivalence is chosen 6. Attempts at general solutions should rather aim at find-
ing a smart limitation of how non-flat systems may be described. In such a
5 Additionally, our hardness results do not need his hide operator to further relabel

the products of systems.
6 Since our results are not a complete answer, we cannot rule out the dim possibility

that some PSPACE-easy relation exist in the branching time–linear time spectrum.

204 François Laroussinie and Philippe Schnoebelen

quest, one should aim at forbidding the construction of our SA,w0 system (or
any reasonably succinct equivalent encoding).

A related idea is to focus on the complexity of deciding whether S ∼ C
where C is a fixed system and where S is then the only input. For this mea-
sure, called implementation complexity, the results are no longer uniform. For
example, for simulation we have that deciding whether S v C is still EXPTIME-
complete [HKV97] while for bisimulation, we have the following:

Proposition 6.1. When C is fixed, deciding whether S↔C is PSPACE-
complete.

Proof (Sketch). PSPACE membership combines the ability to build a CTL for-
mula ΦC such that S↔C iff S |= ΦC [BCG88] and the fact that CTL model
checking of non-flat systems is PSPACE-complete [KVW98]. PSPACE-hardness
is by reduction of the reachability problem in S.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. In Proc. 26th Int. Coll. Automata, Languages, and Programming
(ICALP’99), Prague, Czech Republic, July 1999, volume 1644 of Lecture
Notes in Computer Science, pages 169–178. Springer, 1999.

[AL99] L. Aceto and F. Laroussinie. Is your model checker on time ? In Proc.
24th Int. Symp. Math. Found. Comp. Sci. (MFCS’99), Szklarska Poreba,
Poland, Sep. 1999, volume 1672 of Lecture Notes in Computer Science,
pages 125–136. Springer, 1999.

[And93] H. R. Andersen. Verification of Temporal Properties of Concurrent Sys-
tems. PhD thesis, Aarhus University, Denmark, June 1993. Available as
DAIMI PB–445.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite
Kripke structures in propositional temporal logic. Theoretical Computer
Science, 59(1–2):115–131, 1988.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

[Čer93] K. Čerāns. Decidability of bisimulation equivalence for parallel timer pro-
cesses. In Proc. 4th Int. Workshop Computer Aided Verification (CAV’92),
Montreal, Canada, June–July 1992, volume 663 of Lecture Notes in Com-
puter Science, pages 302–315. Springer, 1993.

[CGL96] E. M. Clarke, O. Grumberg, and D. Long. Model-checking. In M. Broy, ed-
itor, Deductive Program Design, Proc. NATO-ASI Summer School, Mark-
toberdorf, Germany, 26 July - 7 Aug 1994, volume F-152 of NATO ASI
Series. Springer, 1996.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

The State Explosion Problem from Trace to Bisimulation Equivalence 205

[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an in-
troduction. In Advances in Petri Nets 1998, volume 1491 of Lecture Notes
in Computer Science, pages 374–428. Springer, 1998.

[Gla90] R. J. van Glabbeek. The linear time – branching time spectrum. In Proc.
Theories of Concurrency (CONCUR’90), Amsterdam, NL, Aug. 1990, vol-
ume 458 of Lecture Notes in Computer Science, pages 278–297. Springer,
1990.

[Gla93] R. J. van Glabbeek. The linear time – branching time spectrum II: The
semantics of sequential systems with silent moves. In Proc. 4th Int. Conf.
Concurrency Theory (CONCUR’93), Hildesheim, Germany, Aug. 1993,
volume 715 of Lecture Notes in Computer Science, pages 66–81. Springer,
1993.

[HKV97] D. Harel, O. Kupferman, and M. Y. Vardi. On the complexity of verifying
concurrent transition systems. In Proc. 8th Int. Conf. Concurrency Theory
(CONCUR’97), Warsaw, Poland, Jul. 1997, volume 1243 of Lecture Notes
in Computer Science, pages 258–272. Springer, 1997.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[Jat99] L. Jategaonkar. Personal communication, August 1999.

[JM96] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences
on safe, finite nets. Theoretical Computer Science, 154(1):107–143, 1996.

[KVW98] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking, 1998. Full version of the CAV’94
paper, accepted for publication in J. ACM.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.

[MPS98] A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence
charts. In Proc. Int. Conf. Foundations of Software Science and Computa-
tion Structures (FOSSACS’98), Lisbon, Portugal, Mar.-Apr. 1999, volume
1378 of Lecture Notes in Computer Science, pages 226–242. Springer, 1998.

[MS94] A. J. Mayer and L. J. Stockmeyer. Word problems—this time with inter-
leaving. Information and Computation, 115(2):293–311, 1994.

[Pnu85] A. Pnueli. Linear and branching structures in the semantics and logics
of reactive systems. In Proc. 12th Coll. Automata, Languages and Pro-
gramming (ICALP’85), Nafplion, Greece, Jul. 1985, volume 194 of Lecture
Notes in Computer Science, pages 15–32. Springer, 1985.

[Rab97a] A. Rabinovich. Complexity of equivalence problems for concurrent systems
of finite agents. Information and Computation, 139(2):111–129, 1997.

[Rab97b] A. Rabinovich. Symbolic model checking for µ-calculus requires expo-
nential time. Tech. report, Dept. Comp. Sci., Tel Aviv University, Israel,
August 1997.

A Proof of Lemma 4.2

We have to show that R has the transfer property in both directions:
1. Consider a pair (β−, β+) ∈ R, with β = (s, i, w) a rejecting (disjunctive) i.d.
β is not a final configuration, no acc transition is enabled from β−: and we just
have to check the transfer property for transitions labeled by tk, i:

206 François Laroussinie and Philippe Schnoebelen

– Assume a type 1 move β−
tk,i−→ 〈(r−, i′), w′〉. In A, this corresponds to

(s, i, w) −→k (r, i′, w′). Let γ be (r, i′, w′). Since β is disjunctive and reject-
ing, γ is rejecting. Thus there exists a move γ −→k′ β′ s.t. β′ is rejecting.
Moreover the (type 2) transition β+ tk,i−→ γ+

k′ is allowed in SA,w0 . Therefore,

for any transition β−
tk,i−→ γ−, there exists β+ tk,i−→ γ+

k′ s.t. (γ−, γ+
k′) ∈ R.

– The other possible moves for this pair are type 4 transitions β− −→ γ+
k′ and

type 2 transitions β+ −→ γ+
k′ : they can be imitated by the other side, relying

on (γ+
k′ , γ

+
k′) ∈ Id ⊆ R.

2. Consider a pair (γ−, γ+
k) ∈ R with γ = (r, i, w). γ is a rejecting i.d. and

there exists a move γ −→k β leading to a rejecting β = (s, i′, w′). We check the
transfer property:

– Assume a type 1 move γ−
tk′ ,i−→ β−. Then γ −→k′ β and either k = k′ or

k 6= k′. If k = k′, then γ+ tk′ ,i−→ β+ and since β is not accepting, (β−, β+) ∈ R.
When k 6= k′, both tk and tk′ are enabled from γ, so that tk and tk′ require
the same letter on the tape cell, and there exists a type 5 move γ+ tk′ ,i−→ β−.
We use the fact that (β−, β−) ∈ Id ⊆ R.

– Assume a type 3 move γ+
k

tk,i−→ β+ with β = (s+, i′, w′), it can be simulated

by γ−
tk,i−→ β− because β is not accepting, so that (β−, β+) ∈ R.

– Other moves from γ+
k reach a β− (because tk is enabled from γ) and can be

easily imitated.

3. Finally, the pairs from Id obviously enjoy the transfer property.

B Proof of Lemma 4.3

We show by induction on l that

1. If β is accepting in l steps, then β− 6v β+.
2. If γ = (r, i, w) is accepting in l steps, then γ− 6v γ+

k for any k s.t. the source
node of tk is r.

– l = 0: if β accepts in 0 steps, then it is final and β− acc−→ cannot be matched
from β+. A conjunctive configuration γ cannot be accepting in 0 steps.

– Assume the property holds for any l′ ≤ l. We have two cases:
• A disjunctive β accepts in l + 1 steps. Then there exists tk s.t. β −→k γ

where γ = (r, i, w) is accepting in l steps. In SA,w0 , the transition β−
tk,i−→

γ− has to be matched by a transition labeled with “tk, i” which leads to
a configuration γ−k′ and, by i.h., γ− 6v γ+

k′ .• A conjunctive γ = (r, i, w) accepts in l + 1 steps. We must show that
γ− 6v γ+

k for any k s.t. tk starts from r. There are two cases:
∗ tk is enabled from γ: since γ accepts, any move from γ leads to an

i.d. accepting in l steps. In SA,w0 , the transition γ−
k,i−→ β− can only

be matched from γ+
k by γ+

k

k,i−→ β+ and, by i.h., β− 6v β+.

The State Explosion Problem from Trace to Bisimulation Equivalence 207

∗ tk is not enabled from γ: any transition tk′ enabled from γ leads to
an i.d. accepting in l steps and one such a transition exists. In SA,w0 ,

the move γ−
k′,i−→ β− can only be matched from γ+

k by γ+
k

k′,i−→ β+

and, by i.h., β− 6v β+.
In both cases, we found a transition from γ− which cannot be simulated
from γ+ and then γ− 6v γ+

k .

Now, since we assume that (q0, 1, w0) is accepting, the proof is complete.

	Introduction
	Equivalences and Preorders between Non-flat Systems
	Alternating Machines
	EXPTIME-Hard Relations
	Modeling an ATM by a Non-flat System
	Relating A on w_0 and ${cal S}_{A,w_0}$
	Upper Bounds
	Extension to Timed Automata

	EXPSPACE-Hard Relations
	Upper Bounds

	Conclusion
	Proof of Lemma ref {lem1}
	Proof of Lemma ref {lem2}

