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Abstract. We describe\inks (pronounced “links”), a low-level calculus designed

to serve as the basis for an intermediate representation in compilers for class-based
object-oriented languages. The primitives)imks can express a wide range of
class-based object-oriented language features, including various forms of inhe-
ritance, method override, and method dispatch. In particiiaks can model

the object-oriented features Moy, OCamL, andLooM, where subclasses may

be derived from unknown base classkifiks can also serve as the intermediate
representation for more conventional class mechanisms, subtvas. In this
paper, we formally describginks, give examples of its use, and discuss how
standard compiler transformations can be used to optimize programsimite
representation.

1 Introduction

Class-based object-oriented languages provide mechanisms for factoring code into a
hierarchy of classes. For example, the implementation of a text window may be split
into a base class that implements windows and a subclass that supports drawing text.
Since these classes may be defined in separate compilation units, compilers for such
languages need an intermediate representation (IR) that allows them to represent code
fragments €.g, the code for each class) and to generate linkage information to assem-
ble the fragments. For languages with manifest class hierardléedanguages where
subclass compilation requires the superclass representation, as is the cafst 1]
andJava [AG98]), representing code fragments and linkage information is straightfor-
ward. But for languages that allow classes as module parameters, ddobafFR994a]
andOCamL [RV98ILer98], or languages that have classes as first-class values, such as
Loowm [BEP97], the design of an IR becomes trickier (Secfibn 2 illustrates the compli-
cations).

We are interested in a compiler IR that can handle inheritance from non-manifest
base classes. In addition, the IR should satisfy a number of other important criteria.
The IR should be expressive enough to support a wide range of statically typed surface
languages froniava to Loom. The IR should be reasonably close to the machine and
should be able to express efficient object representatimgs $hared method suites)
and both static and dynamic method dispatch. The IR should enable optimizations based
on simple and standard transformations. Lastly, the IR should be amenable to formal
reasoning about compiler transformations and class linking.
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This paper presentdnkg, which is an extension of the untypaetalculus that meets
these design goaldinks extends the\-calculus withmethod suitgsvhich are ordered
collections of methodsslots which index into method suites; awmlittionaries which
map method labels to slots. kinks, method dispatch is implemented by first using
a dictionary to find the method’s slot and then using the slot to index into a method
suite.Ainks can support true private names and avoid the fragile base class problem by
dynamically changing the dictionary associated with an object when the object’s view of
itself changes [RS98,FR99b]. Separating dynamic dispatch into two pieces also enables
more compiler optimizations. In this paper, we traatks as a compiler IR, although
the reader should think of it as more of a framework or basis for a compiler’s IR.

By design,\inks satisfies our goals. Because of the abstractionsinks, it can
express a wide range of surface class mechanisms, from the static classes flowad in
through the dynamic inheritance fibowm (Sectiorb). By makinginks untyped, we
avoid limiting the applicability ofinks to languages with incompatible type systems.
The operations in the calculus allow compilers to leverage static information to optimize
message dispatch. For example, the type system gu@rantees the slot at which each
method may be found at run-time. kinks, we may use this information to evaluate
the dictionary lookup operation associated with message dispatch at compile time —
providing the expected efficiency for message dispatch-t@@grammers. Because
Ainkg is based on tha-calculus, familiat\-calculus optimizations apply immediately to
Ainks (SectiorL6), and these optimizations yield standard object-oriented optimizations
when applied to\inks programs. Consequently, ad-hoc optimizations for the object-
oriented pieces of a compiler baseddnks are not necessary. Becausgeks is a formal
language, it is amenable to formal reasoning. For example, one can shovintkais
confluent and that the reductions tagged as linking redexes are strongly normalizing
(Sectior h).

In the next section, we discuss the challenges involved in implementing inheritance
from an unknown base-class. In Secfibn 3, we present the syntax, operational semantics,
and rewrite systems ofinks. To keep the discussion focused, we restrict the technical
presentation to a version afnks with methods, but no fields (instance variables). The
techniques used to handle methods apply directly to fields (see Skeciion 5.1). §kction 4
defines a simple class languageL and shows how it can be translatedioks. We
prove that the translation of any “well-ordere$'L program has the property that all
linking steps can be reduced statically. In Sedtion 5, we sketch\ittiey can serve as an
IR for MoBy, LooM, a mixin extension foScr, and G+. Sectiori b further demonstrates
the utility of the rewriting system fohAinks by showing how method dispatch can be
optimized in the calculus. We conclude with a discussion of related and future work.

2 Inheritance from Unknown Classes

One of our principal design goals is to support inheritance from unknown base classes.
Figurdl shows where difficulties can arise when compiling languages with such a feature.
The example is written iMoBY, although similar examples can be writterLinom and
OCamL. The module in Figuril1 defines a clasd orPt that extends an unknown base
classPt.Point by inheriting itsgetX andgetY methods, overriding itaove method,

and adding a&olor field. When compiling the module, the compiler knows only that
the Pt.Point superclass has three methodetX, getY, andmove). The compiler
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signature PT {
class Point : {
public meth getX : Unit -> Int
public meth getY : Unit -> Int
public meth move : (Int, Int) -> Unit
}
}

module ColorPtFn (Pt : PT) {
class ColorPt {

inherits Pt.Point

field ¢ : Color

public meth move (x : Int, y : Int) -> Unit {

if (self.c == Red)

then super.move(2*x, 2xy)
else super.move(x, y)

Fig. 1. Inheriting from an unknown superclass

does not know in what order these methods appear in the internal representation of the
Point class, nor what other private methods and fieldshbint class might have.

As an example of inheritance from such a class, suppose we have @¢claaPt

that implements th@t.Point interface and has additional polar-coordinate methods
getTheta andgetRadius. When we apply th€olorPtFn module toPolarPt, we
effectively hide the polar-coordinate methods, making them private and allowing their
names to be reused for other, independent methaxslisrPt and its descendants. Such
private methods, while hidden, are not forgotten, since they may be indirectly accessible
from other visible methodse(g, thePolarPt class might implemergetX in terms of

polar coordinates). This hiding is a problem when compilingRbearPt class, since

its code must have access to methods that might not be directly available in its eventual
subclasses.

3 Ainkg

Ainkg is aA-calculus with method suites, slots, and dictionaries, which provides a nota-
tion for class assembly, inheritance, dynamic dispatch, and other object-oriented features.

3.1 Syntax

The syntax of\inks is given by the grammar in Figué 2. In addition to the standard
calculus forms, there are eight expression forms for supporting objects and classes. The
term{es, ... ,e,) constructs a method suite from the expressigns. . , e,,, where each

e; is assigned slat The expressionQe’ extracts the value stored in the slot denoted by



138 K. Fisher, J. Reppy, and J.G. Riecke

en=ux variable

| Xz.e | e(e) function abstraction/application
| (e1,...,en) | me tuple creation/projection
| (e1,...,en) method suite construction
| e@e method suite indexing
| elle’ method suite extension
| e@e’ « e’ method override

| 4 slot

| e+¢é slot addition

| {mi—e1,..., mp—en} dictionary construction
| elm dictionary application

Fig. 2. The syntax ofAinkg

(A\z.e)(v) = e[z — ]

(V1 ... ,0n) — v; Wherel <i<n
i+7—k wherek=i+j
{m1i—=v1,... ,mp = vp}m; > v; wherel <i<n
(U1, .. o) || (V. 0h) = {01, Un, UL, )
(V1,0 Vi, UR)@1 =0 (1,0 ) wherel <i<n
(v1,y ... ,vn)@i — v; wherel <i<mn

Fig. 3. Reduction rules fohinks

¢’ from the method suite denoted byThe method suite extensiefje’ concatenates the
suitese ande’. The last method suite operation is override, which functionally updates
a slot in a given suite to produce a new suite. A slot is specified by a slot expression,
which is either an integei or the addition of two slot expressions. The expression
{mi1— e1,...,my, — e,} denotes a dictionary where each labglis mapped to the
slot denoted by;. Application of a dictionary to a labeh is writtene!m.

We identify terms up to the renaming of bound variables andise» ¢’] to denote
the capture-free substitution effor z in e. We assume that dictionaries are unordered
and must represent finite functions. For instance, the dictiopary> 1, m — 2} is an
ill-formed expression, since it maps to two different values. To simplify notation, we
use the following shorthands:

letz=cine for (\z.¢')(e)
Mz1,...y2n).e for Ap.((Axy. - Azp.e) (mip) - (7 D))

3.2 Operational Semantics

We specify the operational semantics\oriks using an evaluation-context based rewrite
system[[FF86]. Such systems rewrite terms step-by-step until no more steps can be taken.
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At each step, the term to be reduced is parsed into an evaluation context and a redex.
The redex is then replaced, and evaluation begins anew with another parsing of the term.
Note that since\inks is untyped there are legal expressions, such;aé\z.¢), that
cannot be reduced.

Two grammars form the backbone of the semantics. The first describes values, a
subset of expressions that are in reduced form:

va=a | Aze | (v1,...,0n) | (01, ,0,) | @] {mi— v, mp ot
The second grammar describes the set of evaluation contexts.

Ei=[] | Be) | o(E) | m F
| (v1,...,E,...,en) | Elle | v||E
| FQe<+e | vQE <+ e | vQu<«+ E | EQe | vQFE
| E4e|v+E | {mi—uvy,....mi—E ... my—e,} | Elm

The primitive reduction rules foAinks are given in Figuré&l3. We write — ¢’ if
e = Eleg], ¢ = E[ep], andey — e, by one of the rules above.

3.3 Reduction System

Under the operational semantics, there is no notion of transforming a program before
it is run: all reductions happen when they are needed. We want, however, a method for
rewriting Ainks terms to equivalent, optimized versions. The basis of the rewrite system
is the relation—. We write — for the congruence closure of this relatiom,., for the
system in which rewrites may happen anywhere inside a term. For example, reductions
like (Az.my (v1,2))(e) — (Ax.v1)(e) are possible, whereas in the operational semantics
they are not. We write>* for the reflexive, transitive closure ef.

The reduction system will be used in the next two sections when we discuss static
linking for a simple class language and optimizations. The reduction relatimnon-
deterministic: multiple paths may emanate from a single expression, but it is confluent.

Theorem 1 If e —* ¢’ ande —* ¢”, there is are’”’ such thak’ —* ¢’/ ande” —* €.

The proof uses the Tait-Martinef parallel moves method [BarB4]; we omit the proof.

4 A Simple Class Language

To give evidence of the expressivity bifhiks, we now give a translation of a simple class-
based language intinks. Simpler translations may be possible, but the translation here
illustrates some techniques that are useful for more complex languages.

The source language is call8dL for “simple class language.” The syntax $L
appears in Figurgl4. A program consists of a sequence of one or more class declarati-
ons followed by an expression; class declarations may only use those declarations that
appear before and may not be recursive. There are two forms of class declaration. The
first is abase-class declaratignwhich defines a class as a collection of methods. The
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prog ::= dcl prog Programs

| exp

dcl ::= class C' { meths} Class declarations
| classC{ inherit C’: { m* } meths}

meths::= ¢
| meth meths
meth::= m(x)exp Methods

exp:=x Expressions

| self

| exp< m(exp
| super < m(exp
| newC

Fig. 4. The syntax foiScL

second form is aubclass declaratigrwhich defines a class by inheriting methods from

a superclassoverriding some of them, and then adding new methods. The subclass
constrains the set of methods it visibly inherits from its superclass by listing the names
of such methods a§ m* }. Other method names can be called only by superclass,
not subclass, methods. This operation—in essence, a restriction operation—resembles
Mogy’s support for private members [FR99b,FR99a] and subsumes mechanisms found
in Java and other languages.

Atthe expression leve$cL contains only those features relevant to linking. Methods
take exactly one argument and have expressions for bodies; expressions #zdlfide
method dispatch, super-method dispatch, and object creation. A more complete language
would include other expression fornesg, integers, booleans, and conditionals.

The translation fronBcL into Ainks fixes representations for classes, objects, and
methods. Each fully-linked class is translated to a tri{plep, 1), whereo is the size
of the classi(e., the number of slots in its method suité)is a dictionary for mapping
method names to method-suite indices, anslthe class’s method suite. Each object is
translated to a pair of the object’s method suite and a dictionary for resolving method
names. Each method is translated inforecmethodAC96]; i.e., a function that takes
self as its first parameter.

The translation is defined by the following functions:

Plprog]r Program translation
Cldcll r Class translation
M[meth] usupenbsupendser,”  Method translation
EexXd supen dsuper dsein T Expression translation

These functions take @ass environment’ as a parameter, which maps the name of a
classtoits\inks representation. A class environment is tuple of fully-linking classes. The
symbolI’(C) denotes the position in the tuple associated with elassd "+ {C — e}
denotes the tuple with bound to clasg’.
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The translation of methods and expressions require more parameters than the trans-
lation of programs and classes. In addition to a class environment, the method and ex-
pression translation functions take additional parameters to trassit@ndsuper. In
particular, the dictionargsgsis used to resolve message sendsetbf, and the method
suite psuper and dictionaryps per are used to translataiper invocations. Each method
is translated to ainks pre-method as follows:

M [[m (TJ) exq HMsupen (bsupen Pself, I = )\ (Se If’ $) . 5 [[exr‘j] Hsuper ¢super7 Oselt, I

Expressions are translated as follows:

gH‘r]]/isupen¢7supen¢selﬁp =
5Hself]],U‘SUDEI'7¢SUDEI'7¢SEH7F = (ﬂ-lselt ¢self)
g[[expl <~ m(eXQ)]]Msupen¢supen¢selﬁp = let Ob] = g[[exnHltsuper7¢super7¢self7p
let meth= (m 0bj)@((7 obj)!m)
in metr(ObJ7 g[[exrb]]ﬂsuper-,¢super-,¢self7p)
whereobj andmethare fresh

gﬂsuper < m(exp)]];Ufsuper-,¢super-,¢selfyp = (ﬂSUPET@(QZ)SUpeJm))(SeIt gIIeXFi]ﬂsupend’supen¢se\f1f)
g[[new C]]Hsupen¢supen¢self7r = let (07 (rbv /’L) = F(C) in (/u’7 ¢)

To translateself, we extract the method suite sélf and pair it with the current self
dictionary,¢seir. Note that because of method hidirges may have more methods than

(o self) [RS98,FR99b]. To translate message sends, we first translate the receiver object
and bind its value t@bj. We then extract from this receiver its method s\itg obyj)

and its dictionary(ms obj). Using dictionary application, we find the slot associated
with methodm. Using that slot, we index into the method suite to extract the desired
pre-method, which we then apply ¢bj and the translated argument. We rescluger
invocations by selecting the appropriate code from the superclass method suite according
to the slot indicated in the superclass dictionary. Notice that this translation implements
the standard semantics of super-method dispatehfuture overrides do not affect the
resolution of super-method dispatch. We translatesiiyer keyword to the ordinary
variableself In the translation ofiew, we look up the class to instantiate in the class
environment. In our simple language, the new object is a pair of the class’s method suite
and dictionary.

The translation for subclasses appears in Figure 5. In the translation, certain subterms
are annotated by a superscriptthese subterms denote link-time operations that are
reduced during class linking. In addition, we use the function Némeths to extract
the names of the methodsiimeths

A subclas<C is translated to a functiohthat maps any fully-linked representation
of its base clasB to a fully-linked representation &. The body of the linking function
f has three phases: slot calculation, dictionary definition, and method suite construction.
In the first phase, fresh slot numbers are assigned to new meth)dw/kile overridden
(oov) and inherited methodsrgn) are assigned the slots they haveBirThe size of the
subclass method suite () is calculated to be the size Bfs suite plus the number of
new methods. In the dictionary definition phase, each visible method name is associated
with its slot number. During method suite construction, the definitions of overridden
methods are replaced in the method suitefofhe function then extends the resulting
method suite with the newly defined methods to produce the method sue for
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Clclass C { inherit B : { m"* } meths}], =

Mos, ¢B, uB).

let? On, = 0B +1. .. letLUnk =op+tk
let” Oov, = ¢B!LOV1 ... lett Oov; = cf)B!LOVj
let” Tinh; = @B!Linfh ... let® Tinh; = ¢>B!Linh¢
let” oc = 0B -‘rL k
let® dpc={nN—on, ..., Nk — Ony,

OV — Oovyy - -- , OV — Oov; »

inh1 = CTinhyy -« - inhi — O'inh,i}

let™ po = uB

let™ p1 = NO@LUOV1 «— M[[mEthlﬂuB,¢Bv¢c»F
let” p; = Mj*l@LUOVj < M[methy, ].5.65.00.0
let” He = ||L <M“tmeth'11|“Bv¢Bﬂ¢C1F7 s 7M[[meth1k]]l43¢¢Ba¢’CﬁF>
in (oc, éc, pc)
where
NeEwNawmEs = {nq, ..., Ny} = Namegmethg \ { m* }
OVNAMES = {ovi, ..., ov;} = { m" } N Namegmethg
INHNAMES = {inhy, ..., inh;} = { m™ } \ OVNAMES
{meth,, ..., meth, } = {m(z)exp| m(z)expe methsandm € NEWNAMESs}
{methy,, ..., methy, } = {m(z)exp| m(z)expc methsandm € OVNAMESs}

Fig. 5. TranslatingScL classes tainks

Forbase-class declarations, the translation is similar, except that there are noinherited
or overridden methods. Furthermore, we use a special {lagg, ()) for the base-
class argument. We omit the details for space reasons. Finally, we translate programs as
follows:

Pldcl prog)r = P[prog]r» wherel” = I'+{C  C[dcl]-(I'(B))}
P[[exd]p = 8[[expj]<>’{ YT

The B stands for the base class in the definitiordloff

The languageScL enjoys the property that for well-ordered program— one in
which all classes have been defined, and every class is defined before it is used — all
linking operations labeled can be eliminated statically. More formally,

Theorem 2 If prog is a well-ordered program an@[prog]r = e, then there is a term
¢’ such thate —* ¢’ ande’ contains no linking operations labeldd

This theorem can probably be proven using a size argument, but we use a strong-nor-
malization approach instead. The proof of strong normalization is a bit subtle because
expressions iminks can loop. We use a simple type system to show thishgment

of Ainks is strongly normalizing. The proof of strong normalization relies upon Tait's
method|[[GLT89]. One may show that the translation of a well-ordered program is well-
typed in the system, and hence all linking reductions can be done statically. We omit the
proof for space reasons.
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5 Other Examples

We now sketch howiinks can be used to compile class mechanisms found in various
programming languages.

5.1 Mosy Classes

We originally designecdhinks to supportMoBy’s class mechanism in a compiler that

we are writing. Sectiofl4'ScL models many of the significant parts dfosy’s class

mechanism, including one of its most difficult features to compile, namely its treatment of

private names. In particuldy]oBy relies on signature matching in its module mechanism

to hide private methods and fields [FR99a] (we illustrated this feature with the example

in Sectior2). BecauskloBy signatures define opaque interfaces, M@y compiler

cannot rely on complete representation information for the superclass of any class it is

compiling. Instead, it must use tlotass interfacef the superclas®(g, thePt class in

the PT signature) when compiling the subclaSsrL models this situation by requiring

each subclass to specify in theherits clause which superclass methods are visible.
The main piece missing froScL are fields é.k.a.instance variables), which require

a richer version of\inks. While fields require extending the representation of objects

with per-object instance variables, the details of instance variable access are very similar

to those of method dispatch. As with methods, fields require dictionaries to map labels

to slots and slot assignment. Dictionary creation and application are the same as for

methods. When we create an object usirg, we use the size of the class’s instance

variables as the size of the object to create — object initialization is done imperatively.

5.2 OCamL Classes

Like MoBy, OCamL is a language with both parameterized modules and classes[Ler98].
For the most part, translatifi@CamL classes tainks is similar to translating{osy clas-

ses. The one difference is thaCamL supports a simple form ohultiple inheritance
whereasMogy only has single inheritance. A class@CamL can inherit from several

base classes, but there is no sharing between base classes — the methods of the bas
classes are just concatenated. The one subtlety that we must address is that when compi-
ling a class definition, we cannot assume that access to its methods will be zero-based in
its subclasses. To solve this problem, Avabstract over the initial slot index. Otherwise,
translatingDCaML classes ta\inks is essentially the same as fofoBy classefl

5.3 Loom Classes

In the languagé&.oom [BEPY1], the class construct is an expression form, and a deriving
class may use an arbitrary expression to specify its base class. Thus, unlike the translation
in Section 4, a translation dfoom to our calculus cannot have the phase distinction
between class link-time and run-time. In a transldtedm program, computation of

slots, dictionary construction, method overrides, and method suite extensions can all
happen at run-time. The fact that we can use one representation to handle both static and
dynamic classes demonstrates the flexibility of our approach.

! To the best of our knowledge, the implementation techniques used for classei@ le
system have not been formalized or described in print, so we are not able to compare approaches.
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5.4 Mixins

Mixins are functions that map classes to classes [FKF98] and, unlike parameterized
modules, mixins properly extend the class that they are applied to (recall that applying
ColorPtFntoPolarPt hid the polar-coordinate interface). Supporting this kind of class
extension in\inkg requires a bit of programming. The trick is to includeliationary
constructor functioras an argument to the translated mixin. For example, consider the
following mixin, written in an extension o$cL syntax:
mixin Print (C <: {show}) {
meth print () { stdOut < print(self <« show()) }
}
This mixin adds grint method to any class that has ashow method already. The
translation of this mixin to\inks is similar to that of subclasses given in Secfibn 4:
Aoc,¢c s pc ,mkDict) .
let oOprint = oc+l
let (ZSP'rint = mkDict(d)C, Uprint)
let pre_print = A(self).
let print = (m; stdOut)@((m2 stdOut) !print)
let show = (w1 self)@(¢print'!show)
in print(stdOut, show(self))
let pprint = pc || (pre_print)
in (Oprint, @Prints KPrint)
The main difference is that we use theDict function, supplied at the linking site,
to create the extended dictionary. An alternative to this approach is to add a dictionary
extension operation tdinks. For purposes of this example, we assume that the surface
language does not permit method-name conflicts between the argument class and the
mixin, but it is possible to support other policies, such assg/le qualified method
names, to resolve conflicts.

5.5 GC+and Java Classes

For a language with a manifest class hierarchy, such-as Cava, the language’s static

type system provides substantial information about the representation of dictionaries
and method suites. By exploiting this representation information, we can optimize away
all of the dictionary-related overhead in such programs, which results in the efficiency
of method dispatch that+€and Java programmers expect. The disadvantage of this
approach is that it introduces representation dependencies that lead to the so-called
fragile base clasproblem, in which changing the private representation of a base class
forces recompilation of its subclasses. We should note that we do not know how to handle
C+'s form of multiple inheritance ininks because of the object layout issues related to
sharing of virtual base classés [Sir94].

6 Optimization

Many compilers for higher-order languages use some forma@dlculus as their inter-
mediate representation (IR). In this section, we show that the techniqgues commonly used
in A-calculus-based compilers can be used to optimize our encoding of method dispatch
in Ainks. Because\inks allows reuse of standard optimizations, the optimizer is simpler



A Calculus for Compiling and Linking Classes 145

and more likely to be correct. It is important to note that the optimizations described in
this section also apply to objects with instance variables. Even though instance varia-
bles are mutable, the optimizations focus on the dictionary and method-suite operations,
which arepure. Consequently, the compiler is free to move these operations, subject
only to the constraints of their data dependencies.

To make the discussion concrete, we considenihks representation o$cL pro-
grams and their optimization. In general, method dispat®tinrequires an expensive
lookup operation to map a method’s label to its method-suite slot. Often, however, it is
possible to apply transformations to reduce or eliminate this cost. We assume that we
are optimizing well-typed programs that do not have run-time type errors (see Fisher
and Reppyl[FR99b] for an appropriate type system). We also assume that we produce
the IR fromScL as described in Sectidh 4, with the further step of normalizing the terms
into a direct-stylerepresentation [FSDFY3,Tar96,0198]qantinuation-passing style
representatiori [App92] is also possible). In this IR, all intermediate results are bound to
variables, and the right-hand side of all bindings involve a single function application or
primitive operation applied tatomicargumentsi(e., either variables or constants).

6.1 Applying CSE and Hoisting

Common subexpression elimination (CSE) is a standard optimization whereby two iden-
tical pure expressions are replaced by a single expression. When method invocations are
expanded into thainks representation, there are many opportunities for CSE optimiza-
tions. For example, if there are two method invocations to the same object, fetching its
dictionary will be a common subexpression. If the method calls are to the same method,
then the dictionary application and method suite indexing operations will be common
subexpressions.

Another standard transformation is to hoist invariant expressions out of functions.
When applied to method dispatch, this transformation amortizes the cost of a dictionary
application over multiple function applications or loop iteratiins.

6.2 Self-Method Dispatch

While CSE and hoisting apply to any method dispatch, we can do significantly better
when we have a message senttdf. Recall that the translation of the self-method
dispatchself < m(exp into Ainks is

let obj = (mi(self), ¢seiy)

let meth = w1 (0b7) @ (mw2(obj) 'm)

in meth(obj, ezp)
Normalizing to our IR and applying the standarohtractionphase|[App92] gives the
following:

let pu = m(self)

let obj = (i, @sers)

let 0 = ¢seif!m

let meth = u@o

in meth(obj, a)

2 Note that loops are represented as tail-recursive functions in this style of IR.
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whereqa is the atom resulting from normalizing the argument expression. The expression
¢ser 'misinvariantinits containing premethod, and thus the bindirgaztn be lifted out
ofthe premethod. This transformation has the effect of moving the dictionary application
from run-time to link-time and leaves the following residual:

let p = mi(self)

let obj = (u, ¢sers)

let meth = u@o

in meth(obj, a)
While it is likely that a compiler will generate this reduced form directly from a source-
program self-method dispatch, this optimization is useful in the case where other op-
timizations €.g, inlining) expose self-method dispatches that are not present in the
source.

6.3 Super-Method Dispatch

Calls to superclass methods can be resolved statically, so there should be no run-time
penalty for superclass method dispatch. Whileitis possible to “special-case" such method
calls in a compiler, we can get the same effect by code hoisting. Recall that the translation
of the super-method dispateliper < m(exp into Ainks is

(Usuper @ (Psuper'm)) (self, exp)
As before, we normalize to our IR and contract, which produces the following:

let 0 = Qsyer'm

let meth = [super@o

in meth(self, a)
whereaq is the atom resulting from normalizing the argument expression. In this case,
we can hoist both the dictionary application and the method-suite indexing out of the
containing method, which leavesthe termeth(sel f, a).” Thus, by using standarkd
calculus transformations, we can resolve super-method dispatch statically. Furthermore,
if the superclass’s method suite is known at compile time, then the standard optimization
of reducing a selection from a known record can be applied to turn the call into a direct
function call. This reduction has the further effect of enabling the call to be inlined.

6.4 Using Static Analysis

The optimizations that we have described so far require only trivial analysis. More
sophisticated analyses can yield better optimizatibns [DGC95]. For exarapéiyer-

class predictiofGDGC95] may permit us to eliminate some dictionary applications in
method dispatches (as we do already for self-method dispatch). There may also be source-
language type information, such fisnal annotations, that can enable optimizations,
such as static method resolution.

6.5 Final Code Generation

We intentionally left the implementation of dictionaries abstrachiinks so that the
optimization techniques described above can be used independently of their concrete
representation. Depending on the properties of the source language, dictionaries might
be tables [RmM92,DHI5], a graph structurie [CC98], or a simple list of method names.
We might also use caching techniques to improve dispatch performance when there is
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locality [DS84]. We might also maintain information in the compiler as to the origin of the
dictionary and use multiple representations, each tailored to a particular dictionary origin.
For example, dava compiler can distinguish between dictionaries that correspond to
classes and dictionaries that correspond to interfaces. In the former case, the dictionary
is known at class-load time and dictionary applications can be resolved when the class
is loaded and linked. For interfaces, however, a dictionary might be implemented as an
indirection table[[LST99].

7 Related Work

There is other published research on IRs for compiling class-based languages. The
Vortex project at the University of Washington, for instance, supports a number of class-
based languages using a common optimizing back:end [D#XE The Vortex IR has

fairly high-level operations to support classes: class construction and method dispatch
are both monolithic primitivesiinks, on the other hand, breaks these operations into
smaller primitives. By working at a finer level of granularitynks is able to support a
wider range of class mechanisms in a single frameweuty, (/ortex cannot support the
dynamic classes found inoom).

Another approach pursued by researchers is to encode object-oriented features in
typed A-calculi. While such an approach can support any reasonable surface language
design, its effectiveness as an implementation technique depends on the character of
the encoding. For example, Leagwt, al, have recently proposed a translation of a
Java subset into the FLINT intermediate representation extended with row polymor-
phism [LST99]. Although they do not have an implementation yet, their encoding seems
efficient, but it is heavily dependent on the semantickoh. For example, their trans-
lation relies on knowing the exact set of interfaces that a class implements. The encoding
approach has also been recently tried by Vanderwaaitdom [Van99]. In this case,
because of the richness tbom’s feature set, the encoding results in an inefficient
implementation of operations like method dispatch. We believe that a compiler based
on Ainks can do at least as well fdava as the encoding approach, while doing much
better for languages likMoBy andLoowm that do not have efficient encodings in the
A-calculus.

In other related work, Bonagt. al. have designed a class calculus, based onthe
calculus, for evaluating single and mixin inheritance [BES99]. The focus of their work
differs from ours, in that their calculus describes the core functionality of a particular
surface language, whereas we provide the basic building blocks with which to imple-
ment a myriad of surface designs. Essentially, their language could be implemented in
Ainkg; the translation from their calculus tdnks would capture the implementation
information encoded in their operational semantics.

There are other formal linking frameworks [Caf97,Rain96,GM99.AZ99.DEW99].
Of particular relevance here are usegaduction to implement linking of modules, as
we do for the linking of classes. From the very beginning, the Standard ML of New Jersey
compiler has used the calculus to express module linking [AMB87]. More recently, Flatt
and Felleisen describe a calculus for separate compilation thatunépso functions
over their free variables [FF98].
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8 Conclusions

We have presentedinks, a low-level calculus for representing class-based object-
oriented languagesiinks satisfies the goals we set in designing an IR. In particular,
it provides support for inheritance from non-manifest base classes, such as occurs in
Mosy, OCaMmL, andLoowm. It is amenable to formal reasoning, such as in the proof
of termination of linking in Sectiofl4. As illustrated in Sectidn)snks is expressive
enough to support a wide-range of surface languages, from the concrete representati-
ons ofJava to the dynamic classes @&foom. Finally, simpleA-calculus optimizations,
such as common subexpression elimination and hoisting, yield standard object-oriented
optimizations, such as method caching, when appliedriks terms.

We are currently implementing a compiler fdfoBy that usesiinks as the basis
of the object fragment of its IR. One refinement that we use in our implementation is
to syntactically distinguish between the link-time and run-time formaioks. In the
future, we plan to explore the use &ifiks to support dynamic class loading and mobile
code, and to develop a typed IR based\imks.
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