
More About TAS and IsaWin — Tools for

Formal Program Development

Christoph Lüth1 and Burkhart Wolff2

1 Bremen Institute of Safe Systems (BISS), FB 3, Universität Bremen
cxl@informatik.uni-bremen.de

2 Institut für Informatik, Albert-Ludwigs-Universität Freiburg
wolff@informatik.uni-freiburg.de

Abstract. We present a family of tools for program development and
verification, comprising the transformation system TAS and the theorem
proving interface IsaWin. Both are based on the theorem prover Isabelle
[8], which is used as a generic logical framework here. A graphical user
interface, based on the principle of direct manipulation, allows the user
to interact with the tool without having to concern himself with the
details of the representation within the theorem prover, leaving him to
concentrate on the main design decisions of program development or
theorem proving.

Introduction

Interactive theorem proving and program development may be more of a chal-
lenge than fully automatic techniques, but at the same time it is more powerful.
The tools presented here have been designed to make this task as straightfor-
ward as possible. They are based on the Isabelle system, which provides a flexible
logical framework and combines interactive proof with powerful automatic proof
techniques. Isabelle is complemented with a graphical user interface, which is
easy to learn and does not burden the user with unnecessary command language
syntax and other technicalities. Moreover, the tools and methods can be used
for a wide variety of logics or formal methods.

The tools form an integrated system for formal program development, in
which TAS is used for transformational program development, and IsaWin for
discharging the incurred proof obligations. However, both tools can be used
separately as well.

In this extended abstract, we will give a brief overview over TAS and IsaWin.
Since TAS and IsaWin have been presented on previous ETAPS conferences
[3, 5], the presentation will concentrate on recent improvements.

The Transformation Application System TAS

TAS is a system for formal transformational program development. In a nutshell,
formal program development with TAS proceeds as follows. The user begins by

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 367–370, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



368 Christoph Lüth and Burkhart Wolff

stating an initial specification with respect to a particular signature. The sig-
nature, corresponding to an Isabelle theory, is edited in an external file, and
contains definitions of operations, data types, axioms, etc. The initial specifi-
cation is transformed by applying correctness-preserving transformation rules,
either generated automatically from existing theorems or taken from a library of
predefined transformations. A particular feature of TAS is that transformation
rules are based on theorems, which means that we can prove their correctness
in a precise logical sense.

Fig. 1. Screenshot of TAS. Windows, clockwise from top left: the notepad, the
construction history, a transformation, the proof obligations and the construction
area.

Figure 1 shows a screenshot of TAS. The principle of direct manipulation
means that the user should not have to remember the names of transforma-
tion rules, theorems, or other objects, but should instead be able to work with
meaningful gestures as often as possible. Hence, transformation rules, substitu-
tions and other intermediate results are placed on the notepad, where they are
represented by icons and can be manipulated by drag&drop. Transformational
development takes place in the construction area, where the current specification



More About TAS and IsaWin — Tools for Formal Program Development 369

can be manipulated by pointing — we can mark a particular subterm and apply
a transformation to it, or ask for all applicable transformations.

TAS is generic over the formal method employed, as long as it supports a no-
tion of correctness-preserving refinement. Instantiations of TAS include higher-
order logic, where the refinement is based on logical equivalence, and the process
calculus CSP, where the refinement is based on the usual refinement of processes.

IsaWin

IsaWin is a graphical user interface for the theorem prover Isabelle. It can be
used together with TAS to discharge the proof obligations arising from trans-
formational developments, or as a stand-alone interface to Isabelle. It allows
access to all of Isabelle’s basic functionality, such as forward and backward res-
olution, simplification and classical reasoning. An instantiation of IsaWin with
the embedding of the algebraic specification language CASL into Isabelle will be
presented at the TACAS conference [7].

What’s New?

The new developments build on the strengths of TAS and IsaWin: the graphical
user interface and its principle of direct manipulation. The basic idea is that we
can not relieve users of design decisions during the development or proving pro-
cess, but we can support them as much as possible. To this end, we attempt to
provide only as much information as needed, eliding unnecessary details but pre-
serving the essentials. Details should remain available, but only per user request.
The interface should be quiet [2]. Of course, users need to be knowledgeable in the
particular logic or formal method used, but they should not have to remember
names or syntactic representations of transformations, theorems or operations.

The recent improvements can be grouped as follows:

– Search functions look for applicable transformations or theorems in a par-
ticular situation. The user can mark a subterm, and have the system list all
applicable transformations or theorems in a chooser.

– The transformation library allows transformations to be grouped into differ-
ent folders (to distinguish e.g. complex design transformations from simple
logical transformations). Further, the system supports the interactive, fully
automatic generation of transformations from theorems.

– Pervasive use of interactive hypertext. E.g. by clicking on the name of an ap-
plied transformation rule in the history, the rule itself is displayed; a principle
which is used whenever a name is displayed.

– With the filer, we can import signatures and specifications from the file
system.

– TAS supports the reuse of developments by allowing the generation and
abstraction of transformation rules from transformational developments.

– A new instantiation of TAS to support a variation of Back and Wright’s
refinement calculus [1] is currently being developed.



370 Christoph Lüth and Burkhart Wolff

More Information

For details of the system architecture underlying TAS and IsaWin, and in par-
ticular the generic graphical user interface, we refer to [6]. The wider context of
TAS and IsaWin, the UniForM project, is described in [4]. Further information
and the tools themselves are available from our web page:

http://www.informatik.uni-bremen.de/~agbkb/

System Requirements

To compile TAS and IsaWin, a full Standard ML compiler (such as Standard
ML of New Jersey) which furthermore implements the Posix modules from the
SML Basis Library is needed. To run TAS and IsaWin, the Tcl/Tk shell (wish,
version 8.0 or newer) is needed as well.

Binary distributions are available for Solaris and Linux (SuSE distribution),
but the wish needs to be available locally. On these systems, TAS and IsaWin
need at least 32 MB to run, and 64 MB to run comfortably.

References

[1] R.-J. Back and J. von Wright. Refinement Calculus. Springer Verlag, 1998.
[2] R. Bornat and B. Sufrin. Jape’s quiet interface. In N. Merriam,

editor, User Interfaces for Theorem Provers UITP ’96, Technical Re-
port, pages 25–34. University of York. Electronic proceedings available at
http://www.cs.york.ac.uk/~nam/uitp96/proceedings.html, 1996.

[3] Kolyang, C. Lüth, T. Meier, and B. Wolff. TAS and IsaWin: Generic interfaces
for transformational program development and theorem proving. In M. Bidoit and
M. Dauchet, editors, TAPSOFT 97’: Theory and Practice of Software Development,
number 1214 in LNCS, pages 855–859. Springer Verlag, 1997.

[4] B. Krieg-Brückner, J. Peleska, E.-R. Olderog, and A. Baer. The UniForM work-
bench, a universal development environment for formal methods. In J. M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 — Formal Methods. Proceedings, Vol.
II, number 1709 in LNCS, pages 1186–1205. Springer Verlag, 1999.

[5] C. Lüth, H. Tej, Kolyang, and B. Krieg-Brückner. TAS and IsaWin: Tools for
transformational program development and theorem proving. In J.-P. Finance,
editor, Fundamental Approaches to Software Engineering FASE’99. Joint European
Conferences on Theory and Practice of Software ETAPS’99, number 1577 in LNCS,
pages 239–243. Springer Verlag, 1999.

[6] C. Lüth and B. Wolff. Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming, 9(2):167–189,
March 1999.

[7] T. Mossakowski. CASL — from semantics to tools. In TACAS 2000 — Tools and
Algorithms for the Construction and Analysis of Systems. Springer Verlag, 2000.
To appear in LNCS.

[8] L. C. Paulson. Isabelle - A Generic Theorem Prover. Number 828 in LNCS.
Springer Verlag, 1994.


	More About TAS and IsaWin | Tools forFormal Program Development
	Introduction
	The Transformation Application System TAS
	IsaWin
	What's New?
	More Information
	System Requirements
	References


