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Abstract. Formal specification and verification techniques can improve
the quality of programs by enabling the analysis and proof of seman-
tic program properties. This paper describes the modular architecture
of an interactive program prover that we are currently developing for
a Java subset. In particular, it discusses the integration of a program-
ming language-specific prover component with a general purpose theorem
prover.

1 Introduction

Specification and verification techniques can improve the quality of programs by
enabling the analysis and proof of semantic program properties. They can be used
to show the absence of exceptions and to prove that a program satisfies certain
interface properties or a complete interface specification. This is particularly
interesting for the emerging market of software components. As we illustrate in
Section 2, tool support is crucial for the application of such formal techniques.

The paper motivates and describes the modular architecture of an interactive
program prover that we are currently developing for a Java subset. In particular,
it discusses the integration of a programming language-specific prover component
with a general purpose theorem prover. The goal of this research is to provide a
powerful and flexible tool that

— supports complete a posteriori program verification;

— provides assistance in top-down program development, e.g. for deriving spec-
ifications of auxiliary procedures;

— allows one to specify and check certain simple, but in general undecidable
properties, such as the absence of null pointer dereferencing and out-of-
bounds access to arrays.

As illustrated by the last aspect, we are not only interested in algorithm ver-
ification, but as well in showing the absence of certain (language dependent)
program errors. In particular, we have to deal with sharing and abstraction. We
build on an object-oriented language, because it supports encapsulation on the
level of types and because subtyping simplifies reuse.

Overview. The paper is organized as follows. Section 2 provides the techni-
cal background for specification and verification, motivates our approach, and
discusses related work. Section 3 presents the overall architecture for the interac-
tive verification environment. Section 4 focuses on the realization of the program
prover component and describes its application by an example.
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2 Verification of Realistic Programs

Verification of realistic programs is a fairly complex task. The goal of this section
is to illustrate where this complexity comes from and to give an overview of
tool-based approaches to cope with this complexity. The first subsection sketches
state-of-the-art specification techniques and the involved formal background that
has to be mastered by verification tools. The second subsection summarizes
mechanical approaches to formal program verification from the literature.

2.1 Specifying Object-Oriented Programs

Program specifications should describe the behavior of program components
in a formal and abstract way: Formality is a prerequisite for computer-aided
verification. Abstraction is needed to achieve implementation independency and
to simplify verification. In the following we summarize formal techniques to
achieve abstraction in OO-languages.

We build on the Larch approach to program specification (cf. [GI193]) that
uses type invariants and pre- and postconditions for procedures/methods. The
following Java program fragment shows an interface type Set' and an imple-
mentation of this type based on arrays.

interface Set { class ArraySet implements Set {
boolean add( Object o ); private Object[] elems;
boolean contains( Object o ); private int setsize;
int size(); boolean add( Object o ){ ... }
. .o}

Since the interface Set may have several implementations and since it should
be possible to modify implementations without changing the specification, the
specification of Set cannot refer to any implementation parts, i.e., it has to be
given in abstract terms. We specify the behavior of type Set using an abstract
data type with main sort SET and the usual operations, and an abstraction
function aSet. aSet maps a Set object X and an object store to a value of sort
SET. The object store is needed to capture the objects referenced by X. Method
add can thus be specified as follows where $ is a variable denoting the current
object store and the caret-operator yields the value of a variable in the prestate:

boolean add( Object o )
pre o # null
post result = (o € aSet(this,$")) A aSet(this, $) = {o} U aSet(this, $")
A VObject X : —inRepSet(X,this,$") = unchanged(X,$,$")

The first conjunct of the postcondition states that add yields true if and only if
the object to be inserted is already contained in the set. The second conjunct
specifies that after execution the implicit parameter this refers to the enlarged
set. The third conjunct describes that the states of all objects not belonging to
the representation of the input set remain unchanged. The representation of an

b A simplified version of the Set type as contained in the Java library.
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abstract value comprises all objects that are used to represent the value in the
object store. Since abstraction functions and the predicate inRepSet depend on
implementations, they have to be explicitly defined. E.g., the provider of class
ArraySet has to define an abstraction function and the predicate inRepSet for
objects of type ArraySet. (For a set represented by an ArraySet-object Y, the
representation consists of Y and the referenced array object.)

The above example illustrates the basic aspects needed in a realistic frame-
work for formal program specification and verification. A more detailed pre-
sentation of the specification techniques can be found in [PHO7b,MPH99]. In
summary, such a framework has to provide the following features:

— To express abstraction, it is necessary to define and reason about abstract
data types that are specified outside the programming language (e.g. SET).

— To specify modifications of the object store and to formulate properties on
the program level (e.g. absence of null pointer dereferencing), a formalization
of objects and the object store has to be provided by the framework.

— The abstract and program levels have to be integrated to be able to spec-
ify abstraction functions, representation predicates, and abstract data types
that are based on types of the programming language (e.g. the abstract data
type SET refers to elements of type Object).

The Java interactive verification environment JIVE that is described in this
paper supports all of the above features (cf. Section 3 and 4).

2.2 Computer-Aided Program Verification

In the literature, we can essentially find three approaches to computer-aided
program verification.

Verification Based on Language Semantics. This technique works as follows:
Translate the program into a general specification framework (e.g. HOL) in
which the semantics of the programming language is defined. Then state the
program properties directly within this framework and use the rules of the lan-
guage semantics for verification. This techniques is e.g. applied in [JvdBH " 98].

The advantage of this approach is that existing frameworks equipped with
powerful tools can be used without extensions (e.g., PVS [CORT95] or Is-
abelle [Pau94]). Only the translation process has to be implemented (and veri-
fied). The main disadvantage is that specification and verification on the seman-
tics level is very tedious, because the abstraction step gained by an axiomatic
language definition once has to be done in semantics level proofs again and again.

Verification Condition Generation. VCG was the classical approach to program
verification. Based on a weakest precondition semantics, a program specification
is transformed into a (weakest) precondition formula guaranteeing that a pro-
gram satisfies its postcondition; i.e., program dependent aspects are eliminated
by the wp-transformation. The precondition formula (verification condition) can
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be proved by a general theorem prover. This is the technique used in systems
like e.g. the Standford Pascal Verifier [Com79].

The advantage of this approach is again that program dependent aspects are
eliminated automatically and that the proper verification task can be done using
standard tools. The disadvantage is that in realistic settings (cf. Section 2.1) the
verification conditions become huge and very complex. There are essentially
three reasons for that: (recursive) procedure/method calls, aliasing operations
on the object store, and abstraction. As an example, consider an invocation site
of method add of interface Set. If we use the specification of add to compute
a weak precondition for a formula Q, the resulting precondition has about the
size of the method specification plus the size of Q. The reason for this is that
the postcondition of add does usually not match Q and that simplification is not
trivial. Having several method invocations in a statement sequence easily leads
to unmanagable preconditions.

Working with verification condition generation has two further disadvantages:
a) If the generated condition cannot be proved, it is often difficult to find out
why this is the case and which program statement causes to fail (cf. [GMPI0]
for a discussion of this issue). b) VCG is fairly inflexible and only applicable in
an a-posteriori verification. E.g., in top-down program development, one would
like derive the needed properties of a used method from the specification of the
calling method.

Interactive Program Verification. Interactive program verification applies ideas
from general tactical theorem proving to programming logics like e.g. to Hoare
logic (see below) or dynamic logic (cf. [Rei95]). The main advantage of this ap-
proach is that program proofs can be developed around the program, i.e. as
annotations to the program. The intuition about the program can be directly
used for the proof. Strengthening and weakening steps can be applied where
most appropriate. In particular, such steps can be done before and after method
invocations to adapt method specifications to the needs at the invocation site.
This way the described problem of VCG can be avoided. In addition to this, it is
usually easy to detect program errors from failing proofs. Furthermore an advan-
tage is that the interactive program prover “knows” the programming language
and can provide appropriate views. On the other hand, a language dependent
program prover has to be developed which is quite an engineering challenge.

Because of the described disadvantages of the first and second approach,
we decided to construct an interactive, tactical prover for program verification.
Within this prover, weakest precondition techniques can be implemented by
tactics and used where appropriate without giving up flexibility. Depending on
the goals, other combinations of the verification approaches sketched above are
investigated in the literature. E.g. in [Gor89], Gordon demonstrates the devel-
opment of programming logics based on a general HO-theorem prover showing
the strength of HO-reasoning. However, he cannot exploit the specific relation
between programs and program proofs. In the Extended Static Checker for Java
(ESC/Java, cf. [DLNS98]), the translational approach is combinded with VCG
for automatic checking of a restricted class of specifications.
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3 An Architecture for Interactive Program Provers

This section presents our architecture for interactive program provers. The ar-
chitecture is based on the following requirements: The functional properties as
described in Section 2.1 have to be fulfilled. The newly implemented program
prover component should only be responsible for proof tasks that are directly
related to the program. General specification and verification aspects should be
delegated and performed by state-of-the-art theorem provers. This comprises in
particular the definition of the object store and abstraction functions. In the
following, we first analyse the consequences of combining general provers with
language-specific provers. Then, we explain the overall architecture.

Communicating Provers. There are two architectural alternatives for com-
bining a general prover and a programming language specific prover component
within a verification system: a) The general theorem prover is encapsualed by
the system and hidden to users. b) Both prover components are accessible by
users and the communication between them is visible. For the following reasons,

we decided for the second alternative. It provides more flexiblity and is easier
to react to new developments w.r.t. the general theorem prover. The implemen-
tation is less expensive. For third party users, the programming interfaces of
existing theorem provers are not sufficiently powerful to control all prover op-
erations by an external process. The disadvantage of this solution is that users
of the resulting system have to handle two interactive components: the program
prover component and the theorem prover component.

The communication between Type check request
the two prover components is il- A
lustrated in Figure 1. The pro- Proof request
gram prover sends type checking

Component Component

and proof requests to the general
theorem prover. Type checking W
of pre- and postformulas is done
in the general theorem prover, as Fig. 1. Basic prover components.
these formulas contain logical variables and make use of abstract data types spec-
ified as theories in the syntax of the general theorem prover. Proof requests result
from strengthening and weakening steps in program proofs. They are formulas
not refering to a special program part and are verified online or offline in the the-
orem prover component. The information whether such proof obligations have
been proven or not is sent back to the program proof component. This way, the
program proof component can check whether program proofs are complete.

The communication between program prover and theorem prover is based on
a communication interface that allows one to send formulas from the program
prover to the theorem prover. Type check requests differ from proof requests
in that they are usually? solved automatically whereas proof requests typically
need user interaction.

2 The subtyping of the used specification language (PVS) is in general undecidable.
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The JiVE Architecture. This subsection describes the overall architecture
of JIVE. JIVE supports the sequential kernel of the Java language including
recursive methods, classes, abstract classes, interfaces, thus inheritance and sub-
typing, static and dynamic binding, aliasing via object references, and encap-
sulation constructs. Exception handling and some of the predefined data types
(in particular float and char) are not yet supported (cf. [MPT99] for a precise
description). In addition to the Java subset, JIVE supports annotations like that
shown in Section 2.1. The common language for programs and annotations is
called ANJA (annotated Java). In the following, we explain the architectural
components and the input sources of proof sessions based on the overview given
in Figure 2.

PVS Prelude Anja Prelude Program to prove
Formalization of Object Store Predefined Classes Program
I R R At
Abstract Data Types r--- > Specification ----» Specification

el I

I
|Program Dependent Theones I
: |

3 v

v
¥ Type check request
Theorem Prover Syntax Analysis
Component Component
Type check, Proof request Proof obligations Program information
Program Prover .
Program Information
Program information
request
A ——— B : B needs Anja source from A
C---- + D : Dimports PVS theory from C

Fig. 2. The JIVE architecture

System Components. The architecture is based on five components: 1.) The
syntax analysis component that reads in and analyzes annotated programs and
generates the program proof obligations. 2.) The program information server
that makes the static program information gathered in the analysis phase avail-
able to other parts of the system. 3.) The program prover component managing
the program proofs. 4.) Views to visualize program proofs and to control proof
construction. 5.) The theorem prover to solve program independent proof obliga-
tions. In our current implementation, we use PVS for general theorem proving.

The program proof component encapsulates the construction of program
proofs. It provides two things: (1.) A container which stores all information
about program proofs and (2.) an interface which provides operations to create
and modify proofs within this container. Since the content of the proof container
represents the program proof state, it is strongly encapsulated to the rest of the
system. Modifications of the proof state can only be achieved by operations of
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the container interface (see Section 4). Therefore correctness of proofs is ensured
by the correctness of the basic container operations.

During program proof construction, various information about the underly-
ing program is needed by the program proof component: The structure of the
abstract syntax tree, results of binding and type analysis, and the program un-
parsing for visualization. This kind of information is provided by the program
information server. In contrast to a compiler frontend, all information computed
during static program analysis has to be available online after the analysis.

Proof Setup. The verification of a program is based on three formal texts:
1.) The PVS prelude containing two parts: (a) the formalization of the object-
store; (b) the specification of abstract data types used in program annotations.
Whereas the former part is program independent, the latter may be program
dependent. 2.) The ANJA prelude containing the specifications of predefined
and library classes and interfaces. 3.) An ANJA program, i.e. a program in our
Java subset together with a suitable interface specification. Annotations are for-
mulated in a language based on the specification language of the underlying
theorem prover, i.e. PVS in our case. As illustrated in Section 2, they may refer
to program variables and use abtract data types specified in the PVS prelude.

From the described sources, the syntax analysis component generates three
things: 1. The program proof obligations which need to be proven to guaran-
tee that the program fulfills its specification. They are entered into the proof
container. 2. Program dependent theories formalizing some of the declaration
information of the program for the theorem prover. 3. The abstract syntax tree
decorated with information of the static analysis. It is managed by the program
information server.

After syntax and static analysis, the system is set up for interactive proof
construction. The user constructs program proofs using basic proof operations
and tactics (see Section 4). The views and controllers provide access to the
proof state. Program independent proof obligation are verified with the general
theorem prover. The program prover monitors the overall proof process and
signals the completion of proof tasks.

4 The Program Prover

Program proofs in JIVE are based on a Hoare logic for object-oriented programs
(cf. [PHMY99]). Hoare logic is sufficient for our purposes and enables us to visual-
ize proof parts as program annotations. This section first describes how the basic
proof operations of the proof container are derived from the logic and how tac-
tics can be formulated. Then, it explains the user interface for proof construction
and visualization and sketches a simple proof done within JIVE.

4.1 Mechanizing the Programming Logic

As the supported programming language provides recursive methods, the Hoare
logic deals with sequents of the form AF { P } comp { Q } where A denotes a



70 Jorg Meyer and Arnd Poetzsch-Heffter

set of method specifications (the assumptions), P and Q are first-order formulas,
and comp denotes a statement or a method, the so-called program component of
the sequent. Program components are represented by references to the abstract
program syntax tree. A rule in the logic consists of a finite number of antecedents
and a sequent as conclusion. The antecedents are either sequents or first-order
formulas. Rules without antecedents are called axioms. As examples, we show the
rule to verify if-statements and the assumpt-intro-rule to introduce assumptions:

AF{enP } stmtl {Q}, AF{—-eAP} stm2 {Q} AFA
AF{P}if (e) { stml }else { stm2 } {Q} Ag, AFA

Basic Proof Operations. As usual, proof trees are constructed from rule in-
stances. A tree node has as many children as the rule has antecedents. There are
two ways to construct proof trees. 1. A forward proof step takes several proof
trees and combines them with a new root node. 2. A backward proof step adds a
new node to one of the leaves. A proof tree is closed if all leaves are instances of
axioms or first-order formulas that are proved by the theorem prover component.

To gain the flexibility explained in Section 2, JIVE supports operations for
forward and backward proof steps. These operations have to be distinguished,
because different directions require different context checks for formulas, pro-
gram components, and parameters. The if-rule serves as an example: Forward
proving combines two proof trees S and Sy to a new proof tree, backward prov-
ing refines a proof goal G of an if-statement into two subgoals for the then- and
else-branch. The context conditions of the if_forward and if-backward operations
are as follows:

Forward Proof: Backward Proof:
1. &1 and Sz have to be roots of proof trees. 1. G has to be the leaf of
2. The assumptions of S; and Sz have to be equal. a proof tree.
3. e has to be a conjunct of S;. 2. The program compo-
4. —e has to be a conjunct of Ss. nent of G has to be an
5. The preconditions of S; and Sz have to be equal if-statement.

modulo the conjuncts e and —e resp.

The postconditions of 1 and Sz have to be equal.
stmtl and stmt2 have to be the then- and else-
branch of the same if-statement.

o

Proof operations are executed as follows: First, the context conditions are
checked. If they are met, the proof operation is applied and leads to a new proof
tree, and thus to a modified state in the proof container. Otherwise, an appropri-
ate exception is raised that can be used in tactics (see below). Because operations
first check all necessary context conditions, correctness of proofs is provided by
the correctness of operations. The JIVE system is currently based on a Hoare
logic with 26 rules and axioms. Thus, it provides 52 basic proof operations. In
addition, JIVE provides a cut operation to remove, a copy operation to copy,
a paste operation to combine proof tree parts, and operations to inspect parts
of the proof tree or to navigate within proof trees. These operations allow for



An Architecture for Interactive Program Provers 71

comfortable interactive work with program proof information, e.g., they enable
one to cut off failing proof parts.

Tactics. Program proofs are constructed by successively using proof operations
as described above. To simplify proof construction, sequences of proof operations,
e.g. to apply a weakest precondition strategy, can be combined to form tactics.
As an example, we show a tactic that eliminates the assumptions of an open leaf
of the proof tree by iterating the assumpt-intro-rule unless all assumptions are
eliminated®. Since the proof operations of JIVE are implemented in Java (see
Section 4.4), tactics are formulated as Java programs invoking proof operations.
The getPre(), getPost (), and getComp () operations return the precondition,
the postcondition and the program component of the triple t:

public ProofTreeNode eliminate_assumptions(ProofContainer c,
ProofTreeNode ptn) throws ContextException {
Enumeration e = ptn.getAssumptions().elements();
while(e.hasMoreElements()) {
Triple t = (Triple)e.nextElement();
ptn = c.assumpt_intro_backward(
ptn,t.getPre(), t.getCompRef(), t.getPost() );
}
return ptn;

}

4.2 User-Interfaces of the Program Prover

Interactive program proof construction with proof operations enforces users to
work explicitly with several kinds of information like formulas, program struc-
tures, textual program representation, etc. A graphical user interface is required
(1.) for an appropriate visualization of the proof state and of the related informa-
tion as well as (2.) for convenient selection, input, and application of operations
and tactics. Currently JIVE provides a so-called tree view and a text view to
program proofs*. Of course, both views can be used together within one proof.

Tree View. The tree view (Figure 4 shows a screen shot) presents the information
contained in the proof container in a graphical way. All parts of proof trees can
be examined, selected, copied, combined, extended and deleted. Compared to
the text view (see below), the tree view shows all details of proof trees. In
particular, it enables the user to inspect proof steps that cannot be presented as
proof outlines and shows the complete proof structure. It supports the structural
operations on trees (cut, copy, paste) and proof operations that take several trees
as arguments which are not related to one program component. Since proof trees
are in general large structures, tree views enable to work with scalable clippings
of trees, i.e., the user interface displays only relevant information.

3 Applying the assumpt-intro-rule backward eliminates an assumption.

4 At time of submission of this paper, the text view was still under construction.
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Text View. To provide a more compact view to program proof information and
to enable an embedding of program proof information into the program text, text
views display selected proof information within a textual program representation
(Figure 3 shows a screen shot). This technique is based on so called proof outlines
(cf. [Owi75]). The text view allows the user to consider proofs (or at least most
of the central proof steps) as annotations to the program text. This turns out
to be very helpful for interactive program proofs as the program structure is
well-known to the user and simpler to handle. In particular, it allows the direct
selection of program components which is needed for forward proofs. In addition
to this, well-designed proof outlines are a good means for program and proof
documentation.

4.3 Using the Program Prover

In this section, we illustrate the use of the program prover by an example explain-
ing in particular the interaction of automated and manual proof construction.
Using an interface of a singly linked integer list, we want to prove a simple
recursive sort method:

interface List { class Sort {
public List rest() public static List sort(List 1)

pre aL(this,$) = L; pre 1/=null AND L=aL(1,$);

post aL(result,$) = rst(L) post aL(result,$)=a_sort(L);

AND result /= null; {

pre $=0S; List 1lv,res;

post $=0S; boolean bv; int ev;
public int first() bv = 1.isempty();

pre aL(this,$) = L; if (bv) res = 1;

post al(result) = fst(L); else {

pre $=0S; v = 1l.rest();ev = 1.first();

post $=0S; 1lv = Sort.sort(lv);

res = Sort.sortedIns(ev,lv);

public boolean isempty() }

pre aL(this,$)=L; return res;

post aB(result)=isempt(L); }

pre $=0S; static List sortedIns(int e, List 1)

post $=0S; pre aL(l,$)=a_sort(L) AND aI(e)=E
} AND 1/=null;

post aL(result,$) = a_sort(app(E,L));
{ ...}
}

In the given ANJA source, we use logical variables (written with capital let-
ters) to bind values in the precondition for use in the postcondition. Each list
method is specified by two pre-post-pairs. The first pair expresses the functional
behavior using the abstraction function al. mapping objects to an abstract list
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data type. The second pair states that each method does not change the object
store. Method sort of class Sort implements insertion sort using sortIns as
auxiliary method; a_sort sorts an abstract list. We sketch the proof of method
sort assuming the correctness of the list interface. sort is a static method,
i.e. behaves like procedures in imperative languages. The logical aspects of dy-
namic binding cannot be discussed here (cf. [PTIM99]). Starting the JIVE system
with the given example yields the following two proof obligations for methods
sort and sortedIns:

Bl Project: sorl2 -0 X

File Edit Axioms Forward Operations Backward Operatians Control Strategy

m(P} Camp {Q}" Formula ||NﬂtivesHCIeﬂr Selection"Logical Variables|

s Project: sart2
0, goal, apenslot

|- 41 /= null AND L = aL{l, $) } Sort@sort(List) { aLiresult, §) = a_sortiL) }

r

1, goal, apenslot
|- 41 ;= null AND aL({l, §) = a_sart(L) AND al(e}) = E } Sort@sortedins(int, List) { al{result, $) = a_sort(app(E, L) }

We start the verification of sort by applying the SWP-tactic to the goal 0.
This tactic realizes a simple weakest-precondition-strategy. For the example, it
reduces the method specification to a pre-post-pair for the statement sequence
in the body. In our logic, this corresponds to two elementary proof steps that
in particular conjoin “this # null” to the precondition. Then, the SWP-tactic
tries to verify the resulting pre-post-pair by forward proof steps starting with
the rightmost innermost statement (according to the AST of the program), i.e.,
it starts at the end of the program text and works to the beginning. In our
case, it automatically handles the return-statement and the then-branch of the
if-statement. In the else-branch, it cannot procede because the postcondition
of the if-statement does not match the postcondition of the specification for
sortedIns. The corresponding proof state is illustrated by the screen shot of the
text view in Figure 3. The system uses colors to distinguish program text from
annotations and open proof slots (red) from verified triples (green). In the figure,
this is indicated by brackets left to the screen shot. The red triple corresponds
to the open leaf of the overall proof. The two green triples correspond to needed
proof parts that have been constructed by the SWP-tactic.

The proof state after termination of a tactic can be interactively manipulated
by the user. He or she can add further proof parts using other tactics or basic
proof operations and then rerun the original tactic on the original goal. Typically,
user interaction is necessary at method invocation sites, because there may be
more than one specification for a method and it is not obvious which of them
has to be used or how they have to be combined. How to handle such situations
is demonstrated with the invocation of method first in the example. We show
three states of a forward proof: 1. After instantiating the method specifications
at the invocation site (one basic proof step). 2. After conjoining the resulting
triple (one basic proof step). 3. After adding of an invariant term (one basic proof
step) and eliminating the logical variable OS (several basic proof steps, done by
a tactic). For space reasons, we leave out the surrounding window context:
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{1/=null AND aL{l,$) = L} 9
{li=null AND § = 05} 10
e State 1: ev = 1.first();
{$=05}10

{alfev) =fst(L) } 9

{1 /=null AND aL{l, $) = LAND| j=null AND$ =05} 11
e State 2: ev = 1.first();

{alfev) =fstiL)aND § =05} 11

{1 f=null AND aLil, $) = L AND alL{lv, £} = rstiL) } 20
e State 3: ev = 1.first();

{ aliev) = fstil) AND aL(lv, $) = rstL) } 20

The other method invocations in the else-part of method sort are processed
accordingly. The overall proof of method sort is constructed by approx. 90 basic
proof operations where currently 20 of them are performed by tactics; 10 mostly
trivial implications from weakening and strengthening remain to be verified by
the general theorem prover. The tactics are still fairly primitive. With improved
tactics and a refined specification technique, we aim to drastically reduce the
amount of needed user interaction.

Bl Textview of Sort@sort{List) -0 X
File Edit Axiams Forward Operatians Backward Operations Caontral Strategy

|Natives||clear Selection"Logical Variables|

Sort@sort{List) |~

red ¢ -
{this /= null AND | /= null ANDL = aL{l, $3} 13

bv = 1.isempty(]);
grden if {aBibw))
— {aLl, $) =a_sort{l)} 12
1
res = 1;
1
— {aLires, $) = a_sort(L) } 12
else

i

Tv T.rest();
T.firsti);
Tv sort.sort{1v);

res = Sort.sortedIns(ev, 1w);

ev

ggen  ?
[7 {alires, §) = asorc(L) } 10

return res;

I [alifresult, §) = asortil) } 10

{alf{result, $) = a_sortil) } 13 2]
1

[

[elected swh_hackuard for res = lwith postconditional{res, §) = asertll})

KIE| [ ¥]

C il

Fig. 3. The text view after applying the SWP-tactic.

The presented example shows three important aspects of the system: 1. For-
ward and backward proving is combined to gain the flexibility needed to encode
typical proof strategies. 2. User-guided and automated proof construction by



An Architecture for Interactive Program Provers 75

tactics can be freely mixed so that automation can be done where possible and
user interaction can focus on the critical points. 3. Different views are needed
that allow one to inspect the proof parts on different levels of abstraction. Even
in the simple example, there exist up to 7 proof fragments at one time with 17
open proof slots and proof tree depth up to 20. This amount of information is
conveniently abstracted by the text view. If detailed information is needed, the
user can refer to the tree view (see Figure 4).

B Project: sori2 -0 X

File Edit Axioms Farward Operations Backward Operations Cantrol Strategy

: | A H(P}H(:mnp"(Q)H Farmula ||Na(ives||CIear Selec(ion“Logi(al Variables|

‘ |- { TRUE AND aLithis, §) = L } Listisempty(){ aBlresult) = isemptil) >‘

76
? I;\ |- {@B(BV) = isempt(L) AND aL{l, $) = L AND | /= null }if (b¥) STATL STAT2 { al(res, §) = a_sort(L) )‘

A |- { aB(bv) AND aB{EW)=isempt{L} AND aL{l,§}=L AMD I=null } aklock { aL{res, $) = a_sort{L} }
aB(bv) AND aB(BV) = isempt{L) AND aL{l, $) = L AND | /= null => L = empt AND aL{, 3) = empt

27, sequent clased, closed lemma
@ A |-{L=empt AND aL(l,§)=empt } ablock { aL(res, ) = a_sort(L) }
L = empt AND aL{l, §} = empt => aL{l, §) = a_sort(l)

26, sequent closed
? L\ |- {aL{, §) = a_sort(L) } aBlock { alires, §) = a_sort(L) )|

2 8, sequent clased, closed lemm
i "

25, sequent closed
? (\—{EL(L $) = a_sort(L) } aBlock { alires, $) = a_sort(L) )

24, sequent closed
’V\f(aL(l, $) = a_sortiL) b res = |; { allres, $) = a_sort(L) ;|

A |- { NOT aBibv) AMD aB (BV)=isempt{L) AND al{l,$)=L AND If=null } aBlock { aL{res, $) = a_sort(L} }

76, closed lemma
@
NOT aB(bv) AND aB(BV) = isempt({L) AND aL(l, §) = L AND | f= null == aL{l, $) = L AND | /= null AND NOT isemptiL)

[4]

Fig. 4. A clipping of the proof tree view

4.4 'Technical Issues
This section describes implementation issues concerning the JIVE system.

System Implementation. As shown in the table below, the JIVE system is im-
plemented using a variety of tools and languages, mostly Java. Java combines
several necessary properties, which are useful to implement heterogeneous tool
environments. In particular, we make use of the Java Native Interface for C, of
the API for TCP interfaces to connect to the theorem prover, and of the Swing
library as graphical user interface. The central program proof component with
the proof operations (as Java Methods) and auxiliary implementations parts
such as formula handling is completely implemented in Java. Tactics are imple-
mented as Java classes and can be dynamically loaded into the system. All other
components are attached using the above mentioned interfaces.

Generative reuse techniques. One major design decision was to use as much
as possible generative techniques to implement the system. This is possible
because many subtasks to be solved are directly derived from compiler con-
struction. 1. We use flex and bison for the syntax analysis of ANJA programs.
2. The program information server is based on attributed abstract syntax trees
for programs and annotations. It is generated by the MAX tool (cf. [PHOI7a]).
3. ANTLR [PQ)95] is a compiler generation tool for Java and is used to examine



76 Jorg Meyer and Arnd Poetzsch-Heffter

the structure of formulas given as arguments to proof operations. ANTLR is
used as it can directly produce Java objects as output.

Integration of the PVS Theorem Prover. As explained above, JIVE uses PVS
for type checking and for the verification of non-Hoare formulas. We use the
techniques described in [But97] for the communication between PVS and the
program prover. The connection to the proof system is implemented as a TCP
connection with the PVS host system Emacs. Because of restrictions in the
interface of the PVS system, our current implementation enforces that the user
acknowledges in PVS that a proof obligation sent by the program prover has
been received. Support for asynchronous communication would be desirable to
reduce the need for user interaction.

Implementation State and Further Work. The current version of JIVE enables
one to verify specified program properties of ANJA programs as described in Sec-
tion 3 and 4. We implemented tactics to support weak precondition reasoning
for statements and tactics for simplifying method calls. As further implemen-
tation steps we consider: 1. The development of more powerful tactics to make
reasoning more comfortable. 2. Improvements of the user interface, in particular
of the text view. 3. Enhancements to the programming logic, in particular for
exception handling.

Tool/Language|Lines of code

Java code 13078

MAX specification 2524

C Code 1768

flex & bison specification 1218
ANTLR specification 854

Emacs lisp code 274

PVS standard prelude for JIvE 482
ANJA standard prelude for JIVE 158

5 Conclusion

Verification of program properties for object-oriented programming languages
requires tool support, because the formal framework can hardly be handled by
hand. In this paper, we presented the architecture of the interactive program
verification environment JIVE. JIVE combines properties of different approaches
to software verification. It divides program proving into a program proving and
a theorem proving task. This enables the use of existing theorem provers for the
proof steps that are not related to the program. For the program proving tasks,
we described a technique to implement a given Hoare logic by basic proof opera-
tions supporting forward and backward proofs. Based on these proof operations,
powerful tactics can be defined. We sketched the main user interface aspects
of the system and described some implementation issues. (Current information
about JIVE can be obtained at www.informatik.fernuni-hagen.de/pi5/jive.html)
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