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Abstract. A shape-analysis algorithm statically analyzes a program to
determine information about the heap-allocated data structures that
the program manipulates. The results can be used to understand or
verify programs. They also contain information valuable for debugging,
compile-time garbage collection, instruction scheduling, and paralleliza-
tion.

1 Introduction

Pointers and anonymous objects stored in the heap seem to be the dark corner
of imperative programming languages. There are only a few treatments of the
semantics of pointers. Most semantic descriptions of imperative programming
languages even assume the nonexistence of pointers, since otherwise the seman-
tics of an assignment statement becomes much more complex. The reason is that
an assignment through a pointer variable or pointer component may have far
reaching side-effects.

These far reaching side-effects also make program dependence analysis
harder, since they make it difficult to compute the aliasing relationships among
different pointer expressions in a program. Having less precise program depen-
dence information decreases the opportunities for automatic parallelization and
for instruction scheduling.

The usage of pointers is error prone. Dereferencing NULL pointers and ac-
cessing previously deallocated storage are two common programming mistakes.
The usage of pointers in programs is thus an obstacle for program understanding,
debugging, and optimization. These activities need answers to many questions
about the structure of the heap contents and the pointer variables pointing into
the heap.

Shape analysis is a generic term denoting static program-analysis techniques
attempting to determine properties of the heap contents relevant for the appli-
cations mentioned above.

1.1 Structure of the Paper

The structure of the paper is as follows: In Section 2, a number of questions about
the contents of the heap are listed. Subsection 2.1 presents a program that will
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be used as a running example, a program that destructively reverses a singly
linked list. Subsection 2.2 shows how shape analysis would answer the questions
about the heap contents produced by this program. Section 3 then introduces a
parametric shape analysis along the lines of [23], which provides for a generative
way to design and implement shape-analysis algorithms. The “shape semantics”
plus some additional properties that individual storage elements may or may not
possess are specified in logic, and the shape-analysis algorithm is automatically
generated from such a specification. Throughout the paper, abstraction functions
and transfer functions are given intuitively, by means of examples. Section 4
presents experience obtained via an implementation done in Java. Section 5
briefly discusses related work. Section 6 presents some conclusions.

2 Questions About the Heap Contents

Shape analysis has a somewhat constrained view of programs. It is not interested
in numerical or string values that programs compute, but exclusively in the linked
structures they build in the heap and in the pointers into the heap from the stack,
from global memory, or from cells in the heap. We will therefore use the term
execution state to mean the set of cells in the heap and their connectivity by
pointer components of heap cells and the values of pointer variables in the store.

Among the questions about execution states that we might wish to pose at
points in a program are:

NULL-pointers: May a pointer variable or a pointer component of a heap cell
contain NULL? This is valuable debugging information at the entry of a
statement attempting to dereference this pointer.

May-Alias: May two pointer expressions reference the same heap cell? The
absence of may-aliasing can be used for improving program dependence in-
formation [3,20].

Must-Alias: Will two pointer expressions always denote the same heap cell?
This may be used to predict a cache hit or to trigger a prefetch.

Sharing: May a heap cell be shared?1 There are many uses for such information.
Explicit deallocation of a shared node may leave the storage manager in an
inconsistent state (e.g., if the heap cell is deallocated twice – by calls on
the deallocator at each predecessor). A nonshared cell may be explicitly
deallocated when the last pointer to it ceases to exist. This again is valuable
for debugging.

Reachability: Is a heap cell reachable from a specific variable or from any
pointer variable? Unreachable cells are certainly garbage.

Disjointness: Will two data structures pointed to by two distinct pointer vari-
ables ever have common elements? Disjoint data structures may be processed
in parallel by different processors and may be stored in different memories [8].

1 Later on in the paper the term “shared” means “heap-shared” i.e., pointed to by
two or more pointer components of heap cells. Sharing due to two pointer variables
or one pointer variable and one heap cell component pointing to the same heap cell
is also deducible from the results of shape analysis.



Shape Analysis 3

Cyclicity: May a heap cell be part of a cycle? If not, garbage collection could
be done by reference counting.

Shape: What will be the “shape” of (some part of) the heap contents? Shapes
(or, more precisely, shape descriptors) characterize data structures. A shape
descriptor could indicate whether the heap contains a singly linked list, po-
tentially with/definitely without a cycle, a doubly linked list, a binary tree,
etc. Many of the properties listed above are ingredients of shape analyses,
e.g., sharing, cyclicity, reachability, disjointness.
Shape analysis can be understood as an extended type analysis; its results
can be used as an aid in program understanding, debugging [6], and verifi-
cation.

2.1 An Example: Destructive Reverse

n_e

exit

n_7: y->n = t

n_2: x != null

false

n_3: t = y

true

n_6: y->n = null

n_5: x = x->n

n_4: y = x

n_1: y = null

Fig. 1. Flow graph of a list-
reversal program

The following program, reverse, is used as a
running example. It destructively reverses a
list pointed to by x into one pointed to by y.

/* reverse.c */
#include "list.h"
List reverse(List x) {
List y, t;
y = NULL;
while (x != NULL) {
t = y;
y = x;
x = x->n;
y->n = NULL;
y->n = t;

}
return y;

}

It assumes the declaration of a List data
type

/* list.h */
typedef struct node {
struct node *n;
int data;

} *List

The control flow graph of reverse is re-
produced in Fig. 1. The program points are
labeled for ease of reference. The body of the
loop does the following: Pointer variable t
holds on to the current y-list (n 3), while y
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grabs the head of the current x-list (n 4). x is then moved to the tail of the
current x-list (n 5). y->n is first nulllified (n 6) and then made to connect the
new head to the old y-list (n 7) 2.

x c0 c4c3 nc2 nc1 nn

Fig. 2. An input list for reverse

The workings of reverse is exemplified on the input list shown in Fig. 2.
Table 1 shows the execution state after n 3 during the first four iterations of the
loop.

Let us assume that the input to this program will be a non-empty acyclic
singly linked list made up of unshared elements like the one shown in Fig. 2.
Some correct answers to the questions listed in Section 2 would be:

after n 3:
– x and y point to acyclic singly linked lists; the y-list may be empty,
– t and y are may- and must-aliases or both point to NULL.
– x never points to NULL,
– the lists to which x and y point are disjoint,
– no list element is heap-shared.

after n 4: x and y are must-aliases, and therefore also may-aliases.
after n 5: x and y are not may-aliases, and therefore not must-aliases. (Note

that this would not be the case if the initial x-list contained a cycle).
everywhere: there are no garbage cells.

2.2 Answers as Given by Shape Analysis

Shape analysis will be started under the aforementioned assumption that the
input to the program will be a non-empty acyclic singly linked list. This is
expressed by the so-called shape graphs shown in Fig. 3.

Shape analysis of reverse will produce information for each program point
about the lists that can arise there. For program point n 3, the results would be
given as the shape graphs shown in Fig. 4.

These graphs should be interpreted as follows:

– A rectangular box containing the name p represents pointer variable p. The
pointer variables of program reverse, namely x, y, and t, appear boxed in
the shape graphs in Figures 3 and 4.

2 Splitting this assignment into two steps is done to simplify the definition of the
semantics.
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Table 1. The first four iterations of the loop in reverse after n 3

x c0 c4c3 nc2 nc1 nn

y
c0

x c1

t

c4c3 nc2 nn

y
c1

x c2

t

c4c3 nn

c0n

y
c2

x c3

t

c4n

c1n c0n

– Ovals stand for abstract locations. A solid oval stands for an abstract location
that represents exactly one heap cell. In Fig. 3(b), the oval u represents the
one cell of an input list of length 1.
A dotted oval box stands for an abstract location that may represent one
or more heap cells; in Fig. 3(a) the dotted oval u represents the cells in the
tail of the input list. In the example input list shown in Fig. 2, these are the
cells c1, c2, c3, and c4.

– A solid edge labeled c between abstract locations m and m′ represents the
fact that the c-component of the heap cell represented by m will point to
the heap cell represented by m′. Fig. 4(e) indicates that the n-component of
the heap cell represented by u will point to the heap cell represented by u0.
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x

u0

uu n

r[n,x]

u

u0

u

n

r[n,x]

u0

(a)

x

uu

r[n,x]

u

(b)

Fig. 3. A description of the input to reverse. (a) represents acyclic lists of
length at least 2, (b) lists of length 1.

This edge represents the n-component of c1 pointing to c0 in the third figure
in Table 1.

– A dotted edge labeled c between abstract locations m and m′ tells us that
the c-component of one of the heap cells represented by m may point to one
of the heap cells represented by m′. In the case when m and m′ are the same
abstract location, this edge may or may not represent a cycle. In Fig. 4(d),
the dotted self-cycle on location m0 represents n-components of heap cells
represented by m0 possibly pointing to other heap cells represented by m0.
Additional information about non-heap-sharing (see below) implies that, in
this case, the dotted self-cycle does not represent a cycle in the heap.
Fig. 4(d) represents the execution state of the second figure in Table 1. The
dotted location m0 represents the heap cells c2, c3, c4; the dotted n-back-edge
represents the two pointers from c2 to c3 and from c3 to c4, respectively.

– Other solid edges to an abstract location m represent properties that are
definitely possesed by the heap cells represented by m. For example, a solid
edge from a pointer variable p to m represents the fact that p will point to
the heap cell represented by m, i.e., this heap cell will have the property
“pointed-to-by-p”. Another property in the example is “reachable-from-x-
through-n”, denoted in the graph by r[n,x]. It means that the heap cells
represented by the corresponding abstract location are (transitively) reach-
able from pointer variable x through n-components.
Solid ovals could be viewed as abstract locations having the property
“uniquely representing”, later on called “not-summarized”.

– A dotted edge from a property to an abstract location indicates that the
heap cells represented by that location may or may not have that property.

– The absence of an edge from a property to an abstract location m means
that the heap cells represented by m definitely do not have this property.
In Fig. 4(a), the absence of an edge from y to the location u0 means that
y will definitely not point to the cell represented by u0. The absence of a
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Fig. 4. Shape graphs describing all execution states that can arise after n 3

pointer variable p in a shape graph means that in the stores represented by
this graph p points to NULL.

In the analysis of reverse, a very important heap cell property is is which
means “is (heap-)shared”. It does not show up in any of the graphs in Fig. 4,
signifying that no heap cell is be shared in any of the execution states that
can arise after n 3.
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In summary, the shape graphs portray information of three kinds:

solid meaning “always holds” for properties (including “uniquely represent-
ing”),

absent meaning “never holds” for properties, and
dotted meaning “don’t know” for properties (including “uniquely represent-

ing”),

In the following, “always holds” and “never holds” will be called definite
values of properties, while “don’t know” will be called the indefinite value.

Each shape graph produced at some program point describes execution states
that could occur when execution reaches that program point. The set of all
graphs produced at some program point describes (a superset of) all the execu-
tion states that can occur whenever execution reaches that program point.

With this interpretation in mind, all the claims about the properties of the
heap contents after n 3 can be checked by verifying that they hold on all of the
graphs shown in Fig. 4.

3 Shape Analysis

The example program reverse works for lists of arbitrary lengths. However,
as was described in the preceding section (at least for one program point), the
description of the lists occurring during execution is finite: there are 8 graphs
describing all x- and y-lists arising after n 3. This is a general requirement for
shape analysis. While the data structures that a program builds or manipulates
are in general of unbounded size, their shape descriptor has to have a bounded
size.

This representation of the heap contents has to be conservative in the sense
that whoever asks for properties of the heap contents—e.g., a compiler, a debug-
ger, or a program understanding system—receives a reliable answer. The claim
that “pointer variable p or pointer component p->c never has the value NULL at
this program point” may only be made if indeed this is the case for all executions
of the program and all program paths leading to the program point. It may still
be the case that in no program execution p (resp. p->c) will be NULL at this
point, but that the analysis will be unable to derive this information. In the field
of program analysis, we say that program analysis is allowed to (only) “err on
the safe side.”

In short, shape analysis computes for a given program and each point in the
program:

a finite, conservative representation of the heap-allocated data structures
that could arise when a path to this program point is executed.

3.1 Summarization

The constraint that we must work with a bounded representation implies a loss
of information about the heap contents. Size information, such as the lengths of
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lists or the depths of trees, will in general be lost. However, structural informa-
tion may also get lost due to the chosen representation. Thus, there is a part of
the execution state (or some of its properties) that is exactly represented, and
some part of the execution state (or some of its properties) that is only approxi-
matively represented. The process leading to the latter is called summarization.
Summarization intuitively means the following:

– Some heap cells will “lose their identity”, i.e., will be represented together
with other heap cells by one abstract location.

– The connectivity among those jointly represented heap cells will be repre-
sented conservatively, i.e., each pointer in the heap will be represented, but
several such pointers (or the absence of such pointers) may be represented
jointly.

– Properties of these heap cells will also be represented conservatively. This
means the following:
• a property that holds for all (for none of the) summarized cells will be
found to hold (not to hold) for their summary location,

• a property that holds for some but not all of the summarized cells will
have the value “don’t know” for the summary location.

As will be seen in Subsection 3.5, one of the main problems is how to extract
an abstract location from a summary location when (in a concrete execution
of the program) a pointer is advanced to one of the heap cells represented by
this summary location. This process will be called “materializing a new abstract
location out of a summary location”.

3.2 Static Program Analysis

Shape analysis is a static program analysis technique. It can thus be couched in
terms of the theory of Abstract Interpretation, cf. [4,17]. The most important
ingredient of any static program analysis is an abstraction function. The ab-
straction function relates two worlds: in the case of shape analysis, the concrete
world of program execution states and the abstract world of shape graphs. It
maps an execution state to its bounded, conservative representation. The ab-
straction function does what is described as summarization above.

The concrete semantics of the programming language is given by a set of
functions fst for each statement st of the language. They describe the effect
of the statements on an execution state. The abstract semantics describes the
effect of the statements on the representation of execution states. It is given in
the form of an abstract transfer function f#

st for each statement st. Applying f#
st

will be called abstractly executing st.

3.3 Parametric Shape Analysis

“Shape analysis” is a generic term standing for a whole class of algorithms of
different power and complexity trying to answer questions about structures in
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the heap. In our setting, a particular shape-analysis algorithm is determined by
a set of properties that heap cells may have (and whose values will be tracked
by the shape-analysis algorithm).

First, there are the core properties, e.g., the “pointed-to-by-p”-property for
each program pointer variable p and the property “connected-through-c”, which
pairs of heap cells (l1, l2) possess if the c-component of l1 points to l2. These
properties are part of any pointer semantics. The core properties in the partic-
ular shape analysis of the reverse program are “pointed-to-by-x”, denoted just
by x, “pointed-to-by-y”, denoted by y, and “pointed-to-by-t”, denoted by t, and
“connected-through-n” denoted by n.

Further properties are called instrumentation properties [23]. They are de-
termined by what the analysis is meant to observe. They are expressed in terms
of the core properties. Our example analysis should find out properties of pro-
grams manipulating acyclic singly linked lists. Sharing properties are important
to detect acyclicity. Reachability properties from specific pointer variables are
important to keep disjoint sublists summarized separately when a pointer moves
through a list.

Therefore, the instrumentation properties in our example analysis are “is-
heap-shared”, denoted by is, “reachable-from-x-through-n”, denoted by r[n,x],
“reachable-from-y-through-n”, denoted by r[n,y], and “reachable-from-t-
through-n”, denoted by r[n,t]. A property existing in every shape analysis
is “not-summarized”.

3.4 Abstraction Functions

The abstraction function of a particular shape analysis is determined by a subset
of the set of all properties, the so-called abstraction properties.3 The principle
is that heap cells that have the same definite values for the abstraction proper-
ties are summarized to the same abstract location. Thus, if we view the set of
abstraction properties as our means of observing the contents of the heap, the
heap cells summarized by one summary location have no observable difference.

In Fig. 3(a), all the cells in the tail of an input list of length at least two are
summarized by the abstract location u, since they all have the property r[n,x]
and do not have the properties x, y, t, r[n,y], r[n,t], is. The abstract location
u0 represents exactly the first cell of the input list. It has the properties x and
r[n,x] and none of the other properties.

3.5 Analyzing a Statement

An abstract semantics of the pointer statements available in the language has to
be specified in some formalism. It describes how the core and the instrumentation
properties change when a statement is executed.

The most complex statement involving pointers is the one that moves a
pointer along a pointer component. In the reverse program there is one such
statement, n 5: x=x->n. Its semantics will be described by means of an example.
3 [23] uses only unary properties.
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The shape graph in Fig. 5(a) describes some of the lists that can arise before
program point n 5.
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Fig. 5. (a): A shape graph that arises before n 5; (b) and (c): the two shape
graphs resulting from (abstractly) executing x=x->n on shape graph (a).

At n 5 the statement x=x->n is (abstractly) executed. One candidate result
might be the shape graph in which x has moved along the indefinite edge labeled
n to point to the abstract location u. However, this would not be an acceptable
shape graph, since it is not in the image of the abstraction function. To see this,
note that a summarized abstract location representing one or more heap cells
cannot have the definite property “pointed-to-by-x”. The semantics of C (as well
as of other languages with pointers) implies that any pointer variable or pointer
component can only point to at most one cell at any one time. Hence, only two
cases are possible: (i) x points to NULL, or (ii) x points to exactly one cell.

A better approach to creating the shape graph that results from (abstractly)
executing x=x->n is to do a case analysis of the reasons why u’s
“not-summarized” property and the two n-edges are indefinite.

– The first case assumes that a definite n-edge exists starting at u0, and that u
represents exactly one heap cell. What about the indefinite trivial cycle la-
beled n on u? The absence of an is-edge to u indicates that the cell rep-
resented by u is not shared. Thus, the back-edge from u to u in Fig. 5(a)
cannot represent a concrete back pointer, since there is already one solid
edge to u representing a concrete pointer. Hence, the indefinite back-edge
from u to u has to be eliminated. The abstract execution of the statement
x=x->n results in the graph shown in Fig. 5(b).

– The second case also assumes that a definite n-edge exists starting at u0.
However, we now assume that u represents more than one heap cell. A new
definite abstract location, called m0, is then “materialized” out of u. It repre-
sents the first of the cells in the tail of the x/y-list. The definite edge starting
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at u0 is made to point to it. The argumentation about a potential back-edge
to it is the same as in the first case: the newly materialized location does
not have the property is and thus cannot be the target of a back-edge. The
execution of the statement x=x->n results in the graph shown in Fig. 5(c).

– A third case would have the indefinite n-edge representing the absence of a
pointer from the cell represented by u0 to any of the cells represented by u.
However, this is incompatible with the fact that the r[n,x] and r[n,y]
properties of u have the (definite) value 1. Hence, this case is impossible.

The less powerful a shape analysis is, the more information about the heap
contents will in general be summarized. Most shape-analysis algorithms are expo-
nential or even doubly exponential in some parameters derived from the program
and some parameters determined by the set of properties to be observed.

4 Implementation and Experience

The three-valued-logics approach described in this paper has been implemented
in the TVLA-engine (Three-Valued Logic Analysis) by Tal Lev-Ami at Tel-Aviv
University [16]. This prototype implementation in Java is good for experimenting
with analysis designs. Small examples like reverse can be analyzed in a few
seconds on a Pentium 166 MHz PC. Bigger examples, e.g., Mobile Ambients [18],
may take several hours.

A surprising experience was the following: Although one expects that a more
precise analysis is more costly in terms of time and space, this is not necessarily
true in three-valued logic based analyses: A more precise analysis may create
fewer unneeded structures and thus run faster. For instance, Lev-Ami analyzed
a program to sort the elements of a linked list. When a list-merge function was
analyzed without reachability properties, the analysis created tens of thousands
of graphs such that the machine ran out of space. Adding reachability properties
reduced the number of graphs to 327 and the analysis time to 8 seconds.

A number of issues need to be addressed for the TVLA-engine to become a
useful tool for large programs.

5 Related Work

Only a very brief account of related work can be given in this paper. A more
detailed treatment is given in [22].

5.1 Types and Allocation Sites

One of the earliest properties of heap cells used for abstraction has been the
point in the program at which the cells were allocated, i.e., their allocation
site [12,2,24,1,19]. Cells allocated at different program points would never be
represented jointly by one node. The motivation behind this approach was that
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“nodes allocated in different places probably are going to be treated differently,
while all nodes allocated at a given place will probably be updated similarly” [2].

This is sometimes true and sometimes not true. For example, allocation-site
information fails to keep abstract locations separate when all cells of a data
structure are allocated at the same program point.

The methods described above use additional information such as sharing or
heap reference counts to improve the precision of the results.

Types have also been used to partition the set of heap cells. In a typed
language, a typed pointer may only point to cells of the appropriate type. They
could be used if nothing else is available. However, they will lead only to very
coarse representations because often all cells of a data structure have the same
type.

Both allocation-site information and type information induce a static parti-
tion on the heap. This is in contrast with the approach described above, which
induces a dynamic partition on the heap.

5.2 Pointer Variables

[25,21,22] used only the “pointed-to-by-p” properties to define the abstraction
function. Additional information such as non-sharing information was used to
improve precision. The algorithm given in [21,22] was the first to achieve strong
nullification and strong update of pointer values for statements that modified
pointer values. This means, the algorithm could delete or overwrite existing
pointers in a conservative way. As a result it was able to materialize new nodes
out of summary nodes as described in Section 3.5.

For efficiency reasons, the method presented in [21,22] (as well as the methods
described in [12,15,14,2,24]) merged all the information available at a program
point into one shape graph. This made the semantics hard to understand and
implied a loss in precision. A more precise variant of this method (which is also
easier to understand) is described in [17]. It uses sets of shape graphs at each
program point.

5.3 k-Bounded Approaches

Another approach to represent unbounded structures in a bounded fashion is to
choose a constant k and to represent everything “within a diameter k” precisely
and to summarize heap cells outside of this diameter. Applied to our problem of
shape analysis, this would mean representing lists precisely up to a length of k,
trees up to a depth of k, and general graphs up to a diameter of k, and then
summarizing the rest of the data structure. The approach of [11] corresponds to
using the “reachable-from-p-via-access-path-α”-property with |α| ≤ k.

The Jones-Muchnick formulation has two drawbacks:

– The analysis yields poor results for programs that manipulate cons-cells
beyond the k-horizon. For example, for the list-reversal program reverse,
little useful information is obtained. The analysis algorithm must model
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what happens when the program is applied to lists of lengths greater than k.
However, the tail of such a list is treated conservatively, i.e., as an arbitrary,
and possibly cyclic, data structure.

– The analysis may be extremely costly because the number of possible shape-
graphs is doubly exponential in k.

In addition to Jones and Muchnick’s work, k-limiting has also been used in a
number of subsequent papers (e.g., [10]).

5.4 Methods Not Based on Shape Graphs

There are also several algorithms for finding may-alias information for pointer
variables that are not based on shape-graphs. The most sophisticated ones are
those of Landi and Ryder [13] and Deutsch [5]. For certain programs that ma-
nipulate lists, Deutsch’s algorithm offers a way of representing the exact (infinite
set of) may aliases in a compact way.

A different approach was taken by Hendren and Nicolau, who designed an
algorithm that handles only acyclic data structures [9,7].

6 Conclusions

We conclude with a few general observations.

6.1 A Parametric Framework for Shape Analysis

The method that has been surveyed in this paper provides the basis for a para-
metric framework for shape analysis. Such a framework has two parts: (i) a
language for specifying various properties that a heap cell may or may not pos-
sess, and how these properties are affected by the execution of the different kinds
of statements in the programming language, and (ii) a method for generating
a shape-analysis algorithm from such a description. The first is an issue having
to do with specification; the specified set of properties determines the charac-
teristics of the data-structure elements that the static analysis can distinguish.
The second is an issue of how to generate an appropriate algorithm from the
specification. The ideal is to have a fully automatic method—a yacc for shape
analysis, so to speak: The “designer” of a shape-analysis algorithm supplies only
the specification, and the shape-analysis algorithm is created automatically from
this specification. The TVLA system discussed in Section 4 implements such a
parametric framework.

Different instantiations of the framework create analyses that use different
classes of shape graphs, and hence are prepared to identify different classes of
store properties that hold at the different points in a program. Different classes
of shape graphs may be needed, depending on the kinds of linked data structures
used in a program and on the link-rearrangement operations performed by the
program’s statements. (In general, an instantiation of the framework will handle
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every program, but may produce conservative results due to the use of a class of
shape graphs that does not make appropriate distinctions.) The essence of the
particular shape-analysis methods discussed in Section 5 can be captured via
different instantiations of the framework.

The instantiation of the analysis framework described in Subsection 3.3 is
sufficiently powerful to successfully analyze the reverse program, which works
on singly linked lists. It would also produce precise information on many other
programs that deal with singly linked lists. However, it would fail on programs
that operate on doubly linked lists, since the is-property would hold on all but
the first and the last elements of such lists. An instantiation for doubly linked
lists would need the following two properties:

forward-backward-pairing: If the forward-pointer of a heap cell c1 points to
a heap cell c2, then the backward-pointer of c2 must point to c1.

backward-forward-pairing: If the backward-pointer of a heap cell c1 points
to a heap cell c2, then the forward-pointer of c2 must point to c1.

Different versions of doubly linked lists would need some additional properties
for the first and last elements, e.g., requiring that the “unused” pointer has the
value NULL.

6.2 Biased Versus Unbiased Static Program Analysis

Many of the classical dataflow-analysis algorithms use bit vectors to represent
the characteristic functions of set-valued dataflow values. This corresponds to
a logical interpretation (in the abstract semantics) that uses two values. It is
definite on one of the bit values and conservative on the other. That is, either
“false” means “false” and “true” means “may be true/may be false, or “true”
means “true” and “false” means “may be true/may be false”. Many other static-
analysis algorithms have a similar character.

Conventional wisdom holds that static analysis must inherently have such a
one-sided bias. However, the material developed in [23] shows that while indefi-
niteness is inherent (i.e., a static analysis is unable, in general, to give a definite
answer), one-sidedness is not: By basing the abstract semantics on 3-valued logic,
definite truth and definite falseness can both be tracked, with the third value
capturing indefiniteness.

This outlook provides some insight into the true nature of the values that
arise in other static analyses:

– A one-sided analysis that is precise with respect to “false” and conservative
with respect to “true” is really a 3-valued analysis over false, true, and “don’t
know” that conflates true and don’t know (and uses “true” in place of don’t
know).

– Likewise, an analysis that is precise with respect to “true” and conservative
with respect to “false” is really a 3-valued analysis over false, true, and “don’t
know” that conflates false and don’t know (and uses “false” in place of don’t
know).
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In contrast, the shape-analysis work has shown how to create analyses that are
unbiased: They are precise with respect to both false and true, and use a separate
“don’t know” value to capture indefiniteness.
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