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Abstract. We describeλinkς (pronounced “links”), a low-level calculus designed
to serve as the basis for an intermediate representation in compilers for class-based
object-oriented languages. The primitives inλinkς can express a wide range of
class-based object-oriented language features, including various forms of inhe-
ritance, method override, and method dispatch. In particular,λinkς can model
the object-oriented features ofMoby, OCaml, andLoom, where subclasses may
be derived from unknown base classes.λinkς can also serve as the intermediate
representation for more conventional class mechanisms, such asJava’s. In this
paper, we formally describeλinkς, give examples of its use, and discuss how
standard compiler transformations can be used to optimize programs in theλinkς
representation.

1 Introduction

Class-based object-oriented languages provide mechanisms for factoring code into a
hierarchy of classes. For example, the implementation of a text window may be split
into a base class that implements windows and a subclass that supports drawing text.
Since these classes may be defined in separate compilation units, compilers for such
languages need an intermediate representation (IR) that allows them to represent code
fragments (e.g., the code for each class) and to generate linkage information to assem-
ble the fragments. For languages with manifest class hierarchies (i.e., languages where
subclass compilation requires the superclass representation, as is the case in C++ [Str97]
andJava [AG98]), representing code fragments and linkage information is straightfor-
ward. But for languages that allow classes as module parameters, such asMoby [FR99a]
andOCaml [RV98,Ler98], or languages that have classes as first-class values, such as
Loom [BFP97], the design of an IR becomes trickier (Section 2 illustrates the compli-
cations).

We are interested in a compiler IR that can handle inheritance from non-manifest
base classes. In addition, the IR should satisfy a number of other important criteria.
The IR should be expressive enough to support a wide range of statically typed surface
languages fromJava to Loom. The IR should be reasonably close to the machine and
should be able to express efficient object representations (e.g., shared method suites)
and both static and dynamic method dispatch. The IR should enable optimizations based
on simple and standard transformations. Lastly, the IR should be amenable to formal
reasoning about compiler transformations and class linking.
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This paper presentsλinkς, which is an extension of the untypedλ-calculus that meets
these design goals.λinkς extends theλ-calculus withmethod suites, which are ordered
collections of methods;slots, which index into method suites; anddictionaries, which
map method labels to slots. Inλinkς, method dispatch is implemented by first using
a dictionary to find the method’s slot and then using the slot to index into a method
suite.λinkς can support true private names and avoid the fragile base class problem by
dynamically changing the dictionary associated with an object when the object’s view of
itself changes [RS98,FR99b]. Separating dynamic dispatch into two pieces also enables
more compiler optimizations. In this paper, we treatλinkς as a compiler IR, although
the reader should think of it as more of a framework or basis for a compiler’s IR.

By design,λinkς satisfies our goals. Because of the abstractions inλinkς, it can
express a wide range of surface class mechanisms, from the static classes found inJava
through the dynamic inheritance ofLoom (Section 5). By makingλinkς untyped, we
avoid limiting the applicability ofλinkς to languages with incompatible type systems.
The operations in the calculus allow compilers to leverage static information to optimize
message dispatch. For example, the type system in C++ guarantees the slot at which each
method may be found at run-time. Inλinkς, we may use this information to evaluate
the dictionary lookup operation associated with message dispatch at compile time —
providing the expected efficiency for message dispatch to C++ programmers. Because
λinkς is based on theλ-calculus, familiarλ-calculus optimizations apply immediately to
λinkς (Section 6), and these optimizations yield standard object-oriented optimizations
when applied toλinkς programs. Consequently, ad-hoc optimizations for the object-
oriented pieces of a compiler based onλinkς are not necessary. Becauseλinkς is a formal
language, it is amenable to formal reasoning. For example, one can show thatλinkς is
confluent and that the reductions tagged as linking redexes are strongly normalizing
(Section 4).

In the next section, we discuss the challenges involved in implementing inheritance
from an unknown base-class. In Section 3, we present the syntax, operational semantics,
and rewrite systems ofλinkς. To keep the discussion focused, we restrict the technical
presentation to a version ofλinkς with methods, but no fields (instance variables). The
techniques used to handle methods apply directly to fields (see Section 5.1). Section 4
defines a simple class languageScl and shows how it can be translated toλinkς. We
prove that the translation of any “well-ordered"Scl program has the property that all
linking steps can be reduced statically. In Section 5, we sketch howλinkς can serve as an
IR for Moby, Loom, a mixin extension forScl, and C++. Section 6 further demonstrates
the utility of the rewriting system forλinkς by showing how method dispatch can be
optimized in the calculus. We conclude with a discussion of related and future work.

2 Inheritance from Unknown Classes

One of our principal design goals is to support inheritance from unknown base classes.
Figure 1 shows where difficulties can arise when compiling languages with such a feature.
The example is written inMoby, although similar examples can be written inLoom and
OCaml. The module in Figure 1 defines a classColorPt that extends an unknown base
classPt.Point by inheriting itsgetX andgetY methods, overriding itsmove method,
and adding acolor field. When compiling the module, the compiler knows only that
the Pt.Point superclass has three methods (getX, getY, andmove). The compiler
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signature PT {
class Point : {

public meth getX : Unit -> Int
public meth getY : Unit -> Int
public meth move : (Int, Int) -> Unit

}
}

module ColorPtFn (Pt : PT) {
class ColorPt {

inherits Pt.Point
field c : Color
public meth move (x : Int, y : Int) -> Unit {

if (self.c == Red)
then super.move(2*x, 2*y)
else super.move(x, y)

}
}

}

Fig. 1. Inheriting from an unknown superclass

does not know in what order these methods appear in the internal representation of the
Point class, nor what other private methods and fields thePoint class might have.
As an example of inheritance from such a class, suppose we have a classPolarPt
that implements thePt.Point interface and has additional polar-coordinate methods
getTheta andgetRadius. When we apply theColorPtFn module toPolarPt, we
effectively hide the polar-coordinate methods, making them private and allowing their
names to be reused for other, independent methods inColorPt and its descendants. Such
private methods, while hidden, are not forgotten, since they may be indirectly accessible
from other visible methods (e.g., thePolarPt class might implementgetX in terms of
polar coordinates). This hiding is a problem when compiling thePolarPt class, since
its code must have access to methods that might not be directly available in its eventual
subclasses.

3 λinkς

λinkς is aλ-calculus with method suites, slots, and dictionaries, which provides a nota-
tion for class assembly, inheritance, dynamic dispatch, and other object-oriented features.

3.1 Syntax

The syntax ofλinkς is given by the grammar in Figure 2. In addition to the standardλ-
calculus forms, there are eight expression forms for supporting objects and classes. The
term〈e1, . . . , en〉 constructs a method suite from the expressionse1, . . . , en, where each
ei is assigned sloti. The expressione@e′ extracts the value stored in the slot denoted by
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e ::= x variable
| λx.e | e(e′) function abstraction/application
| (e1, ..., en) | πi e tuple creation/projection
| 〈e1, . . . , en〉 method suite construction
| e@e′ method suite indexing
| e||e′ method suite extension
| e@e′ ← e′′ method override
| i slot
| e + e′ slot addition
| {m1 7→ e1, . . . , mn 7→ en} dictionary construction
| e!m dictionary application

Fig. 2.The syntax ofλinkς

(λx.e)(v) ↪→ e[x 7→ v]

πi(v1, . . . , vn) ↪→ vi where1 ≤ i ≤ n

i + j ↪→ k wherek = i + j

{m1 7→ v1, . . . , mn 7→ vn}!mi ↪→ vi where1 ≤ i ≤ n

〈v1, . . . , vn〉 || 〈v′
1, . . . , v′

n′〉 ↪→ 〈v1, . . . , vn, v′
1, . . . , v′

n′〉
〈v1, . . . , vi, . . . , vn〉@i← v′ ↪→ 〈v1, . . . , v′, . . . , vn〉 where1 ≤ i ≤ n

〈v1, . . . , vn〉@i ↪→ vi where1 ≤ i ≤ n

Fig. 3.Reduction rules forλinkς

e′ from the method suite denoted bye. The method suite extensione||e′ concatenates the
suitese ande′. The last method suite operation is override, which functionally updates
a slot in a given suite to produce a new suite. A slot is specified by a slot expression,
which is either an integeri or the addition of two slot expressions. The expression
{m1 7→ e1, . . . , mn 7→ en} denotes a dictionary where each labelmi is mapped to the
slot denoted byei. Application of a dictionary to a labelm is writtene!m.

We identify terms up to the renaming of bound variables and usee[x 7→ e′] to denote
the capture-free substitution ofe′ for x in e. We assume that dictionaries are unordered
and must represent finite functions. For instance, the dictionary{m 7→ 1, m 7→ 2} is an
ill-formed expression, since it mapsm to two different values. To simplify notation, we
use the following shorthands:

let x = e in e′ for (λx.e′)(e)
λ(x1, . . . , xn).e for λp.((λx1. · · ·λxn.e) (π1 p) · · · (πn p))

3.2 Operational Semantics

We specify the operational semantics ofλinkς using an evaluation-context based rewrite
system [FF86]. Such systems rewrite terms step-by-step until no more steps can be taken.
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At each step, the term to be reduced is parsed into an evaluation context and a redex.
The redex is then replaced, and evaluation begins anew with another parsing of the term.
Note that sinceλinkς is untyped there are legal expressions, such asπi (λx.e), that
cannot be reduced.

Two grammars form the backbone of the semantics. The first describes values, a
subset of expressions that are in reduced form:

v ::= x | λx.e | (v1, . . . , vn) | 〈v1, . . . , vn〉 | i | {m1 7→ v1, . . . , mn 7→ vn}

The second grammar describes the set of evaluation contexts.

E ::= [·] | E(e) | v(E) | πi E
| 〈v1, . . . , E, . . . , en〉 | E||e | v||E
| E@e← e | v@E ← e | v@v ← E | E@e | v@E
| E + e | v + E | {m1 7→ v1, . . . , mi 7→ E, . . . , mn 7→ en} | E!m

The primitive reduction rules forλinkς are given in Figure 3. We writee 7→ e′ if
e = E[e0], e′ = E[e′

0], ande0 ↪→ e′
0 by one of the rules above.

3.3 Reduction System

Under the operational semantics, there is no notion of transforming a program before
it is run: all reductions happen when they are needed. We want, however, a method for
rewritingλinkς terms to equivalent, optimized versions. The basis of the rewrite system
is the relation↪→. We write→ for the congruence closure of this relation;i.e., for the
system in which rewrites may happen anywhere inside a term. For example, reductions
like (λx.π1 (v1, x))(e)→ (λx.v1)(e) are possible, whereas in the operational semantics
they are not. We write→∗ for the reflexive, transitive closure of→.

The reduction system will be used in the next two sections when we discuss static
linking for a simple class language and optimizations. The reduction relation→ is non-
deterministic: multiple paths may emanate from a single expression, but it is confluent.

Theorem 1 If e→∗ e′ ande→∗ e′′, there is ane′′′ such thate′ →∗ e′′′ ande′′ →∗ e′′′.

The proof uses the Tait-Martin-L¨of parallel moves method [Bar84]; we omit the proof.

4 A Simple Class Language

To give evidence of the expressivity ofλinkς, we now give a translation of a simple class-
based language intoλinkς. Simpler translations may be possible, but the translation here
illustrates some techniques that are useful for more complex languages.

The source language is calledScl for “simple class language.” The syntax ofScl
appears in Figure 4. A program consists of a sequence of one or more class declarati-
ons followed by an expression; class declarations may only use those declarations that
appear before and may not be recursive. There are two forms of class declaration. The
first is abase-class declaration, which defines a class as a collection of methods. The
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prog ::= dcl prog Programs
| exp

dcl ::= classC { meths} Class declarations
| classC { inheritC′ : { m∗ } meths}

meths::= ε
| meth meths

meth::= m(x)exp Methods

exp ::= x Expressions
| self
| exp⇐ m(exp)
| super⇐ m(exp)
| newC

Fig. 4.The syntax forScl

second form is asubclass declaration, which defines a class by inheriting methods from
a superclass, overriding some of them, and then adding new methods. The subclass
constrains the set of methods it visibly inherits from its superclass by listing the names
of such methods as{ m∗ }. Other method names can be called only by superclass,
not subclass, methods. This operation—in essence, a restriction operation—resembles
Moby’s support for private members [FR99b,FR99a] and subsumes mechanisms found
in Java and other languages.

At the expression level,Scl contains only those features relevant to linking. Methods
take exactly one argument and have expressions for bodies; expressions includeself,
method dispatch, super-method dispatch, and object creation.A more complete language
would include other expression forms,e.g., integers, booleans, and conditionals.

The translation fromScl into λinkς fixes representations for classes, objects, and
methods. Each fully-linked class is translated to a triple(σ, φ, µ), whereσ is the size
of the class (i.e., the number of slots in its method suite),φ is a dictionary for mapping
method names to method-suite indices, andµ is the class’s method suite. Each object is
translated to a pair of the object’s method suite and a dictionary for resolving method
names. Each method is translated into apre-method[AC96]; i.e., a function that takes
self as its first parameter.

The translation is defined by the following functions:

P[[prog]]Γ Program translation
C[[dcl]]Γ Class translation
M[[meth]]µsuper,φsuper,φself,Γ Method translation
E [[exp]]µsuper,φsuper,φself,Γ Expression translation

These functions take aclass environmentΓ as a parameter, which maps the name of a
class to itsλinkς representation.A class environment is tuple of fully-linking classes. The
symbolΓ (C) denotes the position in the tuple associated with classC, andΓ±{C 7→ e}
denotes the tuple withe bound to classC.
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The translation of methods and expressions require more parameters than the trans-
lation of programs and classes. In addition to a class environment, the method and ex-
pression translation functions take additional parameters to translateself andsuper. In
particular, the dictionaryφself is used to resolve message sends toself, and the method
suiteµsuper and dictionaryφsuper are used to translatesuper invocations. Each method
is translated to aλinkς pre-method as follows:

M[[m(x)exp]]µsuper,φsuper,φself,Γ = λ(self, x).E [[exp]]µsuper,φsuper,φself,Γ

Expressions are translated as follows:

E [[x]]µsuper,φsuper,φself,Γ = x

E [[self]]µsuper,φsuper,φself,Γ = (π1self, φself)
E [[exp1 ⇐ m(exp2)]]µsuper,φsuper,φself,Γ = let obj = E [[exp1]]µsuper,φsuper,φself,Γ

let meth = (π1 obj)@((π2 obj)!m)
in meth(obj, E [[exp2]]µsuper,φsuper,φself,Γ )
whereobj andmethare fresh

E [[super⇐ m(exp)]]µsuper,φsuper,φself,Γ = (µsuper@(φsuper!m))(self, E [[exp]]µsuper,φsuper,φself,Γ )
E [[newC]]µsuper,φsuper,φself,Γ = let (σ, φ, µ) = Γ (C) in (µ, φ)

To translateself, we extract the method suite ofself and pair it with the current self
dictionary,φself. Note that because of method hiding,φself may have more methods than
(π2 self) [RS98,FR99b]. To translate message sends, we first translate the receiver object
and bind its value toobj. We then extract from this receiver its method suite(π1 obj)
and its dictionary(π2 obj). Using dictionary application, we find the slot associated
with methodm. Using that slot, we index into the method suite to extract the desired
pre-method, which we then apply toobj and the translated argument. We resolvesuper
invocations by selecting the appropriate code from the superclass method suite according
to the slot indicated in the superclass dictionary. Notice that this translation implements
the standard semantics of super-method dispatch;i.e., future overrides do not affect the
resolution of super-method dispatch. We translate thesuper keyword to the ordinary
variableself. In the translation ofnew, we look up the class to instantiate in the class
environment. In our simple language, the new object is a pair of the class’s method suite
and dictionary.

The translation for subclasses appears in Figure 5. In the translation, certain subterms
are annotated by a superscriptL; these subterms denote link-time operations that are
reduced during class linking. In addition, we use the function Names(meths) to extract
the names of the methods inmeths.

A subclassC is translated to a functionf that maps any fully-linked representation
of its base classB to a fully-linked representation ofC. The body of the linking function
f has three phases: slot calculation, dictionary definition, and method suite construction.
In the first phase, fresh slot numbers are assigned to new methods (σn), while overridden
(σov) and inherited methods (σinh) are assigned the slots they have inB. The size of the
subclass method suite (σC) is calculated to be the size ofB’s suite plus the number of
new methods. In the dictionary definition phase, each visible method name is associated
with its slot number. During method suite construction, the definitions of overridden
methods are replaced in the method suite forB. The function then extends the resulting
method suite with the newly defined methods to produce the method suite forC.
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C[[classC { inheritB : { m∗ } meths}]]Γ =
λ(σB , φB , µB).

letL σn1 = σB +L 1 . . . letLσnk = σB +L k
letL σov1 = φB !Lov1 . . . letL σovj = φB !Lovj

letL σinh1 = φB !Linh1 . . . letL σinhi = φB !Linhi

letL σC = σB +L k
letL φC = { n1 7→ σn1 , . . . , nk 7→ σnk ,

ov1 7→ σov1 , . . . , ovj 7→ σovj ,
inh1 7→ σinh1 , . . . , inhi 7→ σinhi}

letL µ0 = µB

letL µ1 = µ0@Lσov1 ←M[[methov1 ]]µB ,φB ,φC ,Γ

...
letL µj = µj−1@Lσovj ←M[[methovj ]]µB ,φB ,φC ,Γ

letL µC = µj ||L 〈M[[methn1 ]]µB ,φB ,φC ,Γ , . . . ,M[[methnk ]]µB ,φB ,φC ,Γ 〉
in (σC , φC , µC)

where
NewNames = {n1, . . . , nk} = Names(meths) \ { m∗ }
OvNames = {ov1, . . . , ovj} = { m∗ } ∩ Names(meths)
InhNames = {inh1, . . . , inhi} = { m∗ } \ OvNames
{methn1 , . . . , methnk} = {m(x)exp| m(x)exp∈ methsandm ∈ NewNames}
{methov1 , . . . , methovj} = {m(x)exp| m(x)exp∈ methsandm ∈ OvNames}

Fig. 5.TranslatingScl classes toλinkς

For base-class declarations, the translation is similar, except that there are no inherited
or overridden methods. Furthermore, we use a special class(0, { }, 〈 〉) for the base-
class argument. We omit the details for space reasons. Finally, we translate programs as
follows:

P[[dcl prog]]Γ = P[[prog]]Γ ′ whereΓ ′ = Γ±{C 7→ C[[dcl]]Γ (Γ (B))}
P[[exp]]Γ = E [[exp]]〈 〉,{ },{ },Γ

TheB stands for the base class in the definition ofdcl.
The languageScl enjoys the property that for awell-ordered program— one in

which all classes have been defined, and every class is defined before it is used — all
linking operations labeledL can be eliminated statically. More formally,

Theorem 2 If prog is a well-ordered program andP[[prog]]Γ = e, then there is a term
e′ such thate→∗ e′ ande′ contains no linking operations labeledL.

This theorem can probably be proven using a size argument, but we use a strong-nor-
malization approach instead. The proof of strong normalization is a bit subtle because
expressions inλinkς can loop. We use a simple type system to show that afragment
of λinkς is strongly normalizing. The proof of strong normalization relies upon Tait’s
method [GLT89]. One may show that the translation of a well-ordered program is well-
typed in the system, and hence all linking reductions can be done statically. We omit the
proof for space reasons.
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5 Other Examples

We now sketch howλinkς can be used to compile class mechanisms found in various
programming languages.

5.1 Moby Classes

We originally designedλinkς to supportMoby’s class mechanism in a compiler that
we are writing. Section 4’sScl models many of the significant parts ofMoby’s class
mechanism, including one of its most difficult features to compile, namely its treatment of
private names. In particular,Moby relies on signature matching in its module mechanism
to hide private methods and fields [FR99a] (we illustrated this feature with the example
in Section 2). BecauseMoby signatures define opaque interfaces, theMoby compiler
cannot rely on complete representation information for the superclass of any class it is
compiling. Instead, it must use theclass interfaceof the superclass (e.g., thePt class in
thePT signature) when compiling the subclass.Scl models this situation by requiring
each subclass to specify in theinherits clause which superclass methods are visible.

The main piece missing fromScl are fields (a.k.a.instance variables), which require
a richer version ofλinkς. While fields require extending the representation of objects
with per-object instance variables, the details of instance variable access are very similar
to those of method dispatch. As with methods, fields require dictionaries to map labels
to slots and slot assignment. Dictionary creation and application are the same as for
methods. When we create an object usingnew, we use the size of the class’s instance
variables as the size of the object to create — object initialization is done imperatively.

5.2 OCaml Classes

Like Moby, OCaml is a language with both parameterized modules and classes [Ler98].
For the most part, translatingOCaml classes toλinkς is similar to translatingMoby clas-
ses. The one difference is thatOCaml supports a simple form ofmultiple inheritance,
whereasMoby only has single inheritance. A class inOCaml can inherit from several
base classes, but there is no sharing between base classes — the methods of the base
classes are just concatenated. The one subtlety that we must address is that when compi-
ling a class definition, we cannot assume that access to its methods will be zero-based in
its subclasses. To solve this problem, weλ-abstract over the initial slot index. Otherwise,
translatingOCaml classes toλinkς is essentially the same as forMoby classes.1

5.3 Loom Classes

In the languageLoom [BFP97], the class construct is an expression form, and a deriving
class may use an arbitrary expression to specify its base class. Thus, unlike the translation
in Section 4, a translation ofLoom to our calculus cannot have the phase distinction
between class link-time and run-time. In a translatedLoom program, computation of
slots, dictionary construction, method overrides, and method suite extensions can all
happen at run-time. The fact that we can use one representation to handle both static and
dynamic classes demonstrates the flexibility of our approach.

1 To the best of our knowledge, the implementation techniques used for classes in theOCaml
system have not been formalized or described in print, so we are not able to compare approaches.
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5.4 Mixins

Mixins are functions that map classes to classes [FKF98] and, unlike parameterized
modules, mixins properly extend the class that they are applied to (recall that applying
ColorPtFn toPolarPt hid the polar-coordinate interface). Supporting this kind of class
extension inλinkς requires a bit of programming. The trick is to include adictionary
constructor functionas an argument to the translated mixin. For example, consider the
following mixin, written in an extension ofScl syntax:

mixin Print (C <: {show}) {
meth print () { stdOut ⇐ print(self ⇐ show()) }

}
This mixin adds aprint method to any classC that has ashow method already. The
translation of this mixin toλinkς is similar to that of subclasses given in Section 4:

λ(σC,φC,µC,mkDict).
let σprint = σC+1
let φPrint = mkDict(φC, σprint)
let pre_print = λ(self).

let print = (π1 stdOut)@((π2 stdOut)!print)
let show = (π1 self)@(φPrint!show)
in print(stdOut, show(self))

let µPrint = µC || 〈pre_print〉
in (σprint, φPrint, µPrint)

The main difference is that we use themkDict function, supplied at the linking site,
to create the extended dictionary. An alternative to this approach is to add a dictionary
extension operation toλinkς. For purposes of this example, we assume that the surface
language does not permit method-name conflicts between the argument class and the
mixin, but it is possible to support other policies, such as C++-style qualified method
names, to resolve conflicts.

5.5 C++ and Java Classes

For a language with a manifest class hierarchy, such as C++ or Java, the language’s static
type system provides substantial information about the representation of dictionaries
and method suites. By exploiting this representation information, we can optimize away
all of the dictionary-related overhead in such programs, which results in the efficiency
of method dispatch that C++ and Java programmers expect. The disadvantage of this
approach is that it introduces representation dependencies that lead to the so-called
fragile base classproblem, in which changing the private representation of a base class
forces recompilation of its subclasses. We should note that we do not know how to handle
C++’s form of multiple inheritance inλinkς because of the object layout issues related to
sharing of virtual base classes [Str94].

6 Optimization

Many compilers for higher-order languages use some form ofλ-calculus as their inter-
mediate representation (IR). In this section, we show that the techniques commonly used
in λ-calculus-based compilers can be used to optimize our encoding of method dispatch
in λinkς. Becauseλinkς allows reuse of standard optimizations, the optimizer is simpler
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and more likely to be correct. It is important to note that the optimizations described in
this section also apply to objects with instance variables. Even though instance varia-
bles are mutable, the optimizations focus on the dictionary and method-suite operations,
which arepure. Consequently, the compiler is free to move these operations, subject
only to the constraints of their data dependencies.

To make the discussion concrete, we consider theλinkς representation ofScl pro-
grams and their optimization. In general, method dispatch inScl requires an expensive
lookup operation to map a method’s label to its method-suite slot. Often, however, it is
possible to apply transformations to reduce or eliminate this cost. We assume that we
are optimizing well-typed programs that do not have run-time type errors (see Fisher
and Reppy [FR99b] for an appropriate type system). We also assume that we produce
the IR fromScl as described in Section 4, with the further step of normalizing the terms
into a direct-stylerepresentation [FSDF93,Tar96,OT98] (acontinuation-passing style
representation [App92] is also possible). In this IR, all intermediate results are bound to
variables, and the right-hand side of all bindings involve a single function application or
primitive operation applied toatomicarguments (i.e., either variables or constants).

6.1 Applying CSE and Hoisting

Common subexpression elimination (CSE) is a standard optimization whereby two iden-
tical pure expressions are replaced by a single expression. When method invocations are
expanded into theλinkς representation, there are many opportunities for CSE optimiza-
tions. For example, if there are two method invocations to the same object, fetching its
dictionary will be a common subexpression. If the method calls are to the same method,
then the dictionary application and method suite indexing operations will be common
subexpressions.

Another standard transformation is to hoist invariant expressions out of functions.
When applied to method dispatch, this transformation amortizes the cost of a dictionary
application over multiple function applications or loop iterations.2

6.2 Self-Method Dispatch

While CSE and hoisting apply to any method dispatch, we can do significantly better
when we have a message sent toself. Recall that the translation of the self-method
dispatchself⇐ m(exp) into λinkς is

let obj = (π1(self), φself)
let meth = π1(obj) @ (π2(obj)!m)
in meth(obj, exp )

Normalizing to our IR and applying the standardcontractionphase [App92] gives the
following:

let µ = π1(self)
let obj = (µ, φself)
let σ = φself!m
let meth = µ@σ
in meth(obj, a)

2 Note that loops are represented as tail-recursive functions in this style of IR.
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wherea is the atom resulting from normalizing the argument expression. The expression
φself!m is invariant in its containing premethod, and thus the binding ofσ can be lifted out
of the premethod. This transformation has the effect of moving the dictionary application
from run-time to link-time and leaves the following residual:

let µ = π1(self)
let obj = (µ, φself)
let meth = µ@σ
in meth(obj, a)

While it is likely that a compiler will generate this reduced form directly from a source-
program self-method dispatch, this optimization is useful in the case where other op-
timizations (e.g., inlining) expose self-method dispatches that are not present in the
source.

6.3 Super-Method Dispatch

Calls to superclass methods can be resolved statically, so there should be no run-time
penalty for superclass method dispatch.While it is possible to “special-case" such method
calls in a compiler, we can get the same effect by code hoisting. Recall that the translation
of the super-method dispatchsuper⇐ m(exp) into λinkς is

(µsuper @ (φsuper!m)) (self, exp )
As before, we normalize to our IR and contract, which produces the following:

let σ = φsuper!m
let meth = µsuper@σ
in meth(self, a)

wherea is the atom resulting from normalizing the argument expression. In this case,
we can hoist both the dictionary application and the method-suite indexing out of the
containing method, which leaves the term “meth(self, a).”Thus, by using standardλ-
calculus transformations, we can resolve super-method dispatch statically. Furthermore,
if the superclass’s method suite is known at compile time, then the standard optimization
of reducing a selection from a known record can be applied to turn the call into a direct
function call. This reduction has the further effect of enabling the call to be inlined.

6.4 Using Static Analysis

The optimizations that we have described so far require only trivial analysis. More
sophisticated analyses can yield better optimizations [DGC95]. For example,receiver-
class prediction[GDGC95] may permit us to eliminate some dictionary applications in
method dispatches (as we do already for self-method dispatch).There may also be source-
language type information, such asfinal annotations, that can enable optimizations,
such as static method resolution.

6.5 Final Code Generation

We intentionally left the implementation of dictionaries abstract inλinkς so that the
optimization techniques described above can be used independently of their concrete
representation. Depending on the properties of the source language, dictionaries might
be tables [R´em92,DH95], a graph structure [CC98], or a simple list of method names.
We might also use caching techniques to improve dispatch performance when there is
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locality [DS84].We might also maintain information in the compiler as to the origin of the
dictionary and use multiple representations, each tailored to a particular dictionary origin.
For example, aJava compiler can distinguish between dictionaries that correspond to
classes and dictionaries that correspond to interfaces. In the former case, the dictionary
is known at class-load time and dictionary applications can be resolved when the class
is loaded and linked. For interfaces, however, a dictionary might be implemented as an
indirection table [LST99].

7 Related Work

There is other published research on IRs for compiling class-based languages. The
Vortex project at the University of Washington, for instance, supports a number of class-
based languages using a common optimizing back-end [DDG+95]. The Vortex IR has
fairly high-level operations to support classes: class construction and method dispatch
are both monolithic primitives.λinkς, on the other hand, breaks these operations into
smaller primitives. By working at a finer level of granularity,λinkς is able to support a
wider range of class mechanisms in a single framework (e.g., Vortex cannot support the
dynamic classes found inLoom).

Another approach pursued by researchers is to encode object-oriented features in
typedλ-calculi. While such an approach can support any reasonable surface language
design, its effectiveness as an implementation technique depends on the character of
the encoding. For example, League,et. al., have recently proposed a translation of a
Java subset into the FLINT intermediate representation extended with row polymor-
phism [LST99]. Although they do not have an implementation yet, their encoding seems
efficient, but it is heavily dependent on the semantics ofJava. For example, their trans-
lation relies on knowing the exact set of interfaces that a class implements. The encoding
approach has also been recently tried by Vanderwaart forLoom [Van99]. In this case,
because of the richness ofLoom’s feature set, the encoding results in an inefficient
implementation of operations like method dispatch. We believe that a compiler based
on λinkς can do at least as well forJava as the encoding approach, while doing much
better for languages likeMoby andLoom that do not have efficient encodings in the
λ-calculus.

In other related work, Bono,et. al.have designed a class calculus, based on theλ-
calculus, for evaluating single and mixin inheritance [BPS99]. The focus of their work
differs from ours, in that their calculus describes the core functionality of a particular
surface language, whereas we provide the basic building blocks with which to imple-
ment a myriad of surface designs. Essentially, their language could be implemented in
λinkς; the translation from their calculus toλinkς would capture the implementation
information encoded in their operational semantics.

There are other formal linking frameworks [Car97,Ram96,GM99,AZ99,DEW99].
Of particular relevance here are uses ofβ-reduction to implement linking of modules, as
we do for the linking of classes. From the very beginning, the Standard ML of New Jersey
compiler has used theλ-calculus to express module linking [AM87]. More recently, Flatt
and Felleisen describe a calculus for separate compilation that mapsunits to functions
over their free variables [FF98].
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8 Conclusions

We have presentedλinkς, a low-level calculus for representing class-based object-
oriented languages.λinkς satisfies the goals we set in designing an IR. In particular,
it provides support for inheritance from non-manifest base classes, such as occurs in
Moby, OCaml, andLoom. It is amenable to formal reasoning, such as in the proof
of termination of linking in Section 4. As illustrated in Section 5,λinkς is expressive
enough to support a wide-range of surface languages, from the concrete representati-
ons of Java to the dynamic classes ofLoom. Finally, simpleλ-calculus optimizations,
such as common subexpression elimination and hoisting, yield standard object-oriented
optimizations, such as method caching, when applied toλinkς terms.

We are currently implementing a compiler forMoby that usesλinkς as the basis
of the object fragment of its IR. One refinement that we use in our implementation is
to syntactically distinguish between the link-time and run-time forms ofλinkς. In the
future, we plan to explore the use ofλinkς to support dynamic class loading and mobile
code, and to develop a typed IR based onλinkς.
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