
Implementing Groundness Analysis with
Definite Boolean Functions

Jacob M. Howe and Andy King

Computing Laboratory, University of Kent, CT2 7NF, UK
{j.m.howe, a.m.king}@ukc.ac.uk

Abstract. The domain of definite Boolean functions, Def , can be used
to express the groundness of, and trace grounding dependencies bet-
ween, program variables in (constraint) logic programs. In this paper,
previously unexploited computational properties of Def are utilised to
develop an efficient and succinct groundness analyser that can be coded
in Prolog. In particular, entailment checking is used to prevent unneces-
sary least upper bound calculations. It is also demonstrated that join
can be defined in terms of other operations, thereby eliminating code
and removing the need for preprocessing formulae to a normal form.
This saves space and time. Furthermore, the join can be adapted to
straightforwardly implement the downward closure operator that arises
in set sharing analyses. Experimental results indicate that the new Def
implementation gives favourable results in comparison with BDD-based
groundness analyses.

Keywords: Abstract interpretation, (constraint) logic programs, defi-
nite Boolean functions, groundness analysis.

1 Introduction

Groundness analysis is an important theme of logic programming and abstract
interpretation. Groundness analyses identify those program variables bound to
terms that contain no variables (ground terms). Groundness information is typi-
cally inferred by tracking dependencies among program variables. These depen-
dencies are commonly expressed as Boolean functions. For example, the function
x ∧ (y ← z) describes a state in which x is definitely ground, and there exists a
grounding dependency such that whenever z becomes ground then so does y.

Groundness analyses usually track dependencies using either Pos [3,4,8,15,21],
the class of positive Boolean functions, or Def [1,16,18], the class of definite posi-
tive functions. Pos is more expressive than Def , but Def analysers can be faster
[1] and, in practise, the loss of precision for goal-dependent groundness analysis
is usually small [18]. This paper is a sequel to [18] and is an exploration of using
Prolog as a medium for implementing a Def analyser. The rationale for this work
was partly to simplify compiler integration and partly to deliver an analyser that
was small and thus easy to maintain. Furthermore, it has been suggested that
the Prolog user community is not large enough to warrant a compiler vendor to
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making a large investment in developing an analyser. Thus any analysis that can
be quickly prototyped in Prolog is particularly attractive. The main drawback
of this approach has traditionally been performance.

The efficiency of groundness analysis depends critically on the way dependen-
cies are represented. C and Prolog based Def analysers have been constructed
around two representations: (1) Armstrong et al [1] argue that Dual Blake Cano-
nical Form (DBCF) is suitable for representing Def . This represents functions
as conjunctions of definite (propositional) clauses [12] maintained in a normal
(orthogonal) form that makes explicit transitive variable dependencies. For ex-
ample, the function (x← y)∧ (y ← z) is represented as (x← (y ∨ z))∧ (y ← z).
Garćıa de la Banda et al [16] adopt a similar representation. It simplifies join
and projection at the cost of computing and representing the (extra) transitive
dependencies. Introducing redundant dependencies is best avoided since pro-
gram clauses can (and sometimes do) contain large numbers of variables; the
speed of analysis is often related to its memory usage. (2) King et al show how
meet, join and projection can be implemented with quadratic operations based
on a Sharing quotient [18]. Def functions are essentially represented as a set
of models and widening is thus required to keep the size of the representation
manageable. Widening trades precision for time and space. Ideally, however, it
would be better to avoid widening by, say, using a more compact representation.

This paper contributes to Def analysis by pointing out that Def has impor-
tant (previously unexploited) computational properties that enable Def to be
implemented efficiently and coded straightforwardly in Prolog. Specifically, the
paper details:

– how functions can be represented succinctly with non-ground formulae.
– how to compute the join of two formulae without preprocessing the formulae

into orthogonal form [1].
– how entailment checking and Prolog machinery, such as difference lists and

delay declarations, can be used to obtain a Def analysis in which the most
frequently used domain operations are very lightweight.

– that the speed of an analysis based on non-ground formulae can compare
well against BDD-based Def and Pos analyses whose domain operations are
coded in C [1]. In addition, even without widening, a non-ground formulae
analyser can be significantly faster than a Sharing-based Def analyser [18].

Finally, a useful spin-off of our work is a result that shows how the downward
closure operator that arises in BDD-based set sharing analysis [10] can be im-
plemented straightforwardly with standard BDD operations. This saves the im-
plementor the task of coding another BDD operation in C.

The rest of the paper is structured as follows: Section 2 details the necessary
preliminaries. Section 3 explains how join can be calculated without resorting to
a normal form and also details an algorithm for computing downward closure.
Section 4 investigates the frequency of various Def operations and explains how
representing functions as (non-ground) formulae enables the frequently occurring
Def operations to be implemented particularly efficiently using, for example,



202 J.M. Howe and A. King

entailment checking. Section 5 evaluates a non-ground Def analyser against two
BDD analysers. Sections 6 and 7 describe the related and future work, and
section 8 concludes.

2 Preliminaries

A Boolean function is a function f : Booln → Bool where n ≥ 0. A Boolean
function can be represented by a propositional formula over X where |X| = n.
The set of propositional formulae over X is denoted by BoolX . Throughout this
paper, Boolean functions and propositional formulae are used interchangeably
without worrying about the distinction [1]. The convention of identifying a truth
assignment with the set of variables M that it maps to true is also followed.
Specifically, a map ψX(M) : ℘(X)→ BoolX is introduced defined by: ψX(M) =
(∧M) ∧ (¬ ∨X\M). In addition, the formula ∧Y is often abbreviated as Y .

Definition 1. The (bijective) map modelX : BoolX → ℘(℘(X)) is defined by:
modelX(f) = {M ⊆ X | ψX(M) |= f}.

Example 1. IfX = {x, y}, then the function {〈true, true〉 7→ true, 〈true, false〉 7→
false, 〈false, true〉 7→ false, 〈false, false〉 7→ false} can be represented by the
formula x ∧ y. Also, modelX(x ∧ y) = {{x, y}} and modelX(x ∨ y) = {{x}, {y},
{x, y}}.

The focus of this paper is on the use of sub-classes of BoolX in tracing
groundness dependencies. These sub-classes are defined below:

Definition 2. PosX is the set of positive Boolean functions over X. A function
f is positive iff X ∈ modelX(f). Def X is the set of positive functions over
X that are definite. A function f is definite iff M ∩M ′ ∈ modelX(f) for all
M,M ′ ∈ modelX(f).

Note that Def X ⊆ PosX . One useful representational property of Def X is that
each f ∈ Def X can be described as a conjunction of definite (propositional)
clauses, that is, f = ∧n

i=1(yi ← Yi) [12].

Example 2. SupposeX = {x, y, z} and consider the following table, which states,
for some Boolean functions, whether they are in Def X or PosX and also gives
modelX .

f Def X PosX modelX(f)
false ∅
x ∧ y • • { {x, y}, {x, y, z}}
x ∨ y • { {x}, {y}, {x, y}, {x, z}, {y, z}, {x, y, z}}
x← y • • {∅, {x}, {z}, {x, y}, {x, z}, {x, y, z}}

x ∨ (y ← z) • {∅, {x}, {y}, {x, y}, {x, z}, {y, z}, {x, y, z}}
true • • {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

Note, in particular, that x∨y is not in Def X (since its set of models is not closed
under intersection) and that false is neither in PosX nor Def X .
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Def {x,y}

x ∧ y
cc ##

x x↔ y y@@ ��
x← y y ← x## cc

true

Pos{x,y}

x ∧ y
cc ##

x x↔ y y@@ ��
x← y x ∨ y y ← x

## cc

## cc
true

Fig. 1. Hasse diagrams

Defining f1∨̇f2 = ∧{f ∈ Def X | f1 |= f ∧f2 |= f}, the 4-tuple 〈Def X , |=,∧, ∨̇〉 is
a finite lattice [1], where true is the top element and ∧X is the bottom element.
Existential quantification is defined by Schröder’s Elimination Principle, that is,
∃x.f = f [x 7→ true] ∨ f [x 7→ false]. Note that if f ∈ Def X then ∃x.f ∈ Def X

[1].

Example 3. If X = {x, y} then x∨̇(x ↔ y) = ∧{(x ← y), true} = (x ← y), as
can be seen in the Hasse diagram for dyadic Def X (Fig. 1). Note also that x∨̇y
= ∧{true} = true 6= (x ∨ y).

The set of (free) variables in a syntactic object o is denoted var(o). Also,
∃{y1, . . . , yn}.f (project out) abbreviates ∃y1. . . . .∃yn.f and ∃Y.f (project onto)
denotes ∃var(f) \ Y.f . Let ρ1, ρ2 be fixed renamings such that X ∩ ρ1(X) =
X∩ρ2(X) = ρ1(X)∩ρ2(X) = ∅. Renamings are bijective and therefore invertible.
The downward and upward closure operators ↓ and ↑ are defined by ↓ f =
model−1

X ({∩S | ∅ ⊂ S ⊆ modelX(f)}) and ↑ f = model−1
X ({∪S | ∅ ⊂ S ⊆

modelX(f)}) respectively. Note that ↓f has the useful computational property
that ↓f = ∧{f ′ ∈ Def X | f |= f ′} if f ∈ PosX . Finally, for any f ∈ BoolX ,
coneg(f) = model−1

X ({X \M |M ∈ modelX(f)}).
Example 4. Note that coneg(x ∨ y) = model−1

{x,y}({{x}, {y}, ∅}) and therefore
↑coneg(x ∨ y) = true. Hence coneg(↑coneg(x ∨ y)) = true =↓ x ∨ y.
This is no coincidence as coneg(↑coneg(f)) =↓f . Therefore coneg and ↑ can be
used to calculate ↓.

3 Join and Downward Closure

Calculating join in Def is not as straightforward as one would initially think,
because of the problem of transitive dependencies. Suppose f1, f2 ∈ Def X so
that fi = ∧Fi where Fi = {yi

1 ← Y i
1 , . . . , y

i
ni
← Y i

ni
}. One naive tactic to

compute f1∨̇f2 might be F = {y ← Y 1
j ∧ Y 2

k | y ← Y 1
j ∈ F1 ∧ y ← Y 2

k ∈ F2}.
Unfortunately, in general, ∧F 6|= f1∨̇f2 as is illustrated in the following example.

Example 5. Put F1 = {x ← u, u ← y} and F2 = {x ← v, v ← y} so that
F = {x ← u ∧ v}, but f1∨̇f2 = (x ← (u ∧ v)) ∧ (x ← y) 6= ∧F . Note, however,
that if F1 = {x ← u, u ← y, x ← y} and F2 = {x ← v, v ← y, x ← y} then
F = {x← (u ∧ v), x← (u ∧ y), x← (v ∧ y), x← y} so that f1∨̇f2 = ∧F .
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The problem is that Fi must be explicit about transitive dependencies (this idea
is captured in the orthogonal form requirement of [1]). This, however, leads to
redundancy in the formula which ideally should be avoided. (Formulae which not
necessarily orthogonal will henceforth be referred to as non-orthogonal formulae.)

It is insightful to consider ∨̇ as an operation on the models of f1 and f2. Since
both modelX(fi) are closed under intersection, ∨̇ essentially needs to extend
modelX(f1) ∪ modelX(f2) with new models M1 ∩M2 where Mi ∈ modelX(fi)
to compute f1∨̇f2. The following definition expresses this observation and leads
to a new way of computing ∨̇ in terms of meet, renaming and projection, that
does not require formulae to be first put into orthogonal form.

Definition 3. The map ġ : BoolX2 → BoolX is defined by: f1ġf2 = ∃Y.f1gf2
where Y =var(f1)∪var(f2) and f1gf2 =ρ1(f1)∧ρ2(f2)∧∧y∈Y y ↔ (ρ1(y)∧ρ2(y)).

Note that ġ operates on BoolX rather than Def X . This is required for the
downward closure operator. Lemma 1 expresses a key relationship between ġ
and the models of f1 and f2.

Lemma 1. Let f1, f2 ∈ BoolX . M ∈ modelX(f1ġf2) if and only if there exists
Mi ∈ modelX(fi) such that M = M1 ∩M2.

Proof. Put X ′ = X ∪ ρ1(X) ∪ ρ2(X).
Let M ∈ modelX(f1ġf2). There exists M ⊆ M ′ ⊆ X ′ such that M ′ ∈

modelX′(f1 g f2). Let Mi = ρ−1
i (M ′ ∩ ρi(Y )). Observe that M ⊆M1 ∩M2 since

(ρ1(y)∧ ρ2(y))← y. Also observe that M1 ∩M2 ⊆M since y ← (ρ1(y)∧ ρ2(y)).
Thus Mi ∈ modelX(fi) and M = M1 ∩M2, as required.

Let Mi ∈ modelX(fi) and put M = M1∩M2 and M ′ = M∪ρ1(M1)∪ρ1(M2).
Observe M ′ ∈ modelX′(f1 g f2) so that M ∈ modelX(f1ġf2). �

From lemma 1 flows the following corollary and also the useful result that ġ is
monotonic.

Corollary 1. Let f ∈ PosX . Then f = fġf if and only if f ∈ Def X .

Lemma 2. ġ is monotonic, that is, f1ġf2 |= f ′
1ġf ′

2 whenever fi |= f ′
i .

Proof. Let M ∈ modelX(f1ġf2). By lemma 1, there exist Mi ∈ modelX(fi) such
that M = M1 ∩M2. Since fi |= f ′

i , Mi ∈ modelX(f ′
i) and hence, by lemma 1,

M ∈ modelX(f ′
1ġf ′

2). �

The following proposition states that ġ coincides with ∨̇ on Def X . This gives a
simple algorithm for calculating ∨̇ that does not depend on the representation
of a formula.

Proposition 1. Let f1, f2 ∈ Def X . Then f1ġf2 = f1∨̇f2.
Proof. Since X |= f2 it follows by monotonicity that f1 = f1ġX |= f1ġf2 and
similarly f2 |= f1ġf2. Hence f1∨̇f2 |= f1ġf2 by the definition of ∨̇.

Now let M ∈ modelX(f1ġf2). By lemma 1, there exists Mi ∈ modelX(fi)
such that M = M1 ∩M2 ∈ modelX(f1∨̇f2). Hence f1ġf2 |= f1∨̇f2. �
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Downward closure is closely related to ġ and, in fact, ġ can be used repea-
tedly to compute a finite iterative sequence that converges to ↓. This is stated
in proposition 2. Finiteness follows from bounded chain length of PosX .

Proposition 2. Let f ∈ PosX . Then ↓f = ∨i≥1fi where fi ∈ PosX is the
increasing chain given by: f1 = f and fi+1 = fiġfi.

Proof. Let M ∈ modelX(↓ f). Thus there exists Mj ∈ modelX(f) such that
M = ∪m

j=1Mj . Observe M1 ∩ M2,M3 ∩ M4, . . . ∈ modelX(f2) and therefore
M ∈ modelX(fdlog2(m)e). Since m ≤ 22n

where n = |X| it follows that ↓f |= f2n .
Proof by induction is used for the opposite direction. Observe that f1 |=↓f .

Suppose fi |=↓f . Let M ∈ modelX(fi+1). By lemma 1 there exists M1,M2 ∈
modelX(fi) such that M = M1 ∩M2. By the inductive hypothesis M1,M2 ∈
modelX(↓f) thus M ∈ modelX(↓f). Hence fi+1 |=↓f .

Finally, ∨i=1fi ∈ Def X since f1 ∈ PosX and ġ is monotonic and thus
X ∈ modelX(∨i=1fi). �

The significance of this is that it enables ↓ to be computed in terms of existing
BDD operations thus freeing the implementor from more low level coding.

4 Design and Implementation

There are typically many degrees of freedom in designing an analyser, even
for a given domain. Furthermore, work can often be shifted from one abstract
operation into another. For example, Garćıa de la Banda et al [16] maintain
DBCF by a meet that uses six rewrite rules to normalise formulae. This gives a
linear time join and projection at the expense of an exponential meet. Conversely,
King et al [18] have meet, join and projection operations that are quadratic in
the number of models. Note, however, that the numbers of models is exponential
(explaining the need for widening). Ideally, an analysis should be designed so that
the most frequently used operations have low complexity and are therefore fast.

4.1 Frequency Analysis

In order to balance the frequency of an abstract operation against its cost, a
BDD-based Def analyser was implemented and instrumented to count the num-
ber of calls to the various abstract operations. The BDD-based Def analyser is
coded in Prolog as a simple meta-interpreter that uses induced magic-sets [7]
and eager evaluation [22] to perform goal-dependent bottom-up evaluation.

Induced magic is a refinement of the magic set transformation, avoiding much
of the re-computation that arises because of the repetition of literals in the
bodies of magicked clauses [7]. It also avoids the overhead of applying the magic
set transformation. Eager evaluation [22] is a fixpoint iteration strategy which
proceeds as follows: whenever an atom is updated with a new (less precise)
abstraction, a recursive procedure is invoked to ensure that every clause that
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has that atom in its body is re-evaluated. Induced magic may not be as efficient
as, say, GAIA [19] but it can be coded easily in Prolog.

The BDD-based Def analysis is built on a ROBDD package coded by Arm-
strong and Schachte [1]. The package is intended for Pos analysis and there-
fore supplies a ∨ join rather than a ∨̇ join. The package did contain, however,
a hand-crafted C upward closure operator ↑ enabling ∨̇ to be computed by
f1∨̇f2 =↓(f1∨f2) where ↓f = coneg(↑coneg(f)). The operation coneg(f) can be
computed simply by interchanging the left and right (true and false) branches
of an ROBDD. The analyser also uses the environment trimming tactic used by
Schachte to reduce the number of variables that occur in a ROBDD. Specifi-
cally, clause variables are numbered and each program point is associated with a
number, in such a way that if a variable has a number less than that associated
with the program point, then it is redundant (does not occur to the right of the
program point) and hence can be projected out. This optimisation is important
in achieving practical analysis times for some large programs.

The following table gives a breakdown of the number of calls to each abstract
operation in the BDD-based Def analysis of eight large programs. Meet, join,
equiv, project and rename are the obvious Boolean operations. Join (diff) is the
number of calls to a join f1∨̇f2 where f1∨̇f2 6= f1 and f1∨̇f2 6= f2. Project (trim)
are the number of calls to project that stem from environment trimming.

file strips chat parser sim v5-2 peval aircraft essln chat 80 aqua c
meet 815 4471 2192 2198 7063 8406 15483 112455
join 236 1467 536 632 2742 1668 4663 35007

join (diff) 33 243 2 185 26 177 693 5173
equiv 236 1467 536 632 2742 1668 4663 35007

project 330 1774 788 805 3230 2035 5523 38163
project (trim) 173 1384 770 472 2082 2376 5627 42989

rename 857 4737 2052 2149 8963 5738 14540 103795

Observe that meet and rename are called most frequently and therefore,
ideally, should be the most lightweight. Project, project (trim), join and equiv
calls occur with similar frequency but note that it is rare for a join to differ from
both its arguments. Join is always followed by an equivalence and this explains
why the join and equiv rows coincide.

Next, the complexity of ROBDD and DBCF (specialised for Def [1]) opera-
tions are reviewed in relation to their calling frequency. Suggestions are made
about balancing the complexity of an operation against its frequency by using a
non-orthogonal formulae representation.

For ROBDDs (DBCF) meet is quadratic (exponential) in the size of its argu-
ments [1]. For ROBDDs (DBCF) these arguments are exponential (polynomial)
in the number of variables. Representing Def functions as non-orthogonal for-
mulae is attractive since meet is concatenation which can be performed in con-
stant time (using difference lists). Renaming is quadratic for ROBDDs (linear
for DBCF) in the size of its argument [1]. Renaming a non-orthogonal formula is
O(m log(n)) where m (n) is the number of symbols (variables) in its argument.
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For ROBDDs (DBCF), join is quadratic (quartic) in the size of its argu-
ments [1]. For non-orthogonal formulae, join is exponential. Note, however, that
the majority of joins result in one of the operands and hence are unnecessary.
This can be detected by using an entailment check which is quadratic in the
size of the representation. Thus it is sensible to filter join through an entailment
check so that join is called comparatively rarely. Therefore its complexity is less
of an issue. Specifically, if f1 |= f2 then f1∨̇f2 = f2. For ROBDDs, equivalence
checking is constant time, whereas for DBCF it is linear in the size of the re-
presentation. For non-orthogonal formulae, equivalence is quadratic in the size
of the representation. Observe that meet occurs more frequently than equality
and therefore a gain should be expected from trading an exponential meet and
a linear join for a constant time meet and an exponential join.

For ROBDDs (DBCF), projection is quadratic (linear) in the size of its ar-
guments [1]. For a non-orthogonal representation, projection is exponential, but
again, entailment checking can be used to prevent the majority of projections.

4.2 The GEP Representation

A call (or answer) pattern is a pair 〈a, f〉 where a is an atom and f ∈ Def var(a).
Normally the arguments of a are distinct variables. The formula f is a con-
junction (list) of propositional Horn clauses in the Def analysis described in
this paper. In a non-ground representation the arguments of a can be instantia-
ted and aliased to express simple dependency information [9]. For example, if
a = p(x1, ..., x5), then the atom p(x1, true, x1, x4, true) represents a coupled with
the formula (x1 ↔ x3)∧x2∧x5. This enables the abstraction 〈p(x1, ..., x5), f1〉 to
be collapsed to 〈p(x1, true, x1, x4, true), f2〉 where f1 = (x1 ↔ x3)∧x2∧x5∧f2.
This encoding leads to a more compact representation and is similar to the GER
factorisation of ROBDDs proposed by Bagnara and Schachte [3]. The represen-
tation of call and answer patterns described above is called GEP (groundness,
equivalences and propositional clauses) where the atom captures the first two
properties and the formula the latter. Note that the current implementation of
the GEP representation does not avoid inefficiencies in the representation such
as the repetition of Def formulae.

4.3 Abstract Operations

The GEP representation requires the abstract operations to be lifted from Boo-
lean formulae to call and answer patterns.

Meet The meet of the pairs 〈a1, f1〉 and 〈a2, f2〉 can be computed by unifying
a1 and a2 and concatenating f1 and f2.

Renaming The objects that require renaming are formulae and call (answer)
pattern GEP pairs. If a dynamic database is used to store the pairs [17], then
renaming is automatically applied each time a pair is looked-up in the database.
Formulae can be renamed with a single call to the Prolog builtin copy term.
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Join Calculating the join of the pairs 〈a1, f1〉 and 〈a2, f2〉 is complicated by the
way that join interacts with renaming. Specifically, in a non-ground representa-
tion, call (answer) patterns would be typically stored in a dynamic database so
that var(a1) ∩ var(a2) = ∅. Hence 〈a1, f1〉 (or equivalently 〈a2, f2〉) have to be
appropriately renamed before the join is calculated. This is achieved as follows.
Plotkin’s anti-unification algorithm [20] is used to compute the most specific
atom a that generalises a1 and a2. The basic idea is to reformulate a1 as a pair
〈a′

1, f
′
1〉 which satisfies two properties: a′

1 is a syntactic variant of a; the pair
represents the same dependency information as 〈a1, true〉. A pair 〈a′

2, f
′
2〉 is li-

kewise constructed that is a reformulation of a2. The atoms a, a′
1 and a′

2 are
unified and then the formula f = (f1∧f ′

1)ġ(f2∧f ′
2) is calculated as described in

section 3 to give the join 〈a, f〉. In actuality, the computation of 〈a′
1, f

′
1〉 and the

unification a = a′
1 can be combined in a single pass as is outlined below. Suppose

a = p(t1, . . . , tn) and a1 = p(s1, . . . , sn). Let g0 = true. For each 1 ≤ k ≤ n, one
of the following cases is selected. (1) If tk is syntactically equal to sk, then put
gk = gk−1. (2) If sk is bound to true, then put gk = gk−1 ∧ (tk ← true). (3) If
sk ∈ var(〈s1, . . . , sk−1〉), then unify sk and tk and put gk = gk−1. (4) Otherwise,
put gk = gk−1 ∧ (tk ← sk) ∧ (sk ← tk). Finally, let f ′

1 = gn. The algorithm is
applied analogously to bind variables in a and construct f ′

2. The join of the pairs
is then given by 〈a, (f1 ∧ f ′

1)ġ(f2 ∧ f ′
2)〉.

Example 6. Consider the join of the GEP pairs 〈a1, true〉 and 〈a2, y1 ← y2〉
where a1 = p(true, x1, x1, x1) and a2 = p(y1, y2, true, true). The most specific
generalisation of a1 and a2 is a = p(z1, z2, z3, z3). The table below illustrates the
construction of 〈a′

1, f
′
1〉 and 〈a′

2, f
′
2〉 in the left- and right-hand columns.

k case gk θk case
′ g′

k θ′
k

0 true ε true ε
1 2 z1 ← true ε 4 y1 ↔ z1 ε
2 4 g1 ∧ (z2 ↔ x1) θ1 4 g′

1 ∧ (y2 ↔ z2) θ1
3 3 g2 {x1 7→ z3} 2 g′

2 ∧ (z3 ← true) θ1
4 1 g2 θ3 2 g′

3 ∧ (z3 ← true) θ1

Putting θ = θ′
4 ◦ θ4 = {x1 7→ z3}, the join is given by 〈θ(a), θ(g4 ∧ true)ġθ(g′

4 ∧
y1 ← y2)〉 = 〈a, (z1 ← true) ∧ (z2 ↔ z3)ġ(y1 ↔ z1) ∧ (y2 ↔ z2) ∧ (z3 ←
true) ∧ (y1 ← y2)〉 = 〈p(z1, z2, z3, z3), (z1 ← z2) ∧ (z3 ← z2)〉.
Note that often a1 is a variant of a2. This can be detected with a lightweight
variance check, enabling join and renaming to be reduced to unifying a1 and a2
and computing f = f1ġf2 to give the pair 〈a1, f〉.

Projection Projection is only applied to formulae. Each of the variables to be
projected out is eliminated in turn, as follows. Suppose x is to be projected out of
f . First, all those clauses with x as their head are found, giving {x← Xi | i ∈ I}
where I is a (possibly empty) index set. Second, all those clauses with x in the
body are found, giving {y ← Yj | j ∈ J} where J is a (possibly empty) index
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set. Thirdly these clauses of f are replaced by {y ← Zi,j | i ∈ I ∧ j ∈ J ∧ Zi,j =
Xi ∪ (Yj \ {x}) ∧ y 6∈ Zi,j} (syllogizing). Fourthly, a compact representation
is maintained by eliminating redundant clauses (absorption). By appropriately
ordering the clauses, all four steps can be performed in a single pass over f . A
final pass over f retracts clauses such as x← true by binding x to true and also
removes clause pairs such as y ← z and z ← y by unifying y and z.

Entailment Entailment checking is only applied to formulae. A forward chai-
ning decision procedure for propositional Horn clauses (and hence Def ) is used
to test entailment. A non-ground representation allows chaining to be imple-
mented efficiently using block declarations. To check that ∧n

i=1yi ← Yi entails
z ← Z the variables of Z are first grounded. Next, a process is created for each
clause yi ← Yi that blocks until Yi is ground. When Yi is ground, the process
resumes and grounds yi. If z is ground after a single pass over the clauses, then
(∧n

i=1yi ← Yi) |= z ← Z. By calling the check under negation, no problematic
bindings or suspended processes are created.

5 Experimental Evaluation

A Def analyser using the non-ground techniques described in this paper has been
implemented. This implementation is built in Prolog using the same induced
magic framework as for the BDD-based Def analyser, therefore the analysers
work in lock step and generate the same results. (The only difference is that
the non-ground analyser does not implement environment trimmed since the
representation is far less sensitive to the number of variables in a clause.) The
core of the analyser (the fixpoint engine) is approximately 400 lines of code and
took one working week to write, debug and tune.

In order to investigate whether entailment checking, the join (ġ) algorithm,
and the GEP representation are enough to obtain a fast and scalable analysis,
the non-ground analyser was compared with the BDD-based analyser for speed
and scalability. Since King et al [18] do not give precision results for Pos for
larger benchmarks, we have also implemented a BDD-based Pos analyser in
the same vein, so that firmer conclusions about the relative precision of Def
and Pos can be drawn. It is reported in [2], [3] that a hybrid implementation
of ROBDDs, separating maintenance of definiteness information and of various
forms of dependency information can give significantly improved performance.
Therefore, it is to be expected that an analyser based on such an implementation
of ROBDDs would be faster than that used here.

The comparisons focus on goal-dependent groundness analysis of 60 Prolog
and CLP(R) programs. The results are given in the table below. In this table,
the size column gives the number of distinct (abstract) clauses in the programs.
The abs column gives the time for parsing the files and abstracting them, that
is, replacing built-ins, such as arg(x, t, s), with formulae, such as x ∧ (s← t).
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fixpoint precision
file size abs Def NG Def BDD Pos Def Pos %

rotate.pl 3 0.00 0.00 0.00 0.00 3 6 50
circuit.clpr 20 0.02 0.02 0.03 0.02 3 3 0

air.clpr 20 0.02 0.02 0.03 0.02 9 9 0
dnf.clpr 23 0.02 0.01 0.01 0.01 8 8 0

dcg.pl 23 0.02 0.01 0.01 0.02 59 59 0
hamiltonian.pl 23 0.02 0.01 0.01 0.01 37 37 0

poly10.pl 29 0.02 0.00 0.00 0.01 0 0 0
semi.pl 31 0.03 0.03 0.28 0.28 28 28 0
life.pl 32 0.02 0.01 0.02 0.02 58 58 0

rings-on-pegs.clpr 34 0.02 0.02 0.04 0.04 11 11 0
meta.pl 35 0.01 0.01 0.02 0.01 1 1 0

browse.pl 36 0.02 0.01 0.02 0.02 41 41 0
gabriel.pl 38 0.02 0.01 0.03 0.03 37 37 0

tsp.pl 38 0.03 0.01 0.04 0.04 122 122 0
nandc.pl 40 0.03 0.01 0.03 0.03 37 37 0
csg.clpr 48 0.04 0.01 0.02 0.02 12 12 0
disj r.pl 48 0.02 0.01 0.04 0.04 97 97 0

ga.pl 48 0.06 0.01 0.04 0.04 141 141 0
critical.clpr 49 0.03 0.03 0.04 0.04 14 14 0

scc1.pl 51 0.03 0.01 0.06 0.04 89 89 0
mastermind.pl 53 0.04 0.01 0.04 0.04 43 43 0
ime v2-2-1.pl 53 0.04 0.03 0.09 0.08 101 101 0

robot.pl 53 0.03 0.00 0.01 0.01 41 41 0
cs r.pl 54 0.05 0.01 0.04 0.04 149 149 0

tictactoe.pl 56 0.06 0.01 0.03 0.04 60 60 0
flatten.pl 56 0.03 0.04 0.09 0.08 27 27 0
dialog.pl 61 0.02 0.01 0.03 0.03 70 70 0

map.pl 66 0.02 0.01 0.08 0.08 17 17 0
neural.pl 67 0.05 0.01 0.05 0.05 123 123 0

bridge.clpr 69 0.08 0.01 0.02 0.03 24 24 0
conman.pl 71 0.04 0.00 0.02 0.02 6 6 0

kalah.pl 78 0.04 0.02 0.04 0.04 199 199 0
unify.pl 79 0.04 0.07 0.12 0.10 70 70 0

nbody.pl 85 0.07 0.06 0.10 0.11 113 113 0
peep.pl 86 0.11 0.03 0.06 0.05 10 10 0

boyer.pl 95 0.06 0.04 0.04 0.05 3 3 0
bryant.pl 95 0.07 0.20 0.15 0.15 99 99 0

sdda.pl 99 0.05 0.06 0.06 0.06 17 17 0
read.pl 105 0.07 0.06 0.11 0.10 99 99 0
press.pl 109 0.07 0.11 0.16 0.18 53 53 0
qplan.pl 109 0.08 0.02 0.08 0.07 216 216 0

trs.pl 111 0.11 0.11 0.31 0.60 13 13 0
reducer.pl 113 0.07 0.11 0.16 0.14 41 41 0

simple analyzer.pl 140 0.09 0.13 0.34 0.44 89 89 0
dbqas.pl 146 0.09 0.02 0.05 0.05 43 43 0

ann.pl 148 0.09 0.11 0.24 0.23 74 74 0
asm.pl 175 0.14 0.06 0.14 0.13 90 90 0

nand.pl 181 0.12 0.04 0.21 0.19 402 402 0
rubik.pl 219 0.16 0.15 0.39 0.40 158 158 0

lnprolog.pl 221 0.10 0.08 0.14 0.14 143 143 0
ili.pl 225 0.15 0.25 0.23 0.24 4 4 0

sim.pl 249 0.18 0.39 0.56 0.52 100 100 0
strips.pl 261 0.17 0.01 0.11 0.11 142 142 0

chat parser.pl 281 0.21 0.45 0.59 0.60 505 505 0
sim v5-2.pl 288 0.17 0.05 0.20 0.20 455 457 0.4

peval.pl 328 0.16 0.28 0.27 0.27 27 27 0
aircraft.pl 397 0.48 0.14 0.55 0.59 687 687 0

essln.pl 565 0.36 0.21 0.58 0.58 163 163 0
chat 80.pl 888 0.92 1.31 1.89 2.27 855 855 0
aqua c.pl 4009 2.48 11.29 104.99 897.10 1288 1288 0
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The abstracter deals with meta-calls, asserts and retracts following the ele-
gant (two program) scheme detailed by Bueno et al [6]. The fixpoint columns
give the time, in seconds, to compute the fixpoint for each of the three analysers
(Def NG and Def BDD denote respectively the non-ground and BDD-based Def
analyser). The precision columns give the total number of ground arguments in
the call and answer patterns (and exclude those ground arguments for predicates
introduced by normalising the program into definite clauses). The % column ex-
press the loss of precision by Def relative to Pos. All three analysers were coded
in SICStus 3.7 and the experiments performed on a 296MHz Sun UltraSPARC-II
with 1GByte of RAM running Solaris 2.6.

The experimental results indicate the precision of Def is close to that of
Pos. Although rotate.pl is small it has been included in the table because it
was the only program for which significant precision was lost. Thus, whilst it is
always possible to construct programs in which disjunctive dependency informa-
tion (which cannot be traced in Def ) needs to be tracked to maintain precision,
these results suggest that Def is adequate for top-down groundness analysis of
many programs.

The speed of the non-ground Def analyser compares favourably with both
the BDD analysers. This is surprising because the BDD analysers make use
of hashing and memoisation to avoid repeated work. In the non-ground Def
analyser, the repeated work is usually in meet and entailment checking, and these
operations are very lightweight. In the larger benchmarks, such as aqua c.pl, the
BDD analysis becomes slow as the BDDs involved are necessarily large. Widening
for BDDs can make such examples more manageable [15]. Notice that the time
spent in the core analyser (the fixpoint engine) is of the same order as that spent
in the abstracter. This suggests that a large speed up in the analysis time needs
to be coupled with a commensurate speedup in the abstracter.

To give an initial comparison with the Sharing-based Def analyser of King et
al [18], the clock speed of the Sparc-20 used in the Sharing experiments has been
used to scale the results in this paper. These findings lead to the preliminary
conclusion that the analysis presented in this paper is about twice as fast as the
Sharing quotient analyser. Furthermore, this analyser relies on widening to keep
the abstractions small, hence may sacrifice some precision for speed.

6 Related Work

Van Hentenryck et al [21] is an early work which laid a foundation for BDD-based
Pos analysis. Corsini et al [11] describe how variants of Pos can be implemen-
ted using Toupie, a constraint language based on the µ-calculus. If this analyser
was extended with, say, magic sets, it might lead to a very respectable goal-
dependent analysis. More recently, Bagnara and Schachte [3] have developed the
idea [2] that a hybrid implementation of a ROBDD that keeps definite informa-
tion separate from dependency information is more efficient than keeping the
two together. This hybrid representation can significantly decrease the size of an
ROBDD and thus is a useful implementation tactic.
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Armstrong et al [1] study a number of different representations of Boolean
function for both Def and Pos. An empirical evaluation on 15 programs suggests
that specialising Dual Blake Canonical Form (DBCF) for Def leads to the fastest
analysis overall. This representation of a Def function f is in orthogonal form
since it is constructed from all the prime consequents that are entailed by f . It
thus includes redundant transitive dependencies. Armstrong et al [1] also perform
interesting precision experiments. Def and Pos are compared, however, in a
bottom-up framework that is based on condensing which is therefore biased
towards Pos. The authors point out that a top-down analyser would improve
the precision of Def relative to Pos and our work supports this remark.

Garćıa de la Banda et al [16] describe a Prolog implementation of Def that is
also based on an orthogonal DBCF representation (though this is not explicitly
stated) and show that it is viable for some medium sized benchmarks. Fecht [15]
describes another groundness analyser that is not coded in C. Fecht adopts ML
as a coding medium in order to build an analyser that is declarative and easy to
maintain. He uses a sophisticated fixpoint solver and his analysis times compare
favourably with those of Van Hentenryck et al [21].

Codish and Demoen [8] describe a non-ground model based implementa-
tion technique for Pos that would encode x1 ↔ (x2 ∧ x3) as three tuples
〈true, true, true〉, 〈false, , false〉, 〈false, false, 〉. Codish et al [9] propose a
sub-domain of Def that can only propagate dependencies of the form (x1 ↔
x2) ∧ x3 across procedure boundaries. The main finding of Codish et al [9] is
that this sub-domain loses only a small amount of precision for goal-dependent
analysis.

King et al [18] show how the equivalence checking, meet and join of Def can
be efficiently computed with a Sharing quotient. Widening is required to keep
the representation manageable.

Finally, a curious connection exists between the join algorithm described in
this paper and a relaxation that occurs in disjunctive constraint solving [14].
The relaxation computes the join (closure of the convex hull) of two polyhedra
P1 and P2 where Pi = {x ∈ R

n | Aix ≤ Bi}. The join of P1 and P2 can be
expressed as:

P =
{

x ∈ R
n

∣∣∣∣ A1ρ1(x) ≤ B1 ∧A2ρ2(x) ≤ B2 ∧
0 ≤ λ ≤ 1 ∧ x = λρ1(x) + (1− λ)ρ2(x)

}

which amounts to the same tactic of constructing join in terms of meet (conjun-
ction of linear equations), renaming (ρ1 and ρ2) and projection (the variables of
interest are x).

7 Future Work

Initial profiling has suggested that a significant proportion of the analysis time is
spent projecting onto (new) call and answer patterns, so recoding this operation
might impact on the speed of the analysis. Also, a practical comparison with a
DBCF analyser would be insightful. This is the immediate future work. In the
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medium term, it would be interesting to apply widening to obtain an analysis
with polynomial guarantees. Time complexity relates to the maximum number
of iterations of a fixpoint analysis and this, in turn, depends on the length of the
longest ascending chain in the underlying domain. For both PosX and Def X the
longest chains have length 2n− 1 where |X| = n [18]. One way to accelerate the
analysis, would be to widen call and answer patterns by discarding the formulae
component of the GEP representation if the number of updates to a particular
call or answer pattern exceeded, say, 8 [18]. The abstraction then corresponds to
an EPosX function whose chain length is linear in X [9]. Although widening for
space is not as critical as in [18], this too would be a direction for future work. In
the long term, it would be interesting to apply Def to other dependency analysis
problems, for example, strictness [13] and finiteness [5] analysis.

The frequency analysis which has been used in this paper to tailor the costs
of the abstract operations to the frequency with which they are called could be
applied to other analyses, such as type, freeness or sharing analyses.

8 Conclusions

The representation and abstract operations for Def have been chosen by follo-
wing a strategy. The strategy was to design an implementation so as to ensure
that the most frequently called operations are the most lightweight. Previously
unexploited computational properties of Def have been used to avoid expensive
joins (and projections) through entailment checking; and to keep abstractions
small by reformulating join in such a way as to avoid orthogonal reduced mono-
tonic body form. The join algorithm has other applications such as computing
the downward closure operator that arises in BDD-based set sharing analysis.

By combining the techniques described in this paper, an analyser has been
constructed that is precise, can be implemented easily in Prolog, and whose
speed compares favourably with BDD-based analysers.
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